Iterative bayesian network implementation by using annotated association rules
Résumé
This paper concerns the iterative implementation of a knowledge model in a data mining context. Our approach relies on coupling a Bayesian network design with an association rule discovery technique. First, discovered association rule relevancy is enhanced by exploiting the expert knowledge encoded within a Bayesian network, i.e., avoiding to provide trivial rules w.r.t. known dependencies. Moreover, the Bayesian network can be updated thanks to an expert-driven annotation process on computed association rules. Our approach is experimentally validated on the Asia benchmark dataset.