Parametric estimation of hidden Markov models by least squares type estimation and deconvolution - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Parametric estimation of hidden Markov models by least squares type estimation and deconvolution

Résumé

In this paper, we study a specific hidden Markov chain defined by the equation: $Y_i=X_i+\varepsilon_i$, $i=1,\ldots,n+1$, where $(X_i)_{i \geq 1}$ is a real-valued stationary Markov chain and $(\varepsilon_i)_{i \geq 1}$ is a noise independent of $(X_i)_{i\geq 1}$. We develop a new parametric approach obtained by minimization of a particular contrast taking advantage of the regressive problem and based on deconvolution strategy. We provide theoretical guarantees on the performance of the resulting estimator; its consistency and its asymptotic normality are established.
Fichier principal
Vignette du fichier
para-estim-hmm.pdf (340.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01598922 , version 1 (30-09-2017)
hal-01598922 , version 2 (01-03-2019)
hal-01598922 , version 3 (13-06-2020)
hal-01598922 , version 4 (23-11-2020)
hal-01598922 , version 5 (20-10-2021)
hal-01598922 , version 6 (28-01-2022)

Identifiants

  • HAL Id : hal-01598922 , version 1

Citer

Christophe Chesneau, Salima El Kolei, Fabien Navarro. Parametric estimation of hidden Markov models by least squares type estimation and deconvolution. 2017. ⟨hal-01598922v1⟩
1103 Consultations
1016 Téléchargements

Partager

More