Note on residual finiteness of Artin groups
Résumé
Let $A$ be an Artin group. A partition $\mathcal{P}$ of the set of standard generators of $A$ is called admissible if, for all $X,Y \in \mathcal{P}, X \neq Y$, there is at most one pair $(s,t) \in X \times Y$ which has a relation. An admissible partition $\mathcal{P}$ determines a quotient Coxeter graph $\Gamma/\mathcal{P}$. We prove that, if $\Gamma/\mathcal{P}$ is either a forest or an even triangle free Coxeter graph and $A_X$ is residually finite for all $X \in \mathcal{P}$ then $A$ is residually finite.
Domaines
Théorie des groupes [math.GR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...