Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks - Archive ouverte HAL
Article Dans Une Revue Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres Année : 2019

Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks

Kilian Raschel

Résumé

We consider weighted small step walks in the positive quadrant, and provide algebraicity and differential transcendence results for the underlying generating functions: we prove that depending on the probabilities of allowed steps, certain of the generating functions are algebraic over the field of rational functions, while some others do not satisfy any algebraic differential equation with rational function coefficients. Our techniques involve differential Galois theory for difference equations as well as complex analysis (Weierstrass parameterization of elliptic curves). We also extend to the weighted case many key intermediate results, as a theorem of analytic continuation of the generating functions.
Fichier principal
Vignette du fichier
DrRa-18.pdf (594.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01591022 , version 1 (20-09-2017)
hal-01591022 , version 2 (15-10-2018)

Identifiants

Citer

Thomas Dreyfus, Kilian Raschel. Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks. Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres, 2019, p. 41-80. ⟨10.5802/pmb.29⟩. ⟨hal-01591022v2⟩
256 Consultations
128 Téléchargements

Altmetric

Partager

More