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Abstract

We present a quasi-linear algorithm to compute isogenies between Jacobians of curves
of genus 2 and 3 starting from the equation of the curve and a maximal isotropic subgroup
of the `-torsion, for ` an odd prime number, generalizing the Vélu’s formula of genus 1.
This work is based from the paper Computing functions on Jacobians and their quotients
of Jean-Marc Couveignes and Tony Ezome. We improve their genus 2 case algorithm,
generalize it for genus 3 hyperelliptic curves and introduce a way to deal with the genus 3
non-hyperelliptic case, using algebraic theta functions.

1



1 Introduction
Starting from a projective, smooth, absolutely integral curve C of genus g ∈ {2, 3} on a finite
field K and a maximal isotropic subgroup V of the `-torsion of the Jacobian JC of C, we want
to compute the equation of the (`, . . . , `)-isogenous curve D such that JD = JC/V, if it exists,
and equations for the isogeny. The computation of V is a different problem that we do not
treat here. We take it as an input of our algorithms.

In genus g = 1, this problem is solved by Vélu’s formula [32]. Let E be an elliptic curve
and G be a finite subgroup of cardinality a prime number ` of the elliptic curve E′ = E/G. A
point P of E is sent by the isogeny f : E → E′ to the point

x(f(P )) = x(P ) +
∑

Q∈G\{0}
x(P +Q)− x(Q), y(f(P )) = y(P ) +

∑
Q∈G\{0}

y(P +Q)− y(Q).

Then, using the addition formula, it is possible to obtain the equation of E′ in the Weierstrass
form and a rational fraction F such that the isogeny is f : (x, y) ∈ E 7→ (F (x), cyF ′(x)) ∈ E′,
for some c ∈ K. See also [4, Section 4.1].

For g ≥ 2, a first generalization has been done in [9, 19, 20]. The authors explains how
to compute separable isogenies between principally polarized abelian varieties A and A/V of
dimension g with a complexity of Õ(`

rg
2 ) operations in K, where r = 2 if the odd prime number

`, different from the characteristic of K, is a sum of two squares and r = 4 otherwise. For the
former, the complexity is quasi-optimal since it is quasi-linear in `g, the degree of the isogeny
(the cardinality of the maximal isotropic subgroup V of A[`]). Here, the abelian varieties are
represented through their theta null points. A magma package, AVIsogenies [2], implementing
the ideas of these papers is available but the implementation concerns only the dimension 2
case, that is generically, the Jacobian of hyperelliptic curves of genus 2.

Note that for g = 2 and ` = 2, the isogenies between Jacobian of hyperelliptic curves can
be computed using the Richelot construction (see [7, Chapter 9]). For ` = 3, an algebraic-
geometric approach has been introduced by Dolgachev and Lehavi (see [12, 29]). For g = 3
and ` = 2, there exists an algorithm [28] computing (2, 2, 2)-isogenies from the Jacobian of a
hyperelliptic curve of genus 3 over a finite field of characteristic > 3, using Recillas’ trigonal
construction.

Another generalization, which is the starting point of the present paper, has been introduced
in [10]. In this paper, its authors explain how to define and compute functions, from zero-
cycles, on JC and on JC/V for any genus g ≥ 2 and for any field of characteristic p different of
` 6= 2 and 2. We call them η and ηX functions respectively and in both cases, computations
are done in JC . After that, they focus on the genus 2 case for finite fields of cardinality q.
The computation of the equation of D is done starting from an embedding using ηX functions
from JC to the Kummer surface of JD = JC/V viewed in P3 and doing a parameterization
using the geometry of the Kummer surface. We will give more details about this. Finally they
explain how to describe the isogeny in a compact form through rational fractions of degrees in
O(`). This form is related to the Mumford representation of the points of the Jacobian and
the computation use a system of differential equations. The resulting algorithm is quasi-linear
in the degree `2.

In this paper, we recall in Section 2 the definition of the η and ηX functions and how to
evaluate them. These functions are seen as building blocks and we try to reduce as much
as possible the number of times we evaluate them. Then in Section 3, we first describe the
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particular geometry of Kummer varieties, which admit a (m,n)-configuration when seen in
P2g−1, that is a set of m hyperplanes (the tropes) and m points (the image in P2g−1 of the 2-
torsion points) such that each hyperplane contains n of the m points and each of these points is
contained in exactly m hyperplanes. Then in the genus 2 case, we use the (16, 6)-configuration
to compute the equation of D and explain how to optimize this computation. We prove that
the knowledge of the equation of the quartic describing the Kummer surface is not necessary
and use only 11 evaluations of ηX functions. We then turn to genus 3. Here the curves are
either hyperelliptic or non-hyperelliptic (in which case they can be viewed as plane quartics).
These two cases have to be treated differently. We describe how the genus 2 method can be
naturally generalized in the case where D is hyperelliptic, using the (64, 29)-configuration of
the Kummer threefold. We focus on genus 3 but it is clear that similar results exists for g > 3.
In Section 4, we recall the definition of the rational fractions we want to describe the isogeny
and how to compute them following [10] except for one step which is not practical. Indeed, this
step require the computation of many algebraic equations between the 9 functions forming a
basis of H0(JC/V,OJC/V(3Y )), where Y is a principal polarization of JC/V. And such a basis
is computed through a probabilistic Las Vegas algorithm, requiring the field K to be finite. We
give another solution based on a good model of the Kummer surface allowing one to compute
the pseudo-addition law and to lift a point of the Kummer to the Jacobian. We generalize
all these results in the genus 3 case. In Section 5, we construct algebraic theta functions as
functions satisfying the same algebraic relations between the analytic theta functions. We use
these algebraic theta functions to compute the equation of D in genus 2 through the description
of its Rosenhain form by theta constants. Then we focus on the generic genus 3 case where D is
non-hyperelliptic. We use theta based formulas coming from the theory of the reconstruction of
a plane quartic from its bitangents. Finally, in Section 6, we speak about our implementation.

2 Evaluation of the η and ηX functions
In this section, we recall the definition of the η and ηX functions of [10]. We use the same
notations of this paper and refer to it for more details.

2.1 Definitions

This is [10, Section 2.1]. Let C be a projective, smooth, absolutely integral curve over a field
K and of genus g ≥ 2. We denote by Pic(C) its Picard group, Picd(C) the component of the
Picard group of linear equivalence classes of divisors of degree d and J := JC := Pic0(C) the
Jacobian variety of C. If D is a divisor on C, then we denote by ι(D) its linear equivalence
class.

Let W ⊂ Picg−1(C) be the algebraic set representing classes of effectives divisors of degree
g − 1. The theta characteristics are the K-rational points θ in Picg−1(C) such that 2θ = ω,
where ω designes the canonical divisor class. They differ by a 2-torsion point in J . The
translate W−θ of W by θ is a divisor on J . If D is any effective divisor of C of degree g − 1,
then, by the Riemann-Roch theorem on effectives divisors, `(D) = `(Ω − D) ≥ 1, with Ω
a divisor in the linear class of ω (see [15, Chapter 2.3, Pages 244–245]). This implies that
[−1]∗W = W−ω and we deduce from it that

[−1]∗W−θ = W−θ. (1)
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The latter is said to be a symmetric divisor on J .
Consider now any K-point O on C, whose linear equivalence class is o = ι(O) in Pic1(C).

The translate W−(g−1)o of W by −(g − 1)o is a divisor on J but not necessarily a symmetric
one. Taking ϑ = θ − (g − 1)o ∈ J(K) we can construct a symmetric divisor:

[−1]∗W−(g−1)o−ϑ = W−(g−1)o−ϑ. (2)

Let I be a positive integer, e1, . . . , eI ∈ Z and u1, . . . , uI ∈ J(K̄). The formal sum u =∑
1≤i≤I ei[ui] is a zero-cycle on JK̄ . Define the sum and degree functions of a zero-cycle by

s(u) =
∑

1≤i≤I
eiui ∈ J(K̄) and deg(u) =

∑
1≤i≤I

ei ∈ Z. (3)

Let D be a divisor on JK̄ . The divisor
∑

1≤i≤I eiDui −Ds(u) − (deg(u)− 1)D is principal ([17,
Chapter III, Section 3, Corollary 1]) so it defines a function up to a multiplicative constant.
To fix this constant, we choose a point y ∈ J(K̄) such that the value of the function is 1 at y.
This implies that we want y not to be in the support of this divisor. This unique function is
denoted by ηD[u, y]. To resume, it satisfies

(ηD[u, y]) =
∑

1≤i≤I
eiDui −Ds(u) − (deg(u)− 1)D and ηD[u, y](y) = 1. (4)

We will sometimes denote by ηD[u] the function defined up to a multiplicative constant. More-
over, this function satisfies the following additive property, which can be proved in comparing
divisors

ηD[u + v, y] = ηD[u, y] · ηD[v, y] · ηD[[s(u)] + [s(v)], y]. (5)

For ours applications, we are mainly interested in the cases where D = W−(g−1)o or D =
W−(g−1)o−ϑ = W−θ. Note that we have

ηW−θ [u, y](x) = ηW−(g−1)o [u, y + ϑ](x+ ϑ) (6)

so that we will focus on the first divisor; and to simplify the notations, we write η[u, y] instead
of ηW−(g−1)o [u, y].

2.2 Evaluation of η[u, y]
Fix u a zero-cycle on J with ui ∈ J(K) for 1 ≤ i ≤ I, y ∈ J(K) not in the support of η[u]
and x ∈ J(K) not in the support of η[u, y]. Assume that x = ι(Dx − gO) and y = ι(Dy − gO)
where Dx and Dy are effectives divisors of degree g not having O in their support (this is the
generic case). Write Dx = X1 + . . . + Xg and Dy = Y1 + . . . + Yg. This writing is unique
(see [11, Section 2.6]). Make also the assumption that deg(u) = 0 ∈ Z and s(u) = 0 ∈ J(K).
This is not a restriction because if u does not satisfy these properties, then the zero-cycle
u′ = u− [s(u)]− (deg(u)− 1)[0] does and the functions η[u] and η[u′] have the same divisor.

The computation of η[u, y](x) goes as follows. See [10, Section 2] for the details.

1. For every 1 ≤ i ≤ I, find an effective divisor D(i) of degree 2g − 1 such that D(i) does
neither meet Dx or Dy and ι(D(i))−ω−o is the class ui. Taking Ui−gO in the class of ui,
where Ui is effective of degree g, and taking a canonical divisor Ω on C, the divisor D(i)

can be found looking at the Riemann-Roch space L(Ui − (g − 1)O + Ω). The condition
on the degree of D(i) and the Riemann-Roch theorem say that `(D(i)) = g.
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2. Find a non-zero function h in K(C) with divisor
∑

1≤i≤I eiD
(i). This function exists

thanks to the conditions on the zero-cycle.

3. For every 1 ≤ i ≤ I, compute a basis f (i) = (f (i)
k )1≤k≤g of L(D(i)). This step and the

previous one are effectives Riemann-Roch theorem.

4. Compute δ(i)
x = det(f (i)

k (Xj))1≤k,j≤g and δ(i)
y = det(f (i)

k (Yj))1≤k,j≤g.

5. Compute α[h](x) =
∏g
i=1 h(Xi) and α[h](y) =

∏g
i=1 h(Yi).

6. Return η[u, y](x) = α[h](x)
α[h](y) ·

∏
1≤i≤I(δ

(i)
x /δ

(i)
y )ei .

In the case thatDx (orDy) is not simple, then the δ(i)
x are zero and the product

∏
1≤i≤I(δ

(i)
x )ei

is not defined (some ei is negative) while η[u, y](x) is. This last value can be obtained
considering the field L = K((t)) for a formal parameter t. Indeed, assume for example
Dx = nX1 + Xn+1 + . . . + Xg and Xi 6= Xj if i 6= j. Fix a local parameter z ∈ K(C)
at X1 and n distinct scalars (aj)1≤j≤n in K (if #K is too small, then consider a small de-
gree extension of it). Denote by X1(t), X2(t), . . . , Xn(t) the points in C(L) associated with
the values a1t, . . . , ant of the local parameter z. Do the computations of the algorithm with
Dx(t) = X1(t) + . . .+Xn(t) +Xn+1 + . . .+Xg and set t = 0 in the result. The necessary t-adic
accuracy is g(g − 1)/2.

Denote by O a positive absolute constant. Any statement containing this symbol is true if
this symbol is replaced by a big enough real number. Similarly, denote by e(z) a real function
in the real parameter z belonging to the class o(1).

Theorem 1. There exists a deterministic algorithm that takes as input

• a finite field K with cardinality q;

• a curve C of genus g ≥ 2 over K;

• a collection of K-points (ui)1≤i≤I in the Jacobian J of C;

• a zero-cycle u =
∑

1≤i≤I ei[ui] on J such that deg(u) = 0 and s(u) = 0;

• a point O in C(K);

• and two points x, y ∈ J(K) not in
⋃

1≤i≤IW−(g−1)o+ui.

Denote |e| =
∑

1≤i≤I |ei|. The algorithm computes η[u, y](x) in time (g · |e|)O · (log q)1+e(q).
Using fast exponentiation and equation (5), the complexity is gO · I · (log |e|) · (log q)1+e(q) and
there exists a subset FAIL(K, C, u, O) of J(K) with density ≤ gOg · I · log(|e|)/q such that the
algorithm succeeds whenever neither of x nor y belongs to this subset.

Fast multiple evaluation. For ours applications, we need to evaluate η[u, y] at many ran-
dom points x of the Jacobian to do linear algebra. So we could ask if there is some redundant
computations. This is not the case because the divisors D(i) at step 1 depend on x so that
it is also the case for h and the basis f (i). But if we do not consider this dependancy and
take D(i) = Ui − (g − 1)O + Ω (for example, and we assume that the condition on y neither
interfere), then h, the basis f (i), the values δ(i)

y and α[h](y) can be computed once and for all.
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The points x where the computation does not work are simply discarded. In practice, this
allows us to gain a considerable amount of time, as the Riemann-Roch effectives algorithms
are done only one time. The random x can be obtained in taking g random points of the curve
C so that we directly have the points Xi.

2.3 Evaluation of ηX [u, y]
In the preceding subsection, we have defined functions on a given curve C. Let V ⊂ J [`] be a
maximal isotropic subgroup for the commutator pairing. We introduce now functions on the
quotient J/V. This is [10, Sections 4 and 5].

Let f : J → J/V be the quotient map and let L = OJ(`W−θ) be a symmetric line bundle.
There exists a line bundle M on J/V which is a symmetric principal polarization and which
satisfies M = f∗L. The map f is a (`, . . . , `)-isogeny. As h0(M) = 1, there exists a unique
effective divisor Y on J/V associated with M. The divisor X = f∗Y is effective, linearly
equivalent to `W−θ and invariant by V (by translation).

We are interested in the function ηX [u, y] (see Equation (4)) for some zero-cycle u =∑
1≤i≤I ei[ui] in J and y ∈ J(K) with the usual restrictions. Taking vi = f(ui) and letting

v =
∑

1≤i≤I ei[vi] be a zero-cycle on J/V and in considering the function ηY [v, f(y)] on J/V
having

∑
1≤i≤I eiYvi − Ys(v) − (deg(v) − 1)Y as divisor and taking value 1 at f(y), we can

identify the function ηY [v, f(y)] ◦ f with ηX [u, y]. This allows us to work on the isogenous
variety in staying in the starting Jacobian. A point z in J/V is seen as a point x in J such
that f(x) = z.

We want now to evaluate the function ηX [u, y] at x. The trick consists to construct a func-
tion ΦV havingX−`W−θ as divisor. Indeed, assuming that s(u) = 0 and deg(u) = 0, the divisor
of ηX [u, y] is

∑I
i=1 eiXui while the divisor of

∏
1≤i≤I ΦV(x−ui)ei is

∑I
i=1 ei(Xui−`W−θ+ui). To

compensate, consider the function (η[u](x + ϑ))` which has divisor `
∑I
i=1 eiW−(g−1)o−ϑ+ui =

`
∑I
i=1 eiW−θ+ui because ϑ = θ − (g − 1)o. The condition on y allows us to write

ηX [u, y](x) = (η[u, y + ϑ](x+ ϑ))` ·
∏

1≤i≤I
(ΦV(x− ui))ei ·

∏
1≤i≤I

(ΦV(y − ui))−ei . (7)

The construction and computation of ΦV goes as follows. For any w ∈ V, define w′ := `+1
2 ·w

(` has to be odd). Fix φu, φy ∈ J(K) and consider the functions

θw(x) := η[`[w′]− `[0], w′ − x+ ϑ](x− w′ + ϑ),

τ [φu, φy](x) := η[[(`− 1)φu] + (`− 1)[−φu]− `[0], φy + ϑ](x+ ϑ),

and
aw(x) = θw(x) · τ [φu, φy](x− w).

Then we can define ΦV as
ΦV(x) =

∑
w∈V

aw(x).

This is also equal to
∑
i trLi/K(awi(x)) if the subgroup V is given by a collection of fields

extensions (Li/K) and points wi ∈ V(Li) such that V is the disjoint union of the K-Zariski
closures of all wi.

As #V = `g, the number of calls to the η function to compute ηX is borned by 1 + 4 · I · `g.
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Theorem 2. There exists a deterministic algorithm that takes as input

• a finite field K with characteristic p and cardinality q;

• a curve C of genus g ≥ 2 over K;

• a zero-cycle u =
∑

1≤i≤I ei[ui] in the Jacobian J of C such that ui ∈ J(K) for every
1 ≤ i ≤ I, deg(u) = 0 and s(u);

• a theta characteristic θ defined over K;

• an odd prime integer ` 6= p;

• a maximal isotropic K-subgroup scheme V ⊂ J [`];

• two classes x and y in J(K) such that y 6∈ (
⋃
iW−θ+ui) ∪ (

⋃
iXui).

The algorithm returns FAIL or ηX [u, y](x) in time I ·(log |e|) ·gO ·(log q)1+e(q) ·`g(1+e(`g)), where
|e| =

∑
1≤i≤I |ei|. For given K, C, u, θ, V, there exists a subset FAIL(K, C, u, θ,V) of J(K)

with density ≤ I · (log |e|) · gOg · `g2 · (log `)/q and such that the algorithm succeeds whenever
none of x and y belongs to this subset.

Fast multiple evaluation. What we said about multiple evaluation of η[u, y] functions on
random points x is still valid here. The divisors φu and φy have to been chosen once and for
all and some precomputations concerning V, φu and φy can be done.

3 Computation of the equation of the curve in the hyperelliptic
case

Until now we have defined functions on J and on J/V. If the genus of C is 2, then this quotient
is generically the Jacobian of a genus 2 hyperelliptic curve D, while if it is 3, this is generically
the Jacobian of a genus 3 curve D, which can be hyperelliptic or non-hyperelliptic (a plane
quartic) and the latter is the generic case. The aim of this section is to compute a model of D
when D is hyperelliptic of genus 2 or 3 in using the geometry of the Kummer variety.

3.1 Kummer variety

We assume char(K) 6= 2. A principal polarization of the principally polarized abelian variety
JK̄ is OJK̄ (W−θ) (see [21, Chapter III]). The symmetric divisor W−θ is a symmetric theta
divisor, sometimes denoted by Θ in the literature. The map JK̄ → P2g−1 = P2g−1(K̄) given
by the linear system |2W−θ| factors through the projection JK̄ → JK̄/〈±1〉 and a morphism
JK̄/〈±1〉 → P2g−1, which is a closed embedding ([12, Proposition 2.3]). The Kummer variety
of JK̄ is JK̄/〈±1〉. We identify it with its image in P2g−1.

Proposition 3. Let A be a Jacobian variety of dimension g ≥ 2 defined over an arbitrary
field. If η1, . . . , η2g is a basis of H0(A,OA(2W−θ)) and if φ = (η1, . . . , η2g) : A → P2g−1, then
the image φ(A) can be described by an intersection of quartics.

Proof. This is [24, Proposition 3.1].
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In the genus 2 case, 1 quartic is enough to describe φ(A). According to [30, Theorem 2.5]
(extending [24, Theorem 3.3]), in the case of a hyperelliptic curve of genus 3 defined over a
field whose characteristic is not 2, 1 quadric and 34 quartics are needed (in our case, we have
always computed a lot of equations and reduced them in computing a Gröbner basis and this
yielded 1 quadric and 35 quartics). Finally, in the non-hyperelliptic case of genus 3 curves, it
is possible, instead of quartics, to describe the Kummer by 8 cubics equations ([5, Theorem
7.5]).

From a basis of H0(JK̄ ,OJK̄ (2W−θ)) (built from η or ηX functions), these equations can be
computed in evaluating the functions in the basis at random points and in doing then linear
algebra. In genus 2, the basis is of cardinality 4 and a quartic has at most 35 coefficients,
so that the number of evaluations is at least 35. This number is 330 in genus 3 for quartics
and 36 for quadrics because the basis has 8 elements, but in the non-hyperelliptic case as the
Kummer can be described by cubics, 120 evaluations are needed. (Recall that the number of
monomials of degree d with v variables is

(v+d−1
d

)
).

Having these equations help the computation of the isogenies but they are not necessary.
Computing them does not impact the complexity of the algorithms but have a huge impact on
the practical computations (see next subsection).

Let a ∈ JK̄ [2] and y ∈ J . Define the function ηa = ηW−θ [2[a] − 2[0], y] (resp. ηa =
ηX [2[a]−2[0], y]) whose divisor is 2(W−θ+a−W−θ) (resp. 2(Xa−X)). This is a level 2 function
and these functions generate the space of the functions belonging toH0(JK̄ ,OJK̄ (2W−θ)) (resp.
H0(JK̄ ,OJK̄ (2X)) or equivalently H0(JK̄/V,OJK̄/V(2Y ))), which is of dimension 2g. Fixing a
basis η1, . . . , η2g give us the map from JK̄ to the Kummer variety of the Jacobian of C (resp. of
D) in P2g−1 over K̄. Call Z1, . . . , Z2g the projective coordinates associated to this basis. Using
linear algebra, it is possible to write ηa in function of the basis. This gives an equation Za in
function of the Zi, and the equation Za = 0 is the image of W−θ+a in the Kummer seen in
P2g−1. The hyperplanes Za for a ∈ JK̄ [2], which are called singular planes or tropes, with the
set of the images of the 2-torsion points in P2g−1, called singular points or nodes, constitute a
configuration.

Definition 4. A (m,n)-configuration in PN is the data of m hyperplanes and m points such
that each hyperplane contains n points and each point is contained in n hyperplanes.

The configuration can be described through a symplectic basis of the 2-torsion: let e1, . . . ,
eg, f1, . . . , fg be such a basis. We represent an element a = ε1e1 + . . .+ εgeg +ρ1f1 + . . .+ρgfg
by the matrix

( ε1 ... εg
ρ1 ... ρg

)
, of characteristic

∑g
i=1 εiρi.

Kummer surfaces have been thoroughly studied (see [1, Section 10.2] for example) and their
(16, 6)-configuration is a corollary of the next proposition.

Proposition 5. There is a 2-torsion point a0 such that for any a′ =
(
ε1 ε′1
ρ1 ρ′1

)
and a′′ =

(
ε2 ε′2
ρ2 ρ′2

)
in JK̄ [2], the following conditions are equivalent

• the image of a′ in P3 is contained in the singular plane Za0+a′′;

• either ((ε1, ρ1) = (ε2, ρ2) and (ε′1, ρ′1) 6= (ε′2, ρ′2)) or ((ε1, ρ1) 6= (ε2, ρ2) and (ε′1, ρ′1) =
(ε′2, ρ′2)).

Proof. This is [1, Proposition 10.2.5], where K = C. It is easy to prove that there is a (16, 6)-
configuration. A hyperelliptic curve of genus 2 has 6 Weierstrass points r1, . . . , r6 from which
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we deduce the 16 2-torsion points. For i ∈ {1, . . . , 6} and a ∈ JK̄ [2], the ri− θ+ a are the only
2-torsion points inW−θ+a, where we identify the points in C with the points in Pic1. Moreover,
the 2-torsion point rj − θ + a is in W−θ+a+(ri−θ)+(rj−θ) for i ∈ {1, . . . , 6}.

Note that the trope Z0 contains the image of the six 2-torsions points ai = ri − θ and
knowing the matrices associated to these six points, we can compute a0 because this trope
correspond to the case a′′ = a0. Moreover, we deduce that a0 6∈ {ri − θ}i∈{1,...,6}. See also
Remark 10 for the computation of a0.

In the analytic theta function theory (see Section 5), we have that the six theta constants
having odd characteristic are equal to 0. Here, note that the image of a 2-torsion point a′ is
in the trope Za0+a′′ for some a′′ when the characteristic of a′ + a′′ + ( 1 1

1 1 ) is odd. The shift by
( 1 1

1 1 ) comes from the way this proposition is proved in [1].

Corollary 6. Any two different singular planes have exactly two singular points in common.

Proof. The proof proceeds case by case. See [1, Corollary 10.2.8] and the paragraph following.

In genus 3, there is a (64, 28)-configuration for hyperelliptic and non-hyperelliptic curves
and for the former, the configuration can be extended to a (64, 29)-configuration.

Proposition 7. Let C be a genus 3 curve. There exists a 2-torsion point a0 such that for all
a′ =

(
ε1 ε′1 ε′′1
ρ1 ρ′1 ρ

′′
1

)
and a′′ =

(
ε2 ε′2 ε′′2
ρ2 ρ′2 ρ

′′
2

)
in JK̄ [2], the image of the point a′ in P7 is contained in

Za0+a′′ if and only if one of the following conditions is satisfied

• a′ = a′′;

• (ε1, ρ1) = (ε2, ρ2) and (ε′1, ρ′1) 6= (ε′2, ρ′2) and (ε′′1, ρ′′1) 6= (ε′′2, ρ′′2);

• (ε1, ρ1) 6= (ε2, ρ2) and (ε′1, ρ′1) = (ε′2, ρ′2) and (ε′′1, ρ′′1) 6= (ε′′2, ρ′′2);

• (ε1, ρ1) 6= (ε2, ρ2) and (ε′1, ρ′1) 6= (ε′2, ρ′2) and (ε′′1, ρ′′1) = (ε′′2, ρ′′2);

• a′ = a′′ + a0 + 2r − θ and C is hyperelliptic, where r is any Weierstrass point, seen in
Pic1(C).

Proof. We have obtained this result in adapting the proof of [1, Proposition 10.2.5], using
( 1 1 1

1 1 1 ). In the hyperelliptic case, the divisor W−θ contains 29 points of 2-torsion (coming from
the combination of two Weierstrass points among the 8, giving us

(8
2
)

+ 1 = 29) against 28
in the non-hyperelliptic case (coming from the 28 bitangents, see Section 5.3). Among the 29
points, exactly one is such that the multiplicity of W−θ at this point is even: this is the point
2r in W and thus 2r − θ in W−θ (recall that if r1, r2 are linear classes of divisors in Pic1(C)
coming from Weierstrass points, then 2r1 ∼ 2r2). As in the genus 2 case, we can compute a0
knowing the points in W−θ. Note that because of the first condition, we have that a0 is one of
the 2-torsion points in W−θ.

Moreover, it is well-known that the analytic theta constants having odd characteristic are
equal to 0 and that a genus 3 curve is hyperelliptic if and only if (exactly) one even theta
constant is equal to 0.
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3.2 Computing the equation of the isogenous curve in genus 2

We focus now in the genus 2 case. Let C be a hyperelliptic curve of genus 2 over a finite field
K of characteristic 6= 2. We assume that the curve is given by an imaginary model so that we
have C : Y 2 = hC(X) for hC of degree 5 and having a unique point at infinity O. Coming back
at the notations of Section 2.1, the K-point we choose is O. We have that 2O is a canonical
divisor so that we can take θ = ι(O) := o as a theta characteristic and then ϑ = 0 ∈ J(K).
We use the η and ηX functions defined by the divisor W−o.

Let r1, . . . , r6 be the 6 Weierstrass points of the curve C, where r6 is the (unique) point at
infinity O. Assume to simplify that these points are in C/K. By an abuse of notation, we also
denote ri the class of ri in Pic1(C). The 2-torsion points in J are ai := ri− o for i ∈ {1, . . . , 6}
and aij := ri + rj − 2o for 1 ≤ i, j ≤ 5.

Note that as ϑ = 0, then by Equation (7) we have for i ∈ {1, . . . , 16} that η[u, y](ai) = 0
implies that ηX [u, y](ai) = 0. The converse is also true because of the (16, 6)-configuration
of the Kummers of C and D. So the description of the two configurations with the 2-torsion
points of J is the same.

Fix y ∈ J . As in the preceding subsection, define the level 2 functions ηai = ηX [2[ai]−2[0], y]
and ηaij = ηX [2[aij ]− 2[0], y] (but what we will say remains true if we replace ηX by η). Note
that the function ηa6 is constant according to its divisor and by definition we have ηa6(y) = 1.
But this function has to be equal to 0 at the closed subvariety W−o of J and in particular
at the six 2-torsion points a1, . . ., a6 to be coherent with the (16, 6)-configuration in P3.
Indeed, looking at divisors, we have for a = ai 6= a6 or a = aij that ηa(x) = 0 for the values
x ∈ {a1 + a, . . . , a6 + a}.

The (16,6)-configuration Fix η1, . . . , η4 a basis of the ηai and ηaij functions. This defines
a map φ from J to the Kumer surface of the Jacobian JD of D seen in P3 and we denote by
Z1, . . . , Z4 the projective coordinates associated to this basis, as already done in the previous
subsection. For all a = ai and a = aij , writing ηa in function of this basis give equations of
the form ηa = α1η1 + . . .+ α4η4 for αk ∈ K. Denote then Za = α1Z1 + . . .+ α4Z4 the tropes.
The nodes are the image by φ of the 2-torsion points. The (16, 6)-configuration is described
by Table 1, where for each trope we have written the 6 2-torsions points whose images are in
it.

Za1 a1 a6 a12 a13 a14 a15 Za14 a1 a4 a14 a23 a25 a35
Za2 a2 a6 a12 a23 a24 a25 Za15 a1 a5 a15 a23 a24 a34
Za3 a3 a6 a13 a23 a34 a35 Za23 a2 a3 a14 a15 a23 a45
Za4 a4 a6 a14 a24 a34 a45 Za24 a2 a4 a13 a15 a24 a35
Za5 a5 a6 a15 a25 a35 a45 Za25 a2 a5 a13 a14 a25 a34
Za6 a1 a2 a3 a4 a5 a6 Za34 a3 a4 a12 a15 a25 a34
Za12 a1 a2 a12 a34 a35 a45 Za35 a3 a5 a12 a14 a24 a35
Za13 a1 a3 a13 a24 a25 a45 Za45 a4 a5 a12 a13 a23 a45

Table 1: (16, 6)-configuration in genus 2

We want to use this configuration to compute the equation of the isogenous curve D. To
achieve this, we compute the image in P3 of the six 2-torsion points lying in a trope (anyone)
and then we do a parameterization step. This is justified by the fact that according to [1,
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Proposition 10.2.3 and Corollary 10.2.4], the intersection of a trope with the Kummer is a
conic and this intersection is of multiplicity 2.

Let Za be a trope. It contains the six points φ(a1 + a), . . . , φ(a6 + a) in P3. As we can not
compute the ηX functions at 2-torsion points directly, because these functions have poles at
these points and the algorithm to evaluate the ηX functions at these points does not behave
well, we compute the image by φ of each of these six points in computing the intersection of 3
tropes. Indeed, as the Kummer surface is seen in a projective space of dimension 3, we need
3 equations to determine a point. We use the following properties that can be deduced from
Table 1: {Za1 = 0, Za2 = 0, Za3 = 0} = {φ(a6)} and for i ∈ {1, . . . , 5}, {Zai = 0, Za6 = 0} =
{φ(ai), φ(a6)}. Thus, by shifting, looking at the intersection {Za1+a = 0, Za2+a = 0, Za3+a = 0}
gives us the projective point p6 = φ(a6 + a). The others points can be computed similarly
in looking {Zai+a = 0, Za6+a = 0, Zb = 0} for some good choosen trope Zb. Otherwise, if we
have the equation of the quartic κD describing the Kummer surface associated to D, we can
obtain the points by {Zai+a = 0, Za6+a = 0, κD = 0}. Thus, we have the projectives points
pi = φ(ai + a), for i ∈ {1, . . . , 6}.

Parameterization. Choose any point among {p1, . . . , p6}, say p1. We look for equations of
the form Ej = αj,1Z1 + . . . + αj,4Z4 passing by p1 and pj , for j ∈ {2, . . . , 6}. Recall that the
6 points are in the trope Za = α1Z1 + . . . + α4Z4 = 0. Let k = mini∈{1,2,3,4}{i : αi 6= 0} so
that αkZk = −

∑4
i=k+1 αiZi and the equations Ej can be written in function of the three Zi

for i 6= k. So we rewrite Ej in putting αj,k = 0 for j ∈ {2, . . . , 6}. Moreover, the fact that Ej
evaluated in p1 has to be equal to 0 yield a relation between αj,1, . . . , αj,4. Assume to simplify
that k = 1 so that we have αj,1 = 0 and that αj,2 can be written in function of αj,3 and αj,4:
αj,2 = P (αj,3, αj,4). We obtain an affine parameterization in taking αj,3 = 1 and αj,4 = x and
we look at the equation E = P (1, x)Z2 + Z3 + xZ4. Now, for j ∈ {2, . . . , 6}, evaluating E in
pj yield an equation of degree 0 or 1 in x. If it is 1, then we obtain the value x and if it is 0,
then x is the point at infinity. Thus, we have 5 of the 6 Weierstrass points of a model of D.
The last one, associated to p1, can be obtained in intersecting the equation κD of the Kummer
surface with the trope Za and the equation E, factorizing, evaluating in p1 and solving the
factor having x (this idea is implicit in [10]).

Optimization. For this method to work, it requires to compute the equation of the Kummer
surface and the 6 tropes Zai+a, for i ∈ {1, . . . , 6}. This makes at most 35×4+(6+4)×4 = 180
evaluations of ηX functions. We explain how this number can be greatly reduced.

A good choice of basis is η1 = ηa6 , η2 = ηa1 , η3 = ηa2 , η4 = ηa12 (Za6 and Za1 contain
φ(a1) while Za2 not, and Za6 , Za1 , Za2 contain φ(a6) while Za12 not; this proves that the four
functions are independent). We have noted that, with this basis, the equation of the Kummer
surface κD does not have any exponent of degree 3 and 4 so it has at most 19 coefficients so
that the cost of the computation of κD is reduced, but we will not use this fact. We will take
advantage of the facts that the value of ηa6 is known without computation and that we have
obviously Za6 = Z1, Za1 = Z2, Za2 = Z3 and Za12 = Z4. Moreover, for any a ∈ J [2], there is
ai ∈ {a6, a1, a2, a12} such that Za contains φ(ai) and such that exactly three of the four tropes
Z1, . . . , Z4 associated to the functions in the basis contain φ(ai). So all the tropes can be
written in function of three elements among {Z1, Z2, Z3, Z4} and as we have defined all the ηX
functions such that their values at y is 1, the evaluations at only two points are enough for
computing a trope.
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The trope we fix for the parameterization is Za6 = Z1. Note that we have p6 = φ(a6) =
(0 : 0 : 0 : 1) (see Table 1) so fixing this point, we obtain the affine parameterization Z1 = 0,
Z2+xZ3 = 0. Moreover, p1 = φ(a1) = (0 : 0 : 1 : 0) giving x = 0 and p2 = φ(a2) = (0 : 1 : 0 : 0)
giving x = ∞. Thus, with this basis, we always obtain a degree 5 model for the isogenous
curve D and the image of three of the six points in the fixed trope Za6 are obtained for free.

It remains to compute the images of a3, a4 and a5 in P3. We have (according to Table 1):
{Za6 = 0, Za34 = 0, Za35 = 0} giving us p3 = φ(a3), {Za6 = 0, Za34 = 0, Za45 = 0} giving us
p4 = φ(a4), {Za6 = 0, Za35 = 0, Za45 = 0} giving us p5 = φ(a5).

Thus, we can obtain the images of a1, . . . , a6 in P3 in computing the tropes Za34 , Za35 and
Za45 which can be done in (3 + 3) × 2 = 12 evaluations of ηX functions. There is a slight
amelioration in noting that for a, b ∈ J [2] and x ∈ J

ηa+b(x) = ηX [2[a]− 2[0], y + b](x+ b) · ηb(x) (8)

(look at the divisors and the evaluations at y for the proof). Let b = a45, and take some
random point z ∈ J (not of 2-torsion). The function ηa35(x + a45) · ηa45(x) has the same
divisor as ηa34(x) and the constant between the two functions can be established in evaluating
ηa35(x+ a45) at y. It remains to evaluate ηai for ai ∈ {a1, a2, a12, a35, a45} at the points z and
z+ a45 for computing Za34 , Za35 , Za45 . So 1 + 5× 2 = 11 evaluations are enough instead of 12.

For the parameterization, if we want to avoid the computation of the equation of the
Kummer surface, which is costly in term of number of evaluations of the ηX functions, a
solution consists to do the parameterization two times for two differents fixed points. This
yields two sets of 5 Weierstrass points (for differents models of the curve) and we look then for
a change of variables sending exactly 4 elements of the first set in the second set. Applying
the transformation on the fifth point of the first set give us the unknown Weierstrass point of
the second set. This implies we have an efficient way to determine if a given transformation
produces an isogenous curve or not. For example, the knowledge of the cardinality of the
Jacobian of C is a sufficient data, and it can also be used to distinguish a curve from its twist.
Recall that a nonsingular projective model of a hyperelliptic curve is Y 2 =

∏6
i=1 ciX

iZ6−i in
the projective space with weight (1, 3, 1) and that a transformation is of the form (X : Y :
Z) 7→ (αX + βZ : γY : δX + εZ) with αε− βδ = 1.

Example. Let C given by the equation (X − 179)(X − 237)(X − 325)(X − 344)(X − 673)
on F1009. A maximal isotropic subgroup of the ` = 3 torsion is generated by T1 =< X2 +
714X + 513, 182X + 273 > and T2 =< X2 + 654X + 51, 804X + 545 > (these are Mumford
representation). We fix y =< X2+425X+637, 498X+930 >, φu =< X2+462X+658, 365X+
522 >, φy =< X2+512X+883, 827X+148 >. We put r1 = (179, 0), r2 = (237, 0), r3 = (325, 0),
r4 = (344, 0), r5 = (673, 0) and r6 =∞. We take the good basis of ηX functions defined with
the zero-cycles 2[ui]− 2[0] for ui ∈ {0, r1 − r6, r2 − r6, r1 + r2 − 2r6}. Then

Za1 = Z2, Za2 = Z3, Za6 = Z1, Za34 = 953Z2 + 55Z3 + 2Z4,

Za35 = 806Z2 + 131Z3 + 73Z4, Za45 = 894Z2 + 123Z3 + 1002Z4

giving us the nodes (0 : 0 : 1 : 0), (0 : 1 : 0 : 0), (0 : 947 : 689 : 1), (0 : 304 : 71 : 1), (0 : 869 :
468 : 1), (0 : 0 : 0 : 1) which are in the trope Z1 = 0. Fixing the point (0 : 0 : 0 : 1), we take the
parameterization Z1 = 0, Z2 +xZ3 = 0 and we obtain the values {0,∞, 498, 351, 397, x1} for x
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respectively. Fixing the point (0 : 0 : 1 : 0), we take the parameterization Z1 = 0, Z2 +xZ4 = 0
and we obtain the values {x2,∞, 62, 705, 140, 0} for x respectively.

For the transformation, we take the one sending 498 to 62 and 351 to 705 which is (X :
Y : Z) 7→ (229X + 37Z : Y : Z). Then 397 is sent to 140, 0 to 37, ∞ to ∞ and 837 to 0. Two
models of the curve D are 11X(X − 498)(X − 351)(X − 397)(X − 837) and X(X − 62)(X −
705)(X − 140)(X − 37) (after checking quadratic twist).

3.3 Computing the equation of the isogenous curve in genus 3 if D is hy-
perelliptic

We focus now on the genus 3 case and we assume that D is hyperelliptic with an imaginary
model. We make use of the (64, 29)-configuration to compute the equation of D and this
configuration does not depend on C so the nature of this curve does not matter in theory. In
practice, when C is also hyperelliptic (with an imaginary model), the link between the two
curves is clearer because the description of the 2-torsion is similar and working on C is as if we
were working directly on D (just replace ηX functions by η functions on D).

So in our exposition we assume that C : Y 2 =
∏7
i=1(X − ri) is hyperelliptic. The eighth

Weierstrass point is r8, the unique point at infinity O. We use similar notations as in the genus
2 case. There are 64 2-torsions points ai, aij , aijk and a basis η1, . . . , η8 of the ηa functions
(which are here ηX functions) for a ∈ J [2] is of cardinality 8. As before, the 2-torsion points in
the trope Za8 are the 8 φ(ai) and the 21 φ(aij) the tropes can be computed by linear algebra
and the image of a 2-torsion point a in P7 can be obtained intersecting all the 29 tropes Zai+a
and Zaij+a (this can be optimized obviously, because 7 among them is enough).

The (64, 29)-configuration holds properties that the (64, 28)-configuration does not have.
Let i ∈ {1, . . . , 7}. As the images of the points {ai1, . . . , ai7, ai} are in the trope Za8 , then the
trope Za8+ai = Zai contains the points {φ(ai1+ai), . . . , φ(ai7+ai), φ(ai+ai)} = {φ(a1), . . . , φ(a8)}.
Thus, the intersection of the 8 tropes {Za1 , . . . , Za8} is equal to {φ(a1), . . . , φ(a8)} and in fact,
any 4 tropes among these 8 have this intersection. A last property we use is that for any triple
of points among {φ(a1), . . . , φ(a8)}, there always is a trope not in {Za1 , . . . , Za8} which contain
these three points and no other among them. All these properties can be proved by brute force
using Proposition 7. There are obviously 64 8-tuple of tropes having similar properties (just
shift by a 2-torsion point).

We choose the tropes Zaij for ij ∈ {24, 37, 67} and Zaijk for ijk ∈ {123, 145, 167, 256, 345}
so that the point φ(ai) for i ∈ {1, . . . , 8} is contained in exactly three of these 8 tropes. For
any ai, this gives 3 tropes and adding the four tropes {Za1 , . . . , Za4}, we obtain 7 equations
from which we deduce φ(ai) in P7. So computing 12 tropes is enough to obtain the image of
the eight 2-torsion points a1, . . . , a8 in P7. If the basis η1, . . . , η8 is defined using 8 of the 12
torsions points used for these 12 tropes, then we only need to compute 4 tropes.

Once we have {φ(a1), . . . , φ(a8)} in P7, we can do the parameterisation. The four tropes
{Za1 , . . . , Za4} give 4 equations. This time, we fix two points instead of one, which give us 2
others equations. The rest is similar as in the genus 2 case.

In the case the curve C is non-hyperelliptic, then we can compute all the tropes and the
image of the 2-torsion points and look for 4 tropes intersecting in 8 points, and proceding as
above. This is not optimal.
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4 Computing equations for the isogeny
Once we have the equation of the hyperelliptic curve D of genus 2 or 3, we want to compute
rational fractions expliciting the isogeny. The algorithm is composed as follows

• compute the image by the isogeny of a single formal point at low precision;

• extend this image at a big enough precision;

• use this image to compute the rational fractions using continuous fractions.

In the first subsection we will define the rational fractions we want to compute and recall the
results of [10] (genus 2 case only) for doing the second and third step. For the first step, the
method given in [10] is not efficient so we present a better solution in the last subsection.

4.1 Rational fractions describing the isogeny

See [10, Section 6.1] for more details in genus 2. Let g ∈ {2, 3}. Assume we have D given by
an affine singular model Y 2 = hD(X), where hD is of degree 2g + 1. Let OD be the point at
infinity. Then (2g − 2)OD is a canonical divisor and a point in the Jacobian JD of D can be
written generically as z = Q1 + . . . + Qg − gOD, where OD 6∈ {Q1, . . . , Qg} and for all i in
{1, . . . , g}, −Qi 6∈ {Q1, . . . , Qg}. Such a divisor can be represented by its Mumford coordinates.
For g = 2, define

s(z) = X(Q1) +X(Q2), p(z) = X(Q1)X(Q2)

q(z) = Y (Q2)− Y (Q1)
X(Q2)−X(Q1) r(z) = Y (Q1)X(Q2)− Y (Q2)X(Q1)

X(Q2)−X(Q1) .

and for g = 3 define

s(z) = X(Q1) +X(Q2) +X(Q3),
p(z) = X(Q1)X(Q2) +X(Q1)X(Q3) +X(Q2)X(Q3),
a(z) = X(Q1)X(Q2)X(Q3),

r(z) = ((X(Q2)−X(Q3))Y (Q1)+(X(Q3)−X(Q1))Y (Q2)+(X(Q1)−X(Q2))Y (Q3))
(X(Q1)−X(Q2))(X(Q1)−X(Q3))(X(Q2)−X(Q3)) ,

t(z) = (X2(Q2)−X2(Q3))Y (Q1)+(X2(Q3)−X2(Q1))Y (Q2)+(X2(Q1)−X2(Q2))Y (Q3)
((X(Q1)−X(Q2))(X(Q1)−X(Q3))(X(Q2)−X(Q3)) ,

e(z) = (X2(Q2)X(Q3)−X(Q2)X2(Q3))Y (Q1)+(X(Q1)X2(Q3)−X2(Q1)X(Q3))Y (Q2)+(X2(Q1)X(Q2)−X(Q1)X2(Q2))Y (Q3)
(X(Q1)−X(Q2))(X(Q1)−X(Q3))(X(Q2)−X(Q3)) ,

The Mumford representation of z is < X2 − s(z)X + p(z),q(z)X + r(z) > in genus 2 and
< X3 − s(z)X2 + p(z)X − a(z), r(z)X2 − t(z)X + e(z) > in genus 3. Let now F : C → JD
be the function F (P ) = f(P − OC) (recall that f is the isogeny, and we denote here by OC
the unique point at infinity of an imaginary model of C). As for every point P = (u,−v) on C
we have that F (−P ) = F ((u,−v)) = −F (P ), and as v2 = hC(u), we deduce that there exists
rational fractions S, P, Q, R when g = 2 satisfying

s(F (P )) = S(u), p(F (P )) = P(u), q(F (P )) = vQ(u), r(F (P )) = vR(u),

and S, P, A, R, T, E when g = 3 satisfying

s(F (P )) = S(u), p(F (P )) = P(u), a(F (P )) = A(u),

r(F (P )) = vR(u), t(F (P )) = vT(u), e(F (P )) = vE(u),
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and such that F ((u, v)) =< X2 − S(u)X + P(u), v(Q(u)X + R(u)) > or F ((u, v)) =< X3 −
S(u)X2 + P(u)X −A(u), v(R(u)X2−T(u)X + E(u)) > in the Jacobian JD of D in Mumford
coordinates.

The degrees of these rational fractions is bounded by 2`, 2`, 3`+3, 3`+3 respectively when
g = 2.

4.2 Computing the rational fractions from the image of a single formal point

See [10, Section 6.2] for more details in genus 2. Again g ∈ {2, 3}. The morphism F : C → JD
induces a map F ∗ : H0(JD,Ω1

JD/K
) → H0(C,Ω1

C/K). It is a classical result that a basis of
H0(C,Ω1

C/K) is given by dX/Y , . . . , Xg−1dX/Y . Identifying JD with D(g) (Dg quotiented by
permutations) we can see H0(JD,Ω1

JD/K
) as the invariant subspace of H0(D(g),Ω1

D(g)/K
) by the

permutation of g factors. A basis of this space is dX1/Y1 + . . .+ dXg/Yg, . . . , Xg−1
1 dY1/Y1 +

. . .+Xg−1
g dXg/Yg. Let (mi,j)1≤i,j≤g be the matrix of F ∗ with respect to these two bases. Thus

for i ∈ {1, . . . , g}

F ∗(Xi−1
1 dX1/Y1 + . . .+Xi−1

g dXg/Yg) = (m1,i + . . .+mg,iX
g−1)dX/Y.

Let P = (u, v) be a point on C such that v 6= 0 and let Qi be g points on D and as in
the previous subsection, such that F (P ) is the class of Q1 + . . . + Qg − gOD. Let t be a
formal parameter and set L = K((t)). Define u(t) = u + t and v(t) as the square root of
hC(u(t)) which is equal to v when t = 0. The point P (t) = (u(t), v(t)) lie on C(L). The image
of P (t) by F is the class of Q1(t) + . . . + Qg(t) − gOD for g L-points Q1(t), . . . , Qg(t) on
D(L). We explain in the next subsection how to compute them at a given precision. Write
Qi(t) = (xi(t), yi(t)). The coordinates satisfy the non-singular first-order system of differential
equations for i ∈ {1, . . . , g}{

xi−1
1 ẋ1(t)
y1(t) + . . .+ xi−1

g ẋg(t)
yg(t) = (m1,iu(t)0+...+mg,iu(t)g−1)u̇(t)

v(t) ,

yi(t)2 = hD(xi(t)).
(9)

This system can be used to compute the rational fractions of Section 4.1 in three steps.
Indeed, assume we have been able to compute for a single point (u(t), v(t)) the g points
(xj(t) +O(tg), yj(t) +O(tg)) at precision g.

1. Looking at coefficients of degrees from 0 to g − 1 in the first line of Equation (9) for a
fixed index i gives g equations with the g unknown m1,i, . . . , mg,i that we can solve.
Thus we obtain the numbers mj,i for i, j ∈ {1, . . . , g}.

2. Now, we want to increase the accuracy of the formal expansions. This can be done
degree by degree. The RHS of the first line of Equation (9) is known up to any given
precision. Assume we know xj(t) and yj(t) up to O(td) for all j (and their derivatives
up to O(td−1)). If cj,d is the coefficient of degree d of xj(t), then the coefficient of degree
d− 1 of its derivative is dcj,d. For j ∈ {1, . . . , g}, define ẋd−1

j (t) as the sum of ẋj(t) up to
degree d − 2 plus dcj,dtd−1, where cj,d is a variable, plug it in Equation (9) and deduce
for each i an equation in the cj,d looking at the coefficients of degree d− 1 in t. This give
g equations with g unknown that we solve. The second line of Equation (9) allows us to
compute y1(t) +O(td+1) and y2(t) +O(td+1).
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3. Do rational reconstruction using continued fractions to deduce the rational fractions.
For example, for S in genus 2, put s(t) = x1(t) + x2(t) and remark that s(t) = s≤0(t) +
1/(1/(s(t) − s≤0(t))), where s≤0(t) designates the sum of the monomials of degree less
or equal to 0 in s(t). So while the degree of s in t is > 0, put s(t) = 1/(s(t)− s≤0(t)) in
keeping track of the s≤0(t). Then sum up all. This gives a rational fraction in t. Evaluate
it in t− u(0) to obtain S(t).

In practice, these three steps are negligible with respect to the time of computation of the
image of the single formal point. See Section 6.

4.3 Computing the image of a formal point

Let L = K[t]/(tg) and P (t) = (u(t), v(t)) ∈ C(L). We want to compute F (P (t)) which is in
the Jacobian of D over the field L.

We could want to do it using intersection of tropes. This seems to us that this imply we
have to look at the divisor YF (P (t)) (which is not symmetric), seen as XP (t)−OC . A zero-cyle
we could consider to obtain this divisor would be [P (t)−OC ] + [Q] + [−(P (t)−OC)−Q]− 3[0]
for some point Q ∈ J , producing a function in H0(JL,OJL(3X)), that is a level 3 function.
Thus, we would need a basis a level 3 functions and algebraic relations between them, which
is costly to compute. This is the idea in [10, Section 6.3].

We propose to compute F (P (t)) in two step. First we compute the image of P (t) in the
Kummer surface of D and then we lift this point in the Jacobian. The lifting step is easy to
do in genus 2 if the Kummer surface is constructed as in [7] or as in [31, 24, 30] in genus 3.
Thus for any given representation of the Kummer variety, we can search for a linear change of
variables allowing one to go from it to the good representation. We recall first what these two
good representations are.

Standard representation of the Kummer surface. Let D : Y 2 = hD(X) =
∑5
i=0 ciX

i

be a hyperelliptic curve and x = (x1, y1) + (x2, y2) − 2OD a generic reduced divisor. Let
F0(x1, x2) = 2c0 + c1(x1 + x2) + 2c2(x1x2) + c3(x1 + x2)x1x2 + 2c4(x1x2)2 + c5(x1 + x2)(x1x2)2

and β0(x) = (F0(x1, x2)− 2y1y2)/(x1 − x2)2. Put

K2 = e2
2 − 4e1e3, K1 = −2(2c0e

3
1 + c1e

2
1e2 + 2c2e

2
1e3 + c3e1e2e3 + 2c4e1e

2
3 + c5e2e

2
3),

K0 = (c2
1 − 4c0c2)e4

1 − 4c0c3e
3
1e2 − 2c1c3e

3
1e3 − 4c0c4e

2
1e

2
2 + 4(c0c5 − c1c4)e2

1e2e3+

(c2
3 + 2c1c5 − 4c2c4)e2

1e
2
3 − 4c0c5e1e

3
2 − 4c1c5e1e

2
2e3 − 4c2c5e1e2e

2
3 − 2c3c5e1e

3
3 − c2

5e
4
3.

Then an equation for the Kummer surface of the Jacobian of D is κcf : K2e
2
4 +K1e4 +K0 in

the variables e1, e2, e3, e4.
The image of the divisor x is (1 : x1 + x2 : x1x2 : β0(x)) in the Kummer surface associated

to D, seen in P3, and represented by the equation κcf . In the case where the divisor x is of the
form (x1, y1)−OD, its image is (0 : 1 : x1 : c5x

2
1) and the image of 0 ∈ JD is (0 : 0 : 0 : 1). Thus,

if we have a point in the Kummer surface represented in this way, and using the equation of
D, it is easy to deduce the two corresponding opposite points in the Jacobian.

Note that as we need to compute the image of only one formal point in our algorithm, this
step is done only one time. We have to make a choice between the two opposite points and we
do not have the compatibility problems we would have if we had to make this choice several
times.

16



Representation of the Kummer variety of dimension 3. The preceding representation
has been generalized in genus 3 in [31, Chapter 3]. The author defines for a genus 3 hyperelliptic
curve of the form Y 2 = hD(X), with hD(X) of degree 7, eight functions defining a map from
the Jacobian to the Kummer, seen in P7. In particular, for a generic reduced divisor x =
(x1, y1)+(x2, y2)+(x3, y3)−3OD, the four first functions are 1, x1 +x2 +x3, x1x2 +x1x3 +x2x3,
x1x2x3 so that lifting to the Jacobian is easy. We do not write here all the equations but refer
the reader to [24, Section 2], where the author extends the embedding to the Kummer to
non-generic divisors. On the other side, the author of [30] has defined eight functions ξ1, . . . ,
ξ8 on an arbitrary hyperelliptic curve of genus 3 (over a field of characteristic different of 2)
defining an embedding to the Kummer (see [30, Section 3] for the definition and the relation
with the eight functions of [31, 24]). These are the functions we use and we denote by κs the
associated set of equations for the Kummer variety, which is described by 1 quadric and 34
quartics, as already said.

From a representation to another. We explain now how to change representation. Recall
that we started from the curve C and through a basis η1, . . . , η2g of ηX functions, which are
level 2 functions, we can obtain equations κD of the Kummer variety of the Jacobian of D and
the image of all the 2-torsions points in it. On the other side, starting from the equation of
D, we can compute easily the equations κcf (g = 2) or κs (g = 3) and the image of all the
2-torsions points in them.

We insist on the fact that working on D is almost free as we do not have to care on the
isogeny. Moreover, it is not possible (for now) to write a ηX function as a combination of η
functions defined over D or as a combination of the functions used to define κcf or κs, because
in the first case we work on J = JC and in the others on JD. We need for it to have for x ∈ JC
the point f(x) ∈ JD, which is what we want to compute.

First start with the genus 2 case. We look for a change of variables to go from the quartic
κD to the quartic κcf of the form

S1 = m1Z1 +m2Z2 +m3Z3 +m4Z4, S2 = m5Z1 +m6Z2 +m7Z3 +m8Z4,
S3 = m9Z1 +m10Z2 +m11Z3 +m12Z4, S4 = m13Z1 +m14Z2 +m15Z3 +m16Z4,

such that κcf (S1, S2, S3, S4) = κD(Z1, Z2, Z3, Z4). We can do a Gröbner basis with the 16
unknown m1, . . . ,m16, but in practice, this does not work. We can add some conditions
noting that we can send 0 = (0 : 0 : 0 : 1) ∈ κD to 0 = (0 : 0 : 0 : 1) ∈ κcf . This gives
m4 = m8 = m12 = 0. We can not put m16 = 1 despite projectivity because of the equality
we want between the Kummers quartics. In practice, this works very well, but it requires to
compute the equation κD which is costly.

In the case we do not want to compute this equation, we can look for a transformation
sending the 2-torsions points in κD to the 2-torsions points in κcf . We also want to preserve
the group structures. We assume that we have all the 2-torsion points in the Kummer κcf as
they can be computed directly and this computation does not depend on `, while we have on
the κD representation the 2-torsions points associated to a1, . . . , a6, a12, a34 and a35. The first
six are known since we needed them to compute the equation of D (in the optimized version)
and the last three are obtained looking at the intersections {Za12 = 0, Za34 = 0, Za35 = 0},
{Za3 = 0, Za12 = 0, Za34 = 0}, {Za3 = 0, Za12 = 0, Za35 = 0} respectively (and these tropes
have been already computed to find the equation of D except for Za3 which can be computed
during the computation of the other tropes adding the cost of the evaluation of ηa3 at two
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points). We send 0 to 0, giving us the conditions m4 = m8 = m12 = 0. We can fix m16 = 1.
Then, with three for loops, we test all the 2-torsion points in κcf onto which the points φ(a)
can be send to, for a ∈ {a3, a4, a5}. For each point, this give 3 conditions on the mi (3 and
not 4 because of the projectivity). Moreover, as we want to preserve the group structure, for
a choice of the images of a3, a4 and a5, this fix an image for a34 and a35. Thus we obtain
4 + 3× 5 = 19 conditions on the 16 mi and we compute a Gröbner basis. This can give many
solutions and we can verify if the points in the Kummer κD associated to the 2-torsion points
a1, a2 and a12 are sent to 2-torsions points in κcf . In practice, this method is fast enough.

In the genus 3 case, we proceed with the same idea to go from κD to κs. This time we
have 64 unknown variables. We fix a basis of the 2-torsion points in the Jacobian of C and
we want to send 0 to 0 and the points in this basis to 2-torsion points of the Jacobian of
D, seen in P7 by the map defined by the functions used to compute κs, and preserving the
group structure. Using 4 for loops, we obtain enough conditions to obtain the transformation.
However, in practice, this takes too many time (many hours in our examples) so that we have
to improve this step. A solution consists to compute only the quadric in the equations of the
Kummer varieties κD and κs. But for the former, the computation depends on `. We look
for a transformation that sends a quadric to the other, which give us many conditions on the
64 unknown variables. Then we proceed in the same way but with only 3 for loops. In our
examples, it took around half an hour to test all the possibilities (but a solution was found in
a few minutes). This is still not satisfactory and this step has to be improved.

Image of a single point. Let (u(t), v(t)) be a point on C(L). We want the image of
P (t) = (u(t), v(t)) − O in the Kummer surface represented by κcf . We can not directly
compute the image of P by the ηX function as this is a point in which these functions have a
pole. But this is not the case of its multiples in the Jacobian. It is well-known that Kummer
surface are not endowed with a group structure but a pseudo-addition law can be defined in
it. This means that if we have the points ±P1, ±P2, ±(P1 + P2) in the Kummer, then we
can compute ±(P1 − P2) in it. Let m > 1 be an integer. Compute the image of mP (t),
(m + 1)P (t) and (2m + 1)P (t) in the Kummer κD (compute (η1(nP (t)) : . . . : η4(nP (t))) for
n ∈ {m,m + 1, 2m + 1}), then use the transformation to deduce the corresponding points in
the Kummer surface represented by κcf , do the pseudo-addition to deduce the image of P (t)
by the isogeny in the Kummer κcf and deduce from it a point in the Jacobian of D(L). Thus,
using κcf has the double advantage that we can do pseudo-addition in it and that lifting to
the Jacobian is easy.

This idea also works in genus 3. See [30] for the pseudo-addition.

4.4 Example for hyperelliptic curves of genus 3
As the moduli space of hyperelliptic curves is of dimension 5 in the 6-dimensional moduli space
of genus 3 curves, if we start from a hyperelliptic curve of genus 3 and a maximal isotropic
subgroup of the `-torsion, the corresponding isogenous curve is generically non-hyperelliptic.
The nature of the isogenous curve can be established looking for the type of the configuration
or the equations describing the kummer threefold, in particular the presence of a quadric.

We have built examples of isogenous hyperelliptic curves using [34, Satz 4.4.2], which states
that if the Jacobian of C has complex multiplication by OK with Q(i) ⊂ K and is simple, then C
is hyperelliptic, and using the fact that an isogeny preserves the field of complex multiplication.
Curves with these properties are provided in [34], from which we have build examples on finite
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fields. For instance, the curves on F120049

C : X7 + 118263X5 + 44441X3 + 81968X,

D : X7 + 87967X6 + 102801X5 + 70026X4 + 30426X3 + 37313X2 + 77459X,

are (5, 5, 5)-isogenous. The Mumford coordinates of the generators of the isotropic subgroup
are

T1 =< X3 + 90254X2 + 103950X + 34646, 63966X2 + 19029X + 62065 >,

T2 =< X3 + 29700X2 + 10920X + 14179, 77142X2 + 66846X + 84040 >,

T3 =< X3 + 119858X2 + 87344X + 82114, 51063X2 + 95007X + 64731 >

and the isogeny is described by the following equations
S = (26590u13 + 38875u12 + 11144u11 + 39196u10 + 48794u9 + 80531u8 + 56286u7 + 42203u6 +
49314u5+34405u4+28021u3+82360u2+112863u+64433)/(u8+107005u7+34717u6+96329u5+
81848u4 + 90494u3),
P = (13588u13 + 99739u12 + 60510u11 + 3267u10 + 56188u9 + 27913u8 + 79606u7 + 79490u6 +
39953u5 + 101739u4 + 118959u3 + 88791u2 + 59459u + 44419)/(u8 + 107005u7 + 34717u6 +
96329u5 + 81848u4 + 90494u3),
A = (87680u12 + 77147u11 + 47767u10 + 91104u9 + 101830u8 + 51358u7 + 106657u6 + 1059u5 +
28890u4+72926u3+40489u2+20614u+13587)/(u7+107005u6+34717u5+96329u4+81848u3+
90494u2),
R = (12306u20+37665u19+84758u18+83076u17+51365u16+42432u15+76312u14+63248u13+
97292u12+25304u11+38304u10+26932u9+108075u8+40558u7+5431u6+22057u5+100345u4+
113409u3 + 73221u2 + 39576u+ 78248)/(u16 + 107005u15 + 32931u14 + 103407u13 + 67011u12 +
105334u11 + 109571u10 + 59270u9 + 83877u8 + 34998u7 + 98548u6 + 24580u5),
T = (39012u20+43063u19+41666u18+90531u17+18614u16+112658u15+99705u14+15123u13+
56542u12+44122u11+40721u10+103078u9+29236u8+114961u7+99184u6+32122u5+94412u4+
42358u3 + 4616u2 + 66587u+ 86686)/(u16 + 107005u15 + 32931u14 + 103407u13 + 67011u12 +
105334u11 + 109571u10 + 59270u9 + 83877u8 + 34998u7 + 98548u6 + 24580u5),
E = (77510u19 +5507u18 +57109u17 +115038u16 +83721u15 +32646u14 +7900u13 +28888u12 +
83235u11+112193u10+99943u9+38123u8+70050u7+48716u6+15860u5+65499u4+38669u3+
35838u2 +82517u+82266)/(u15 +107005u14 +32931u13 +103407u12 +67011u11 +105334u10 +
109571u9 + 59270u8 + 83877u7 + 34998u6 + 98548u5 + 24580u4).

5 Algebraic theta functions
The ηa functions we have used which are η and ηX functions associated to zero-cycles con-
structed from 2-torsions points are algebraic theta functions of level 2, up to a factor. There are
formulas allowing one to write the equation of the hyperelliptic curves and the non-hyperelliptic
curves of genus 2 and 3 from the algebraic theta functions. The obstruction we have to face on
to use these formulas comes from the choice of the divisor y. Indeed, all the ηa functions have
value 1 at y so that these differents functions are not compatible between them. By compatible,
we mean that we want these ηa functions to satisfy the algebraic relations of the analytic theta
functions. In this section, we begin to recall the definition and some fundamental properties
of the analytic theta functions, then we explain how to make the ηa functions compatible in
genus 2 and 3 so that we can use theta based formulas for computing isogenies.
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5.1 Analytic theta functions

Analytic theta functions have been widely studied and are well understood from many points
of views. Good references are [22, 23, 1]. In this section, g is an integer ≥ 1.

Let z ∈ Cg and Ω in the Siegel upper-half space Hg (the g× g symmetric matrices over the
complex numbers with positive definite imaginary part). The classical theta function is

θ(z,Ω) =
∑
n∈Zg

exp (iπ tnΩn+ 2iπ tnz)

and the classical theta function with characteristic (a, b), where a, b ∈ Qg, is

θ [ ab ] (z,Ω) = exp (iπ taΩa+ 2iπ ta(z + b))θ(z + Ωa+ b,Ω). (10)

Let n be an integer ≥ 2 and Ω fixed. Then the n2g theta functions of the form θ [ ab ] (z,Ω)n
for a, b representatives of the classes of 1

nZ
g/Zg are said to be of level n and ng linearly

independent functions between them provide an embedding from the abelian variety seen as
the torus Cg/(ΩZ2g + Z2g) to Png−1(C) unless n = 2 where the embedding is only from the
Kummer variety Cg/(ΩZ2g + Z2g)/ ∼, for ∼ the equivalence relation such that z ∼ −z. Many
bases and the relations between them can be found in [8, Chapitre 3].

Let a, b ∈ Qg and m1,m2 ∈ Zg. According to [22, Page 123] we have

θ [ ab ] (z + Ωm1 +m2,Ω) = exp (−iπ tm1Ωm1 − 2iπ tm1z) exp (2iπ( tam2 − tbm1))θ [ ab ] (z,Ω),

and θ
[
a+m1
b+m2

]
(z,Ω) = exp (2iπ tam2)θ [ ab ] (z,Ω). (11)

Moreover, using the definitions, we can see that

θ [ ab ] (−z,Ω) = θ
[
−a
−b

]
(z,Ω).

Let C be a smooth projective curve of genus g over C andW be the image of the symmetrical
product C(g−1) in Picg−1(C) (as in Section 2.1). A theorem of Riemann asserts that there
exists a theta characteristic κ (κ is a divisor class of degree g − 1 and 2κ is the canonical
class), called the Riemann’s constant, such that Θ, the zero divisor of the classical theta
function θ(z,Ω) = θ [ 0

0 ] (z,Ω), is W translated by κ (see [1, Theorem 11.2.4]). Moreover,
OJC(Θ) defines a principal polarization. Thus, for g ∈ {2, 3}, the 22g level 2 functions ηa
(for the 2-torsion point a in JC) of the previous sections correspond over C to the functions
ηa,b(z) := αa,b ·θ [ ab ] (z,Ω)2/θ [ 0

0 ] (z,Ω)2, for some constants αa,b, a and b representatives of the
classes of 1

2Z
g/Zg and some Ω fixed (corresponding to C). We want to multiply the ηa functions

by constants such that these new functions verify the same algebraic relations as between the
analytic theta functions. We speak then of algebraic theta functions. We begin with a result
that will allow us to determine the constants α2

a,b associated to the 2-torsion points Ωa+ b and
then we will use formulas to choose the good square roots.

From now on, let a, b be representatives of 1
2Z

2g/Z2g. Using Equations (10) and (11), we
have

θ [ ab ] (z + Ωa+ b,Ω) = exp (−iπ taΩa− 2iπ taz + 4iπ tab)θ [ 0
0 ] (z,Ω)

from which we deduce

θ [ ab ] (z,Ω) = θ [ ab ] ((z−Ωa−b)+(Ωa+b),Ω) = exp (iπ taΩa− 2iπ taz + 6iπ tab)θ [ 0
0 ] (z−Ωa−b,Ω).
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And applying these equalities, we obtain

ηa,b(Ωa+ b) = αa,b exp (−2iπ taΩa)θ [ 0
0 ] (0,Ω)2/θ [ 0

0 ] (Ωa+ b,Ω)2

and
ηa,b(0) = αa,b exp (2iπ taΩa+ 4iπ tab)θ [ 0

0 ] (Ωa+ b,Ω)2/θ [ 0
0 ] (0,Ω)2

if the denominators are not 0. Finally, the product of these two functions give us this funda-
mental relation

ηa,b(Ωa+ b)ηa,b(0) = α2
a,b exp (4iπ tab). (12)

A lot of algrebraic relations between the analytic theta functions can be deduced from the two
following propositions.

Proposition 8 (Riemann’s theta formula). Let m1,m2,m3,m4 in R2g. Put n1 = 1
2(m1 +m2 +

m3+m4), n2 = 1
2(m1+m2−m3−m4), n3 = 1

2(m1−m2+m3−m4), n4 = 1
2(m1−m2−m3+m4).

Then
θm1θm2θm3θm4 = 1

2g
∑
α

exp (4iπm′1 tα′′)θn1+αθn2+αθn3+αθn4+α,

where, for m ∈ R2g, we denote m = (m′,m′′) and θm = θ
[
m′

m′′

]
(0,Ω) and where α runs over

a complete set of representatives of 1
2Z

2g/Z2g.

Proof. See [16, Chapter IV, Theorem 1].

Proposition 9 (Duplication formula). For a, b representatives of 1
2Z

2g/Z2g,

θ [ ab ] (z,Ω)2 = 1
2g

∑
β∈ 1

2Z
g/Zg

exp (4iπ taβ)θ
[

0
b+β

]
(z, Ω

2 )θ
[ 0
b

]
(z, Ω

2 ).

Proof. See [16, Chapter IV, Theorem 2].

5.2 Rosenhain invariants

A hyperelliptic curve of genus 2 can be written in the Rosenhain form Y 2 = X(X − 1)(X −
r1)(X − r2)(X − r3), where over C, we have

r1 = θ2
0θ

2
1

θ2
3θ

2
2
, r2 = θ2

1θ
2
12

θ2
2θ

2
15
, r3 = θ2

0θ
2
12

θ2
3θ

2
15
.

Here, we denote the analytic theta constants (the theta functions for z = 0 fixed) of level 2
using Dupont’s notation

θb0+2b1+4a0+8a1(Ω) := θ
[
a/2
b/2

]
(0,Ω)

for a = t(a0, a1), b = t(b0, b1) and ai, bi ∈ {0, 1}2. We drop the Ω when we work on a fixed
abelian variety.

There are 16 theta constants and 6 among them are identically zero: the odd theta con-
stants, that is, those for which tab ≡ 1 mod 2. Otherwise we speak of even theta constants.

We come back to the algebraic case with the notations of Section 3.2. Let e1, e2, f1, f2 be
a symplectic basis of the 2-torsion of some hyperelliptic curve of genus 2 with an imaginary
model. We want to find the 2-torsion point which is at the intersection of the tropes Za for a
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2-torsion point a having odd characteristic. According to Proposition 5, if we put a′′ = ( 1 1
1 1 ),

then the image in P3 of any of the six 2-torsion points having odd characteristic lie in the trope
Za0+a′′ , where a0 is the shifting point of this proposition. The trope Z0 = Za6 contains the
image of the points {a1, . . . , a6}; thus Za0+a′′ contains the image of {a1+a0+a′′, . . . , a6+a0+a′′}
and the intersection {Za1+a0+a′′ = 0, . . . , Za6+a0+a′′} of six tropes is {a0 + a′′}. The 2-torsion
point a0 + a′′ is thus the one corresponding to z = 0 (with respect to the choosen symplectic
basis). Note that a0 + a′′ 6∈ {a1, . . . , a6} because otherwise the point ( 0 0

0 0 ) would be in Za0+a′′

but it is of even characteristic.

Remark 10. This give another way of computing a0: compute the unique point at the inter-
section of the six tropes Za with a of odd characteristic and add ( 1 1

1 1 ) at the result.

Assume to simplify that we have computed all the tropes Za and that, thus, we know the
images in P3 of all the 2-torsion points with respect to some basis of the level 2 functions. For
all a ∈ JK̄ [2] and a 6∈ {a1, . . . , a6}, we take a lift a′ in A4 of its image in P3, evaluate all the
tropes at a′ and divide by the value obtained in evaluating Za6 at a′ (because ηa6(a) = 1) so
that we obtain (ηa1(a), . . . , ηa45(a)) ∈ A16.

As explained in the previous subsection, we want these theta functions to be compatible.
Recall that a′′ = ( 1 1

1 1 ). Thus, following Equation 12, we compute ηa(a0 + a2)ηa(a0 + a2 + a),
for a with even characteristic, giving us α2

a 6= 0. With Dupont’s notation, we have until
now the algebraic counterpart of θ4

i /θ
4
0 (6= 0 for i ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}). Yet for the

Rosenhain invariants, we need (the algebraic counterpart of) θ2
i /θ

2
0 for i ∈ {1, 2, 3, 12, 15}

which we know, taking square roots, up to a sign. More precisely, we need θ2
0
θ2
3
, θ2

1
θ2
2
and θ2

12
θ2
15

and we could obtain 8 curves because there are 23 possibilities of sign giving us 8 triples
of Rosenhain invariants. One of them or its twist is isogenous to the starting curve C and
this curve can be found comparing the cardinality of the Jacobians. But using the algebraic
relations between the theta constants we can directly determine the good curve. Indeed,
according to the Duplication formula, we have: (θ4θ6)2 = (θ0θ2)2 − (θ1θ3)2 and taking square:
(θ4θ6)4 = (θ0θ2)4 + (θ1θ3)4 − 2(θ0θ2θ1θ3)2 so that we can determine the value of r1 (in the
algebraic case). This property can be proven using the Duplication formula to write all the
θ2
i (Ω) in function of θj(Ω/2) for j ∈ {0, 1, 2, 3} and comparing the two sides of the equality.
Similarly, r2 is determined using (θ4θ9)2 = (θ1θ12)2−(θ2θ15)2. This last property can be proven
by the Duplication formula and can also be deduced from the first one looking at the action

of the matrix
(
−1 0 1 0
0 0 0 1
0 0 −1 −1
1 −1 −1 0

)
on the theta constants (see [16, Chapter 5, Theorem 2] or [8,

Proposition 3.1.24]). Finally, note that r1r2r3 = θ4
0θ

4
1θ

4
12

θ4
2θ

4
3θ

4
15

from which we deduce the value of r3.
The fact that the Rosenhain invariants can be determined with the knowledge of quotients

of fourth power of theta constants is not surprising as both are generators for the modular
functions invariants by Γ2(2). Moreover, the functions θ2

i /θ
2
0 are invariants for Γ2(2, 4) and the

index [Γ2(2) : Γ2(2, 4)] is 16 so that the choice of the square roots we have to take is determined
by the choice of 4 well-choosen quotients (forming a basis) and at each choice corresponds an
isomorphic curve. If we need the algebraic counterpart of the θ2

i /θ
2
0 (this is of independent

interest), we generate many relations from the Duplication formula as we have done before and
do a Gröbner basis for determining relations between the unknown signs. We take a random
choice of square roots for the 4 determining the system.
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5.3 Non-hyperelliptic curves of genus 3
We focus now on the case of non-hyperelliptic curves D of genus 3 on a field K. Assume K
is algebraically closed. We have seen that the Kummer variety of such a curve has a (64, 28)-
configuration and we can apply similar techniques as in the hyperelliptic case to compute the
tropes and the image of the 2-torsion points in P7. However, we do not know if there is a
parameterization allowing one to recover the equation of the curve with these data. The only
way we have found consists in using theta based formulas and the theory of bitangents (see
[33, 25]). The following exposition is based on [27, 26] and we refer to these references for more
details.

As the curve D/K is non-hyperelliptic, it can be embedded as a non-singular plane quartic
in P2. We denote by x1, x2, x3 the coordinates in this projective plane.

Definition 11. A line l is called a bitangent of D if the intersection divisor (l · D) is of the
form 2P + 2Q for some points P,Q of D. If P = Q, the point P is called a hyperflex.

Let K be the canonical bundle and let Σ = {L ∈ Pic2(D) : L2 = K} be the set of theta
characteristic bundles. This set is composed of the two disjoint subsets Σi = {L ∈ Σ : h0(L) =
i} of even (i = 0) and odd (i = 1) theta bundles. There is a canonical bijection between the set
of bitangents, Σ1 and the set of odd characteristics for a fixed symplectic basis of the 2-torsion.
We can deduce from it

Proposition 12. A smooth plane quartic has exactly 28 bitangents.

The (64, 28)-configuration comes from this proposition. Indeed, if l is a bitangent and
(l ·D) = 2P + 2Q, then 2P + 2Q is a canonical divisor and P +Q is a theta characteristic as in
Section 2.1 (from which we can build the η and ηX functions). Then if l′ is another bitangent
giving us the points P ′ and Q′, then the divisor P ′ + Q′ − P − Q is in W−P−Q and it is a
2-torsion point. Only the 28 2-torsion points coming from bitangents are in W−P−Q.

The equation of D as a plane quartic is determined and can be reconstructed knowing
the equations of 7 bitangents forming an Aronhold system (see [6, 18]), which is a set of 7
bitangents such that if we take 3 bitangents among these 7, then the points at which these
bitangents intersect the plane quartic do not lie on a conic in P2.

There exists 288 Aronhold system for a given plane quartic and we focus on the following
one.

Proposition 13. An Aronhold system of bitangents for a quartic is β1 : x1 = 0, β2 : x2 =
0, β3 : x3 = 0, β4 : x1 + x2 + x3 = 0, β5 : α11x1 + α12x2 + α13x3 = 0, β6 : α21x1 +
α22x2 + α23x3 = 0, β7 : α31x1 + α32x2 + α33x3 = 0, for [αi1 : αi2 : αi3] ∈ P2.

In our case, we do not have the embedding to P2 because it seems to us that we can not
construct it with ηX functions (what would the zero-cycle u be ?). However, we can find in
[13] the following expression of αij with theta constants. We fix a symplectic basis and use the
Dupont’s notation

θb0+2b1+4b2+8a0+16a1+32a2(Ω) := θ
[
a/2
b/2

]
(0,Ω)

for a = t(a0, a1, a2), b = t(b0, b1, b2) and ai, bi ∈ {0, 1}2.

α11 = θ12θ5
θ33θ40

, α21 = θ27θ5
θ54θ40

, α31 = −θ12θ27
θ33θ54

,
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α12 = θ21θ28
θ56θ49

, α22 = θ2θ28
θ47θ49

, α32 = θ2θ21
θ47θ56

,

α13 = θ7θ14
θ42θ35

, α23 = θ16θ14
θ61θ35

, α33 = θ16θ7
θ61θ42

.

The reconstruction of the plane quartic from its bitangents comes from the following result.

Theorem 14 (Riemann). Let β1, . . . , β7 be an Aronhold system of bitangents as in Proposition
13. Then an equation for the curve is

(x1ξ1 + x2ξ2 − x3ξ3)2 − 4x1ξ1x2ξ2 = 0

where ξ1, ξ2, ξ3 are given by{
ξ1 + ξ2 + ξ3 + x1 + x2 + x3 = 0,
ξ1
αi1

+ ξ2
αi2

+ ξ3
αi3

+ ki(αi1x1 + αi2x2 + αi3x3) = 0, i ∈ {i, 2, 3}

with k1, k2, k3 solutions of
1
α11

1
α21

1
α311

α12
1
α22

1
α321

α13
1
α23

1
α33


λ1
λ2
λ3

 =

−1
−1
−1

 ,
λ1α11 λ2α21 λ3α31
λ1α12 λ2α22 λ3α32
λ1α13 λ2α23 λ3α33


k1
k2
k3

 =

−1
−1
−1

 .
It is then possible to find the equation of all the bitangents. Moreover, starting from the

equation of a plane quartic, [26, Proposition 3] describes a way to compute an associated
Aronhold system. We do not use these facts.

It remains to us to explain how to compute the values αij . We proceed as in Section 5.2.
Assuming we have all the tropes and the image of the 2-torsion points in P7, we deduce the
evaluation of the ηa in the torsion points a′ when η0(a′) 6= 0. We use Equation 12 to multiply
the η2

a by a constant so that we obtain the algebraic counterpart of θ4
i /θ

4
0. Then we could try

all the possibilities for the choice of fourth roots (assuming testing if two curves are isogenous
takes not too much time). Otherwise, we generate many relations between square of theta
constants using the Duplication formulas or the Riemann’s theta formula and using Gröbner
bases and fixing 6 square roots ([Γ3(2) : Γ3(2, 4)] = 26), we can compute a compatible set
of algebraic theta functions caη2

a (for some constant ca). Finally, for the projective point
(α11 : α12 : α13), choose any square root of α11 and then consider the following equalities
(coming from Riemann’s theta formula)

θ61θ45θ16θ0 − θ56θ40θ21θ5 + θ49θ33θ28θ12 = 0,
θ5θ12θ33θ40 − θ21θ28θ49θ56 − θ42θ35θ14θ7 = 0. .

From the first one, we have

(θ61θ45θ16θ0)2 = (θ56θ40θ21θ5)2 + (θ49θ33θ28θ12)2 − 2θ56θ40θ21θ5θ49θ33θ28θ12

from which we deduce the good square root of α2
12. Similarly, the second equality give us α13.

For the two other projectives points, we proceed in the same way using

θ49θ47θ28θ2 − θ54θ40θ27θ5 − θ61θ35θ16θ14 = 0,
θ54θ47θ27θ2 − θ49θ40θ28θ5 + θ56θ33θ21θ12 = 0,

−θ55θ32θ20θ3 + θ54θ33θ21θ2 + θ56θ47θ27θ12 = 0,
θ54θ33θ27θ12 − θ56θ47θ21θ2 + θ61θ42θ16θ7 = 0.
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6 Implementation
We have implemented all the algorithms presented here using the computational algebra system
magma [3]. In the case of hyperelliptic curves, the reduced divisors are represented through
their Mumford coordinates and addition between the reduced divisors x1, x2 is done with
the Cantor’s algorithm, giving us the reduced divisor of x1 + x2. In the non-hyperelliptic
case (genus 3), we have represented divisors as formal sums of points and used the Reduction
function of magma to reduce divisors. This makes the handling of divisors heavy so that in
this case, our implementation has to be improved, first from an arithmetic point of view. We
should use the algorithm of [14] for fast addition.

In this paper, we only have optimized the number of evaluations of ηX functions in the
genus 2 case using the parameterization method. The method computing the isogeny directly
in the Rosenhain form with algebraic theta functions requires the computation of more than the
6 tropes of the other method, so it is less efficient. We did not optimize our implementation in
this case but computed all the tropes (from which we deduce all the φ(a) ∈ P3) and verified that
it worked. For genus 3, we did not care about optimization. The point-counting algorithms are
not efficient in practice and computing isotropic subgroups is hard. In the non-hyperelliptic
case, we only tested our algorithm using η functions instead of ηX functions, so without
computing isogenies. This should not matter because what we want to do is being able to
compute the equation of the curve from the geometry of its Kummer in P7. Note that it is
easy to verify that two curves are isomorphic. It is enough to compute isomorphic classes
invariants (Igusa invariants in genus 2, Shioda invariants for hyperelliptic curves of genus 3
and Dixmier-Ohno invariants for plane quartics). We give now an example of computation
with have done for genus 2 curves using the parameterization method. Let

C : Y 2 = 74737X5 + 28408X4 + 89322X3 + 47216X2 + 55281X + 86566

be a hyperelliptic curve over F100019 whose Weierstrass points live in F1000195 . Then C is
(7, 7)-isogenous to the curve

D : Y 2 = 34480X5 + 27167X4 + 78914X3 + 49217X2 + 75306X + 92103.

We no not put the isotropic subgroup as it is too big to be put here. It lives in a extension of
F100019 of degree 30. The computation of D took 27 seconds. This includes the computation
of the trope Za3 so that we have the image of the points {a1, . . . , a6, a12, a34, a35} in P3 .
The computation of the matrix allowing one to go from a representation of the Kummer
to the good one took slightly less than 1 second. Computing the image of a single formal
point at small precision, which means 9 evaluations of ηX functions (if ηa6 is in the basis, 12
otherwise) took around 30 seconds. Extending the precision can be done in 0.4 second and the
reconstruction of rational fractions in 0.02 second. At the end, we can verify the correctness
of the rational fractions in testing if the image of a point is in the Jacobian of D and in testing
the homomorphic property of the isogeny.

Our implementation is not fast compared to the one of AVIsogenies (at small primes) but
we beat them at some examples. We intend now to improve our code. The method exposed
here is promising compared to the other method because its complexity in the prime number
` does not depend of ` being a sum of squares of not. Moreover, being able to compute the
functions directly at 2-torsion points and at non-generic points would be an improvement. We
manage to have results when using η functions but nothing with ηX functions. Finally, it
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would be interesting to be able to compute cyclic isogenies. This requires a better knowledge
of what the polarization looks like to construct the corresponding ηX function.
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