Improving Texture Categorization with Biologically Inspired Filtering - Archive ouverte HAL
Article Dans Une Revue Image and Vision Computing Année : 2014

Improving Texture Categorization with Biologically Inspired Filtering

Résumé

Within the domain of texture classification, a lot of effort has been spent on local descriptors, leading to many powerful algorithms. However, preprocessing techniques have received much less attention despite their important potential for improving the overall classification performance. We address this question by proposing a novel, simple, yet very powerful biologically-inspired filtering (BF) which simulates the performance of human retina. In the proposed approach, given a texture image, after applying a difference of Gaussian (DoG) filter to detect the edges, we first split the filtered image into two maps alongside the sides of its edges. The feature extraction step is then carried out on the two maps instead of the input image. Our algorithm has several advantages such as simplicity, robustness to illumination and noise, and discriminative power. Experimental results on three large texture databases show that with an extremely low computational cost, the proposed method improves significantly the performance of many texture classification systems, notably in noisy environments.
Fichier non déposé

Dates et versions

hal-01584903 , version 1 (10-09-2017)

Identifiants

  • HAL Id : hal-01584903 , version 1

Citer

Ngoc-Son Vu, Thanh Phuong Nguyen, Christophe Garcia. Improving Texture Categorization with Biologically Inspired Filtering. Image and Vision Computing, 2014, 6-7, 3, pp.424-436. ⟨hal-01584903⟩
149 Consultations
0 Téléchargements

Partager

More