Robust directional features for wordspotting in degraded Syriac manuscripts
Résumé
This paper presents a contribution to Word Spotting applied for digitized Syriac manuscripts. The Syriac language was wrongfully accused of being a dead language and has been set aside by the domain of handwriting recognition. Yet it is a very fascinating handwriting that combines the word structure and calligraphy of the Arabic handwriting with the particularity of being intentionally written tilted by an angle of approximately 45°. For the spotting process, we developed a method that should find all occurrences of a certain query word image, based on a selective sliding window technique, from which we extract directional features and afterwards perform a matching using Euclidean distance correspondence between features. The proposed method does not require any prior information, and does not depend of a word to character segmentation algorithm which would be extremely complex to realize due to the tilted nature of the handwriting.