A posteriori error estimation and adaptive strategy for PGD model reduction applied to parametrized linear parabolic problems - Archive ouverte HAL
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2017

A posteriori error estimation and adaptive strategy for PGD model reduction applied to parametrized linear parabolic problems

Résumé

We define an a posteriori verification procedure that enables to control and certify PGD-based model reduction techniques applied to parametrized linear elliptic or parabolic problems. Using the concept of constitutive relation error, it provides guaranteed and fully computable global/goal-oriented error estimates taking both discretization and PGD truncation errors into account. Splitting the error sources, it also leads to a natural greedy adaptive strategy which can be driven in order to optimize the accuracy of PGD approximations. The focus of the paper is on two technical points: (i) construction of equilibrated fields required to compute guaranteed error bounds; (ii) error splitting and adaptive process when performing PGD-based model reduction. Performances of the proposed verification and adaptation tools are shown on several multi-parameter mechanical problems.
Fichier principal
Vignette du fichier
article_HAL.pdf (7.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01584532 , version 1 (22-01-2018)

Identifiants

Citer

Ludovic Chamoin, Florent Pled, Pierre-Eric Allier, Pierre Ladevèze. A posteriori error estimation and adaptive strategy for PGD model reduction applied to parametrized linear parabolic problems. Computer Methods in Applied Mechanics and Engineering, 2017, 327, pp.118-146. ⟨10.1016/j.cma.2017.08.047⟩. ⟨hal-01584532⟩
466 Consultations
126 Téléchargements

Altmetric

Partager

More