Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks - Archive ouverte HAL Access content directly
Journal Articles Publications Mathématiques de Besançon : Algèbre et Théorie des Nombres Year : 2019

Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks

(1) , (2)
1
2
Kilian Raschel

Abstract

We consider weighted small step walks in the positive quadrant, and provide algebraicity and differential transcendence results for the underlying generating functions: we prove that depending on the probabilities of allowed steps, certain of the generating functions are algebraic over the field of rational functions, while some others do not satisfy any algebraic differential equation with rational function coefficients. Our techniques involve differential Galois theory for difference equations as well as complex analysis (Weierstrass parameterization of elliptic curves). We also extend to the weighted case many key intermediate results, as a theorem of analytic continuation of the generating functions.
Fichier principal
Vignette du fichier
DrRa-18.pdf (594.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01591022 , version 1 (20-09-2017)
hal-01591022 , version 2 (15-10-2018)

Identifiers

Cite

Thomas Dreyfus, Kilian Raschel. Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks. Publications Mathématiques de Besançon : Algèbre et Théorie des Nombres, 2019, p. 41-80. ⟨10.5802/pmb.29⟩. ⟨hal-01591022v2⟩
201 View
88 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More