An averaged projected Robbins-Monro algorithm for estimating the parameters of a truncated spherical distribution - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2017

An averaged projected Robbins-Monro algorithm for estimating the parameters of a truncated spherical distribution

Résumé

The objective of this work is to propose a new algorithm to fit a sphere on a noisy 3D point cloud distributed around a complete or a truncated sphere. More precisely, we introduce a projected Robbins-Monro algorithm and its averaged version for estimating the center and the radius of the sphere. We give asymptotic results such as the almost sure convergence of these algorithms as well as the asymptotic normality of the averaged algorithm. Furthermore, some non-asymptotic results will be given, such as the rates of convergence in quadratic mean. Some numerical experiments show the efficiency of the proposed algorithm on simulated data for small to moderate sample sizes and for modeling an object in 3D.
Fichier principal
Vignette du fichier
1606.04276.pdf (577.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01591601 , version 1 (30-01-2024)

Identifiants

Citer

Antoine Godichon, Bruno Portier. An averaged projected Robbins-Monro algorithm for estimating the parameters of a truncated spherical distribution. Electronic Journal of Statistics , 2017, 11 (1), pp.1890 - 1927. ⟨10.1214/17-EJS1276⟩. ⟨hal-01591601⟩
73 Consultations
19 Téléchargements

Altmetric

Partager

More