Computing isogenies between Jacobian of curves of genus 2 and 3 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Computing isogenies between Jacobian of curves of genus 2 and 3

Résumé

We present a quasi-linear algorithm to compute isogenies between Jacobians of curves of genus 2 and 3 starting from the equation of the curve and a maximal isotropic subgroup of the l-torsion, for l an odd prime number, generalizing the Vélu's formula of genus 1. This work is based from the paper Computing functions on Jacobians and their quotients of Jean-Marc Couveignes and Tony Ezome. We improve their genus 2 case algorithm, generalize it for genus 3 hyperelliptic curves and introduce a way to deal with the genus 3 non-hyperelliptic case, using algebraic theta functions.
Fichier principal
Vignette du fichier
artJM.pdf (429.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01589683 , version 1 (18-09-2017)
hal-01589683 , version 2 (26-08-2019)

Identifiants

  • HAL Id : hal-01589683 , version 1

Citer

Enea Milio. Computing isogenies between Jacobian of curves of genus 2 and 3. 2017. ⟨hal-01589683v1⟩
333 Consultations
768 Téléchargements

Partager

More