
HAL Id: hal-01584532
https://hal.science/hal-01584532v1

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A posteriori error estimation and adaptive strategy for
PGD model reduction applied to parametrized linear

parabolic problems
Ludovic Chamoin, Florent Pled, Pierre-Eric Allier, Pierre Ladevèze

To cite this version:
Ludovic Chamoin, Florent Pled, Pierre-Eric Allier, Pierre Ladevèze. A posteriori error estima-
tion and adaptive strategy for PGD model reduction applied to parametrized linear parabolic
problems. Computer Methods in Applied Mechanics and Engineering, 2017, 327, pp.118-146.
�10.1016/j.cma.2017.08.047�. �hal-01584532�

https://hal.science/hal-01584532v1
https://hal.archives-ouvertes.fr


A posteriori error estimation and adaptive strategy for PGD model
reduction applied to parametrized linear parabolic problems

Ludovic Chamoina, Florent Pledb, Pierre-Eric Alliera, Pierre Ladevèzea,∗
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Abstract

We define an a posteriori verification procedure that enables to control and certify PGD-based model
reduction techniques applied to parametrized linear elliptic or parabolic problems. Using the concept of
constitutive relation error, it provides guaranteed and fully computable global/goal-oriented error estimates
taking both discretization and PGD truncation errors into account. Splitting the error sources, it also leads
to a natural greedy adaptive strategy which can be driven in order to optimize the accuracy of PGD
approximations. The focus of the paper is on two technical points : (i) construction of equilibrated fields
required to compute guaranteed error bounds ; (ii) error splitting and adaptive process when performing
PGD-based model reduction. Performances of the proposed verification and adaptation tools are shown on
several multi-parameter mechanical problems.

Keywords: Model reduction, Proper Generalized Decomposition, Verification, Adaptivity, Constitutive
relation error, Goal-oriented error estimation

1. Introduction

With continuous advances in modeling and computing methods, numerical simulation has progressively
become a common tool for analysis and design in engineering activities. Nowadays, it enables to deal with
complex (multiscale, multiphysics, multi-parameter, . . .) problems that include modeling with finer and finer
features of the real world. Nevertheless, numerical simulation tools remain limited or even powerless for some
categories of problems, in particular when considering complex multidimensional models with many fluc-
tuating parameters. Such high-dimensional problems are encountered in several branches of computational
science and engineering, such as parametric modeling (control, optimization, inverse analysis, . . .) or stochas-
tic modeling (uncertainty quantification and propagation, risk assessment, sensitivity analysis, . . .). Classical
numerical methods, known as brute force (mesh-based) discretization methods, then require huge and often
unreasonable computational costs and storage requirements, as the number of degrees of freedom (dofs)
grows exponentially with respect to the number of dimensions of the resulting approximation spaces ; this
is the so-called curse of dimensionality [1] related to computational intractability for high-dimensional pro-
blems. Consequently, new robust approximation methods need to be introduced to address multi-parameter
models and efficiently compute numerical approximations for high-dimensional problems.

In this context, model reduction is an attractive alternative approach which has been widely developed
during the last decade. It leans on the fact that the (full-order) solution of complex numerical models
can often be accurately approximated by the (reduced-order) solution of surrogate models ; this latter is
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obtained through the projection of the initial model onto a low-dimensional (reduced) subspace spanned by
global basis functions, so that dimensionality can be drastically reduced. The various model (or complexity)
reduction methods, such as Reduced Basis (RB) approaches [2] or Proper Orthogonal Decomposition (POD)
[3, 4], distinguish themselves by the way of constructing and selecting the basis functions.

A promising model reduction method, denoted Proper Generalized Decomposition (PGD), has recently
gained much attention and is currently the topic of numerous research works (see [5] for an overview)
following pioneering ideas developed in [6, 7]. It is a low-rank tensor approximation method which consists
of a representation of the solution as a linear combination of separated variables functions (called modes),
after defining all model parameters as extra-coordinates of the problem. The specificity of this spectral
approach comes from the fact that no a priori partial knowledge of the solution is required, contrary to
POD which requires a preliminary offline stage, called learning phase and based on appropriate snapshots
allowing to efficiently explore the parameter domain by means of a priori error estimation procedures. In
the PGD framework, modes are first computed on the fly, once at all, in an offline and iterative phase
that provides an approximate solution of the model for any value of the parameters ; this solution can
then be used in an online phase, with cheap and fast computations on light computing platforms, in order
to perform real-time parametric or stochastic analysis, sensitivity analysis, design or shape optimization,
inverse identification and optimal control. The PGD method allows to circumvent the curse of dimensionally,
as the number of dofs grows linearly with respect to the number of dimensions which enables considerable
savings in terms of computing time and memory storage and leads to affordable simulations of complex
engineering problems. Performances of the PGD method have been illustrated in several applications with
linear or nonlinear problems, and including model variabilities of many kinds (material, loading, initial or
boundary conditions, geometry, . . .) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

However, an intensive use of PGD capabilities for numerical analysis as well as the transfer of PGD
solvers in industrial activities still face several major difficulties. One of them is the control of PGD reduced-
order models, in order to certify the accuracy of PGD-based numerical solutions for applications of increasing
complexity, that represents a fundamental and well-identified concern for robust design and decision making.
This scientific issue requires to construct dedicated a posteriori error estimation tools as well as adaptive
strategies in order to define a suitable PGD approximation in terms of required number of terms in the modal
representation of the solution, but also in terms of the discretization meshes used to compute modes. Model
verification is a pillar of simulation-based engineering for which J.T. Oden has been a pioneer and a main
contributor [19]. Verification of PGD reduced-order models has been addressed in very few works until now, in
opposition to the vast literature dedicated to the control of RB techniques (see [20, 21, 22, 23, 24] for instance,
where a priori or a posteriori explicit residual methods are used). Preliminary works were shown in [25] using
residual-based techniques for goal-oriented error estimation ; in this work, mainly devoted to adaptivity, only
the error coming from the truncation of the modal representation was controlled and the error bounds were
not guaranteed (the adjoint solution was approximated with a finer PGD decomposition). Another recent
work [26] extended this concept to the nonlinear context by using a linearized version of the problem to
define the adjoint problem, before using a weighted residuals method with a higher number of PGD modes
to represent the adjoint solution and catch PGD truncation error. Even though this approach is cheap, it
cannot deliver guaranteed error bounds in which all error sources are taken into account. A first robust
verification approach, using the concept of Constitutive Relation Error (CRE) [27, 28], was introduced in
[29, 30, 31] to control and assess the numerical quality of PGD reduced-order models. Based on the derivation
of equilibrated fields from a post-processing of the approximate PGD solution, it provides guaranteed error
bounds involving both discretization error and truncation error in the PGD modal representation. A similar
approach was recently proposed in [32], even though equilibrated fields were here obtained using a dual
PGD approach. Other sources of errors resulting e.g. from numerical integration (quadrature) and round-off
(machine precision) are assumed to be negligible.

In this paper, we go one step forward by investigating three technical points. First, we present an
automatic manner to construct equilibrated fields from a post-processing of the PGD approximation. Such
a construction, required to apply CRE concepts, is actually the only way to get guaranteed error bounds.
Second, as engineering design and optimization require the prediction of selected outputs as a function of
specified inputs, we extend the verification procedure to the goal-oriented framework using similar tools
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as in the classical Finite Element Method (FEM) context [33, 34]. We thus define strict error bounds on
given outputs of interest from the approximate PGD solution of an adjoint problem, and show how this
latter can be computed effectively using PGD tools. Third, we introduce an adaptive strategy, based on a
greedy algorithm involving the relative contributions of various error sources, in order to drive the PGD
computations effectively and reach a prescribed error tolerance. Performances of the proposed verification
method, valid for linear problems with potentially numerous fluctuating parameters, are illustrated through
several numerical experiments carried out on elliptic (elasticity) or parabolic (transient thermal conduction)
problems in one, two or three space dimensions. Advection problems are not considered here, even though
the philosophy we present in the paper could be extended to such non-symmetric problems with minor
changes [35, 36].

The paper is organized as follows. After this introduction, Section 2 presents the reference problem and
notations. An overview of the technique used to get the PGD approximation, as well as its post-processing
to obtain an equilibrated field (in a weak sense), is given in Section 3. Section 4 introduces the global error
estimation method, using the CRE concept and applied to PGD computations, as well as the associated
adaptive strategy. An extension of the method to goal-oriented error estimation and model adaptation is
proposed in Section 5. Numerical results are reported in Section 6. Eventually, conclusions and prospects
are drawn in Section 7.

2. Reference problem

We consider a transient linear diffusion-reaction problem defined on an open bounded domain Ω ⊂ Rd

(d = 1, 2 or 3 being the space dimension), with boundary ∂Ω, over a time interval I = [0 , T ]. We assume
that prescribed homogeneous Dirichlet boundary conditions are imposed on part ∂uΩ 6= ∅ of ∂Ω, whereas
time-dependent Neumann boundary conditions (given flux gd(x, t)) are applied on the complementary part
∂qΩ of ∂Ω, with ∂uΩ ∩ ∂qΩ = ∅ and ∂uΩ ∪ ∂qΩ = ∂Ω. A given source term fd(x, t) may also be active in
domain Ω. For simplicity reasons, initial conditions are set to zero.

For the sake of simplicity of the technical aspects addressed in the paper, we consider variabilities in
material properties only ; however, the PGD method as well as the verification approach we present can be
extended to other variabilities occurring in the loading, geometry, and initial or boundary conditions. The
material behavior is assumed to be fluctuating due to possible heterogeneities and/or uncertainties charac-
terized by a set of np input design parameters gathered in a vector p = [p1, . . . , pnp ] ∈ P = P1×· · ·×Pnp ,
where the input parameter domains Pj are bounded subsets of R defining the range of variations of
parameters pj .

Denoting by c(x,p) (resp. k(x,p) and r(x,p)) the evolution (resp. diffusion and reaction) coefficient,
the reference mathematical problem consists in finding u(x, t,p) (and associated flux q = k∇u), with
(x, t,p) ∈ Ω×I×P , solution of the following partial differential equation (PDE) :

c
∂u

∂t
−∇ · (k∇u) + ru = fd on Ω×I×P, (1a)

with given initial and boundary conditions :

u = 0 on Ω×{0}×P, u = 0 on ∂uΩ×I×P, k∇u · n = gd on ∂qΩ×I×P, (1b)

n denoting the unit outgoing normal vector to Ω.

In the following, a function v(x, t) defined on Ω×I will be equivalently considered as a function v(t)
defined on I with values in the Hilbert space V = H1

0 (Ω) = {v ∈ H1(Ω) ; v|∂uΩ = 0}, corresponding to
the Sobolev space of functions vanishing on ∂uΩ. Similarly, a function v(x, t,p) defined on Ω×I×P will be
equivalently considered as a function v(t,p) defined on I×P with values in V. For the sake of readability,
the dependence of functions on variables in space x, time t and parameters p will be often omitted.
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Introducing T = L2(I) the Lebesgue space associated to I, identifying the Bochner space L2(I;V)
(corresponding to the Hilbert space of square integrable functions defined from I into V) with the tensor
product space V ⊗ T : L2(I;V) ' V ⊗ T , and denoting V∗ = H−1(Ω) the topological dual space of V, the
space-time weak formulation of (1) reads for all p ∈ P :

find u ∈ L2(I;V), with
∂u

∂t
∈ L2(I;V∗), such that b(u, v) = l(v) ∀v ∈ L2(I;V), (2)

with u|t=0 = 0, and where the bilinear form b(·, ·) and linear form l(·) are defined on L2(I;V) by :

b(u, v) :=

∫
I

∫
Ω

(
c
∂u

∂t
v + k∇u ·∇v + ruv

)
dΩdt,

l(v) :=

∫
I

(∫
Ω

fdvdΩ +

∫
∂qΩ

gdvdS

)
dt,

(3)

where
∂u

∂t
(t) ∈ V∗ is assimilated to its Riesz representation in V [10] and the duality pairing between V and

V∗ is considered as a continuous extension of the natural inner product on Lebesgue space L2(Ω) [37].
Then, introducing Pj = L2(Pj) the Lebesgue space associated to Pj and identifying the Bochner space

L2(I, P ;V) (corresponding to the Hilbert space of square integrable functions defined from I×P into V) with
the tensor product space V ⊗T ⊗P : L2(I, P ;V) ' V ⊗T ⊗P, with P = ⊗np

j=1Pj , the full weak formulation
of (1) reads :

find u ∈ L2(I, P ;V), with
∂u

∂t
∈ L2(I, P ;V∗), such that B(u, v) = L(v) ∀v ∈ L2(I, P ;V), (4)

where B(·, ·) and L(·) are bilinear and linear forms defined on L2(I, P ;V) by :

B(u, v) :=

∫
P

b(u, v)dp, L(v) :=

∫
P

l(v)dp. (5)

The solution u of (4), which depends on D = (d+ 1 +np) dimensions, may be approximated with a classical
brute force (grid-based) approach only for a moderate number of parameters np. Indeed, considering a regular
Cartesian domain Ω and n discretization points in each dimension, a full tensor product approximation of
the solution u ∈ L2(I, P ;V) reads :

u ≈
n∑

i1=1

. . .

n∑
iD=1

ai1...iD ⊗D
`=1 ϕ

`
i`
, (6)

where ϕ`
i`

are canonical basis functions in dimension ` and a ∈ RnD

gathers the components ai1...iD of the
full tensor product approximation on the canonical basis. It leads to an exponential blow up of the number
of dofs (or complexity) N with respect to the number of dimensions D (N = nD), often referred to as the
so-called curse of dimensionality. Furthermore, assuming that solution u ∈ Cs(Ω×I×P ) with order s ∈ N,
the uniform accuracy ε measured in the L∞(I, P ;V)-norm is such that ε(N,D) = O(n−s) = O

(
N−s/D

)
as N → +∞ [38]. Consequently, the associated numerical complexity N is such that N(ε,D) = O

(
ε−D/s

)
as ε → 0, which corresponds to a very poor convergence rate −s/D for high-dimensional problems, i.e.
involving a large number of dimensions D. In the remainder of the paper, we do not perform any separation
of space variables in order to avoid restrictions in the shape of the domain Ω (e.g. geometrical symmetry
or periodicity conditions). We then consider general physical domains Ω so that the d space dimensions are
kept together. This way, we get D = 2+np and the number n of discretization points in the physical domain
Ω corresponds to the number of degrees of freedom over the physical mesh.

A classical model reduction technique, known as the Reduced Basis (RB) method, consists of properly se-
lecting a discrete subset SJ = {pj}Jj=1 of parameters values and computing the solution uj(x, t) = u(x, t,pj)
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(1 6 j 6 J) of the parametrized variational problem (2) for each element pj of SJ (involving N = J×nd+1

dofs). The J-dimensional Lagrangian reduced-basis subspace WJ = span{uj}Jj=1 ⊂ P is then defined, and
an approximation of the solution u(x, t,p), for any input parameter vector p ∈ P , can be obtained by a
standard Galerkin projection onto the reduced space WJ . The performances of RB-like approaches, which
depend on the Kolmogorov J-width of the set K = {u(·, ·,p)}p∈P ⊂ L2(I;V), as well as a posteriori ve-
rification tools to define optimal elements in SJ , have been investigated in several works (see [22, 24] for
instance). The effectivity of RB methods strongly depends on the way to construct the low-dimensional
subspace WJ and especially on the choice of snapshots {uj}Jj=1. In the next section, an alternative model
reduction approach based on PGD is detailed.

3. PGD reduced-order approximation : computation and post-processing

The basic idea in model reduction using PGD is to a priori construct an approximation of the solution
u(x, t,p) as a separated variables representation defined in tensor product spaces, i.e. a finite sum of products
of separable functions. We consider here such a representation associated with a canonical format and (low-
rank) separated structure for variables in space x, time t and parameters pj ∈ p ; it reads :

u ≈
m∑
i=1

⊗D
`=1u

`
i , with u`i =

n∑
i`=1

a`i,i`ϕ
`
i`
, (7)

where m ∈ N∗ is the rank (or order) of the PGD approximation and u`i are global reduced basis functions in
dimension `. Consequently, the computational cost is drastically reduced with this specific low-rank structure
when D increases, as it now leads to a linear scaling (or linear growth) of N with respect to D (N = mDn).
Besides, assuming that the solution u can be approximated by a rank-m separated representation (7) (also
called order m canonical tensor decomposition) with u`i ∈ Cs(P`), where P` denotes here the domain of
the generic coordinate in dimension `, the numerical complexity N to achieve accuracy ε is such that
N(ε,D) = O

(
m1/sD1+1/sε−1/s

)
as ε → 0. In the continuous setting, the rank-m PGD approximation (7)

defines a separated modal representation with space, time and parameters functions.
Consequently, the continuous order m PGD approximation um is defined as :

um(x, t,p) =

m∑
i=1

ψi(x)λi(t)

np∏
j=1

γj,i(pj), (8)

where the ψi ∈ V (resp. λi ∈ T and γj,i ∈ Pj) form a low-dimensional reduced basis composed of space
(resp. time and parameters) functions. The discretized version uh,∆t

m , denoting by h (resp. ∆t) the space
mesh size (resp. time step) which is used, reads :

uh,∆t
m (x, t,p) =

m∑
i=1

ψh
i (x)λ∆t

i (t)

np∏
j=1

γj,i(pj), (9)

where the ψh
i (resp. λ∆t

i ) functions are discretized counterparts of ψi (resp. λi) lying in a finite-dimensional
approximation subspace Vh ⊂ V (resp. T∆t ⊂ T ).

Even though discretizations in the parameters pj dimensions are required for computational purposes,
we do not explicitly consider them in the error analysis as they are not associated with a given numerical
approximation method that we wish to adapt. In the numerical results presented in Section 6, we will
consider a very fine discretization grid in each parameter domain Pj in order to safely neglect the error due
to the numerical approximation over the parametric space P.

3.1. Computation of the PGD approximation

In the case where the solution u is known (at least partially by means of snapshots), an optimal low-rank
separated representation may be searched by minimizing the distance to the exact solution with respect to
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a given metric on the tensor product V ⊗ T ⊗ P ; the classical POD approach (known as SVD technique in
matrix computations) corresponds to a particular case where a L2-norm is used for two variables functions
(D = 2), leading to eigenvalue problems. Here, we wish to compute modes on the fly with no a priori
knowledge on the solution u.

Among the various methods which have been introduced so far to compute PGD modes (separable func-
tions) and build an approximate separated representation of the solution u (see [5, 10] for instance), we use
the classical one referred to as progressive Galerkin-based PGD method ; it operates in an iterative strategy
based on the progressive construction of successive order 1 corrections, and defines Galerkin approximations
in tensor product spaces from the full weak formulation (4). In particular, it involves a space-time weak
formulation [39] of parabolic problem (1) in order to separate the space and time modes. Assuming that an
order (m− 1) PGD decomposition um−1 is known, the order m decomposition um is searched as :

um(x, t,p) = um−1(x, t,p) + ψ(x)λ(t)

np∏
j=1

γj(pj), (10)

where the new space function ψ, time function λ and parameter functions γj are the unknown functions to
be determined and respectively belong to V, T and Pj .

The Galerkin approach then implies that these functions verify the following Galerkin orthogonality
conditions :

B(um−1 + ψλ

np∏
j=1

γj , v
∗) = L(v∗), with v∗ = ψ∗λ

np∏
j=1

γj + ψλ∗
np∏
j=1

γj +

np∑
j0=1

ψλγ∗j0

np∏
j=1
j 6=j0

γj ,

∀ψ∗ ∈ V, ∀λ∗ ∈ T , ∀γ∗j0 ∈ Pj0 , j0 = 1, . . . , np,

(11)

or, equivalently, the following stationarity conditions :

B(um−1 + ψλ
∏
j

γj , ψ
∗λ
∏
j

γj) = L(ψ∗λ
∏
j

γj) ∀ψ∗ ∈ V, (12a)

B(um−1 + ψλ
∏
j

γj , ψλ
∗∏

j

γj) = L(ψλ∗
∏
j

γj) ∀λ∗ ∈ T , (12b)

B(um−1 + ψλ
∏
j

γj , ψλγ
∗
j0

∏
j 6=j0

γj) = L(ψλγ∗j0
∏
j 6=j0

γj) ∀γ∗j0 ∈ Pj0 , j0 = 1, . . . , np. (12c)

Problem (12) is a complex nonlinear multidimensional problem which can be interpreted as a pseudo-
eigenvalue problem ; it may thus be solved using specific iterative algorithms inspired from classical power
iterations algorithms dedicated to eigenvalue problems or dominant subspace methods [10]. In the present
work, we use the fixed-point iteration method (also called alternating direction algorithm in an optimization

context). For each mode m ∈ N∗, starting from an ad hoc initialization (ψ(0), λ(0), γ
(0)
1 , . . . , γ

(0)
np ) at iteration

0, one builds a sequence {(ψ(k), λ(k), γ
(k)
1 , . . . , γ

(k)
np )}k∈N∗ with the following power sub-iterations algorithm

requiring the solution of a sequence of simple low-dimensional problems at each sub-iteration k ∈ N∗ :

– Compute λ(k) ∈ T such that :

B(um−1 + ψ(k−1)λ(k)
∏
j

γ
(k−1)
j , ψ(k−1)λ∗

∏
j

γ
(k−1)
j ) = L(ψ(k−1)λ∗

∏
j

γ
(k−1)
j ) ∀λ∗ ∈ T . (13)

Problem (13) is the weak formulation of a scalar ordinary differential equation (ODE) in time which
may be solved in practice using the FEM with associated finite-dimensional approximation subspace
T∆t ⊂ T . An alternative method would consist in using an incremental time integration scheme
dedicated to first-order differential equations ;
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– For j0 = 1, . . . , np, compute γ
(k)
j0
∈ Pj0 such that :

B(um−1 + ψ(k−1)λ(k)γ
(k)
j0

∏
j<j0

γ
(k)
j

∏
j>j0

γ
(k−1)
j , ψ(k−1)λ(k)γ∗

∏
j<j0

γ
(k)
j

∏
j>j0

γ
(k−1)
j )

= L(ψ(k−1)λ(k)γ∗
∏
j<j0

γ
(k)
j

∏
j>j0

γ
(k−1)
j ) ∀γ∗ ∈ Pj0 .

(14)

Problem (14) is a scalar algebraic equation and provides an explicit definition of parameter function

γ
(k)
j0
∈ Pj0 ;

– Compute ψ(k) ∈ V such that :

B(um−1 + ψ(k)λ(k)
∏
j

γ
(k)
j , ψ∗λ(k)

∏
j

γ
(k)
j ) = L(ψ∗λ(k)

∏
j

γ
(k)
j ) ∀ψ∗ ∈ V. (15)

Problem (15) is the weak formulation of a (time-independent) partial differential equation (PDE) in
space which may be solved in practice using the FEM with associated finite-dimensional approximation
subspace Vh ⊂ V.

Sub-iterations may be performed until the convergence is reached at a given tolerance. In practice, the
power sub-iterations algorithm converges quite fast and generally does not require more than a few iterations

to obtain a good approximation of (ψ(k), λ(k), γ
(k)
1 , . . . , γ

(k)
np ). Here, we choose to stop sub-iterations after

a given number kmax (we take kmax = 4 iterations in the numerical experiments shown in Section 6).

Furthermore, time function λ(k) and parameter functions γ
(k)
j are normalized at each sub-iteration k so that

the magnitude of PGD mode m is supported by space function ψ(k) alone.
Several possible variants, which will not be considered in the numerical experiments, can be introduced

in the progressive Galerkin-based PGD approach in order to capture a good approximation of the opti-
mal decomposition, which would be obtained by directly computing all modes simultaneously (and not
progressively). In particular, at any mode m ∈ N∗ :

– space function ψm may be orthogonalized with respect to the existing space basis {ψi}m−1
i=1 in order to

decouple the possible dependencies between functions and thus improve the condition number of the
space problem (15) ;

– time functions λi and parameter functions γj,i associated with previously computed modes i 6 m− 1
may be updated before starting the power sub-iterations algorithm for computing mode m, in order to
satisfy a stronger Galerkin orthogonality condition leading to an order m decomposition um of better
quality ; conversely, space functions ψi are usually conserved as they generally require most of the
computational cost. This preliminary stage actually corresponds to a POD step. We thus compute
time functions λup

i and parameter functions γup
j,i , with 1 6 i 6 m− 1, such that :

B(

m−1∑
i=1

ψiλ
up
i

∏
j

γup
j,i ,

m−1∑
i=1

ψiv
∗
i ) = L(

m−1∑
i=1

ψiv
∗
i ), with v∗i = λ∗i

∏
j

γup
j,i +

np∑
j0=1

λup
i γ∗j0,i

∏
j 6=j0

γup
j,i ,

∀λ∗i ∈ T , ∀γ∗j0,i ∈ Pj0 , j0 = 1, . . . , np,

(16)

or, equivalently, for all i0 ∈ {1, . . . ,m− 1} :

B(

m−1∑
i=1

ψiλ
up
i

∏
j

γup
j,i , ψi0λ

∗
i0

∏
j

γup
j,i0

) = L(ψi0λ
∗
i0

∏
j

γup
j,i0

) ∀λ∗i0 ∈ T , (17a)

B(

m−1∑
i=1

ψiλ
up
i

∏
j

γup
j,i , ψi0λ

up
i0
γ∗j0,i0

∏
j 6=j0

γup
j,i0

) = L(ψi0λ
up
i0
γ∗j0,i0

∏
j 6=j0

γup
j,i0

) ∀γ∗j0,i0 ∈ Pj0 , j0 = 1, . . . , np.

(17b)
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The nonlinear problem (17) may also be solved using a fixed-point iteration method (with initializa-
tion (λi, γ1,i, . . . , γnp,i) and normalization of parameter functions γup

j,i ) ; it requires low-cost numerical
approximation methods as only (m− 1) ODEs in time need to be solved, leading to inexpensive com-
putations. Such improvements based on updating steps allow recovering good convergence properties
of approximate separated representations in many applications [40, 10].

3.2. Post-processing of the PGD approximation

Due to the fact that it uses the full weak formulation (4) of the problem, the progressive Galerkin-
based PGD technique presented in Section 3.1 (or any other variant of this PGD technique) provides an
approximate solution uh,∆t

m (and associated flux q(uh,∆t
m ) = k∇uh,∆t

m ) that satisfies the kinematic constraints
and initial conditions but fails to verify the equilibrium equations (1a) in any weak sense in space. In order to
overcome this drawback and be able to use error estimation tools defined in the next sections (inspired from
those used in the FEM context), we propose here a method to recover a FE-equilibrated PGD approximation
from uh,∆t

m and the prescribed data alone. In other words, we construct a flux q̂hm that satisfies equilibrium
in the FE sense with uh,∆t

m for all (t,p) ∈ I×P :∫
Ω

(
c
∂uh,∆t

m

∂t
vh + q̂hm ·∇vh + ruh,∆t

m vh
)

dΩ =

∫
Ω

fdv
hdΩ +

∫
∂qΩ

gdv
hdS ∀vh ∈ Vh. (18)

The idea is to exploit the following property satisfied by any computed order m0 PGD approximation uh,∆t
m0

(1 6 m0 6 m) when the fixed-point iteration method used to solve the nonlinear problem (12) is stopped
after solving the space problem (15) in the approximation space Vh :

B(uh,∆t
m0

, ψ∗λ∆t
m0

∏
j

γj,m0
) = L(ψ∗λ∆t

m0

∏
j

γj,m0
) ∀ψ∗ ∈ Vh. (19)

We assume that the functional L in the right-hand side of (19) can be put under the following separated
form in terms of space and time variables (known as radial approximation) :

L(v) =

∫
P

∫
I

(
S∑

s=1

αs(t)Ls(v)

)
dtdp, (20)

where αs(t) are time functions, and Ls(v) are time-independent linear forms involving space functions alone.
Note that this assumption is generally met in practical applications, since the loading (fd, gd) is usually given
in terms of some products of space and time functions. Then, solving, using a standard FEM, the S steady-
state (time-independent) space problems of the form :

find r̂hs ∈ Shsuchthat
∫

Ω

r̂hs ·∇vhdΩ = Ls(v
h) ∀vh ∈ Vh, s = 1, . . . , S (21)

where Sh is a subspace of L2(Ω), and defining the flux r̂h ∈ Sh ⊗ T as r̂h(x, t) =
∑S

s=1 αs(t)r̂
h
s (x), the

property (19) can be recast as :∫
Ω

(
m0∑
i=1

am0iψ
h
i ψ
∗ + b̂

h

m0
·∇ψ∗

)
dΩ = 0 ∀ψ∗ ∈ Vh, (22)

with

am0i =

∫
P

∫
I

λ∆t
m0

∏
j

γj,m0

(
cλ̇∆t

i + rλ∆t
i

)∏
j

γj,idtdp,

b̂
h

m0
=

∫
P

∫
I

λ∆t
m0

∏
j

γj,m0

(
k∇uh,∆t

m0
− r̂h

)
dtdp.
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Remark 1. A solution r̂hs to (21) can be computed using a primal approach, i.e. defining a primal field
wh over the FE approximation space Vh and taking the corresponding dual field r̂hs = ∇wh. This way,
solving (21) comes back to the solution of a classical static problem (with a constant elliptic operator) using
standard FEM.

Then, writing the property (22) for all m0 ∈ {1, . . . ,m} yields the following triangular system of equa-
tions : ∫

Ω

(
AmΨh

mψ
∗ + B̂h

m ·∇ψ∗
)

dΩ = 0 ∀ψ∗ ∈ Vh (23)

with (Am)ij = aij , Ψh
m = [ψh

1 , . . . , ψ
h
m]T and B̂h

m = [b̂
h

1 , . . . , b̂
h

m]T .
Assuming that material parameters c and r are homogeneous (uniform in space) over the domain Ω, the

matrix Am becomes constant and the system (23) can be easily inverted. It follows, introducing Φ̂
h

m =

[φ̂
h

1 , . . . , φ̂
h

m]T = A−1
m B̂h

m which is fully computable, that for all (t,p) ∈ I×P :∫
Ω

(
Ψh

mψ
∗ + Φ̂

h

m ·∇ψ∗
)

dΩ = 0 ∀ψ∗ ∈ Vh (24)

or, equivalently, for all i ∈ {1, . . . ,m},∫
Ω

(
ψh
i ψ
∗ + φ̂

h

i ·∇ψ∗
)

dΩ = 0 ∀ψ∗ ∈ Vh. (25)

Note that, incorporating the flux r̂h into the FE equilibrium equations (18), the researched FE-equilibrated
flux q̂hm should satisfy for all (t,p) ∈ I×P :∫

Ω

(
q̂hm − r̂h

)
·∇vhdΩ = −

∫
Ω

(
c
∂uh,∆t

m

∂t
vh + ruh,∆t

m vh
)

dΩ = −
m∑
i=1

(
cλ̇∆t

i + rλ∆t
i

)∏
j

γj,i

∫
Ω

ψh
i v

hdΩ ∀vh ∈ Vh.

(26)
Consequently, a flux q̂hm which verifies (18) (or (26)) can be defined as :

q̂hm(x, t,p) = r̂h(x, t) +

m∑
i=1

φ̂
h

i (x)
(
cλ̇∆t

i (t) + rλ∆t
i (t)

)∏
j

γj,i(pj). (27)

The FE-equilibration procedure used to recover the flux q̂hm can be easily extended to the case where the
external loading (fd, gd) depends on parameters p ∈ P . Indeed, in that case, assuming that the functional L

can be written as L(v) =
∫
P

∫
I

(∑S
s=1 αs(t,p)Ls(v)

)
dtdp, we simply need to define the flux r̂h ∈ Vh⊗T ⊗P

as r̂h(x, t,p) =
∑S

s=1 αs(t,p)r̂hs (x).
Besides, in the case where the geometry of the space domain Ω depends on parameters p ∈ P , different

strategies have been proposed in order to reformulate the weak problem (4) on a reference fixed (parameter-
independent) domain Ωref , by introducing a suitable (parameter-dependent) mapping to a fixed domain,
or by using a fictitious domain method. In [41], a specific geometrical transformation M(p) : Ωref → Ω(p)
maps a fixed domain Ωref into the geometrically parametrized domain Ω(p), and then allows defining the
weak problem (4) in a tensor product space and applying the PGD method developed in Section 3.1. In
[12, 13], fictitious domain approaches, which consist in embedding the parametrized domain Ω(p) into a fixed
domain Ωref , are combined with tensor-based methods such as the PGD method described in Section 3.1, in
order to reformulate the weak problem (4) on a fixed fictitious domain and then construct optimal separated
representations of the solution.

The proposed procedure can also be readily extended to the case where material parameters c(x,p)
and/or r(x,p) are heterogeneous (non-uniform in space) inside the domain Ω and can be expressed as
separated representations of the form

∑
j χj(x)δj(p). In that case, space functions χj should be associated

with space modes ψh
i in (22) before inverting the system.
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Remark 2. For steady-state diffusion problems, the system (23) simply reads :∫
Ω

B̂h
m ·∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh, (28)

so that fluxes b̂
h

i are self-equilibrated (in a FE sense). Consequently, a flux q̂hm verifying the FE equilibrium
(18) can be merely defined as :

q̂hm(x,p) = r̂h(x) +

m∑
i=1

b̂
h

i (x)
∏
j

ηj,i(pj), (29)

where parameter functions ηj,i may a priori be defined arbitrarily ; nevertheless, they could be adequa-
tely chosen and optimized by minimizing an appropriate quadratic functional related to the CRE measure
introduced in the next section.

An alternative approach allowing to construct a statically admissible flux q̂hm in the FE sense was
proposed in [29]. It relies on an additional PGD approach based on a nonclassical static (dual) formulation
of the problem (1). Consequently, it requires to perform another power iterations algorithm resulting in
more costly computations compared to the proposed approach.

4. Global error estimation and adaptive strategy

In this section, we wish to define tools in order to assess the error between the exact solution u and the
approximate solution uh,∆t

m computed by means of the PGD reduction method. On the one hand, a priori
error estimates defined in [42] can be used to assess convergence properties of the PGD approximation but do
not give quantitative and useful information for design purposes. On the other hand, classical and relatively
simple a posteriori error estimates using norms of the discretized residual may not be enough accurate and
enable to assess the PGD truncation error alone (without taking discretization error into account). In the
following, we define a robust error estimate based on the Constitutive Relation Error (CRE).

4.1. Basics on Constitutive Relation Error

The CRE concept, explained in full details in [28] and shared with various methods in the literature
(e.g. equilibrated residual method [43, 44], flux-free approach [45, 46, 47, 48]), is currently the only way
to get guaranteed and computable error bounds on the solution u. For the diffusion-reaction problem we
consider, it applies to an admissible triplet solution (û, q̂, ẑ) of the space weak formulation of (1), i.e. a
solution verifying the following initial conditions, boundary conditions, as well as equilibrium equations :

û = 0 on Ω×{0}×P, (30a)

û = 0 on ∂uΩ×I×P, (30b)∫
Ω

(
c
∂û

∂t
v + q̂ ·∇v + ẑv

)
dΩ =

∫
Ω

fdvdΩ +

∫
∂qΩ

gdvdS ∀v ∈ V, on I×P. (30c)

Only constitutive relations q = k∇u and z = ru associated to diffusion and reaction mechanisms, respec-
tively, are relaxed for an admissible triplet solution (û, q̂, ẑ) of (30). The associated CRE measure ECRE,
depending on p and computed from any admissible solution (û, q̂, ẑ), is then defined as :

E2
CRE =

∫
I

e2
CREdt, with e2

CRE =

∫
Ω

(
1

k
(q̂ − k∇û)2 +

1

r
(ẑ − rû)2

)
dΩ

= ‖q̂ − k∇û‖2k−1 + ‖ẑ − rû‖2r−1 ,

(31)

where ‖·‖k−1 and ‖·‖r−1 are energy norms (or equivalently weighted L2-norms) in the space domain Ω defined
by :

‖q‖2k−1 =

∫
Ω

1

k
q2dΩ and ‖z‖2r−1 =

∫
Ω

1

r
z2dΩ. (32)
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Similarly, we define the following energy norms ‖·‖k and ‖·‖r as :

‖u‖2k =

∫
Ω

k(∇u)2dΩ and ‖u‖2r =

∫
Ω

ru2dΩ. (33)

Noticing that

‖q̂ − k∇û‖2k−1 = ‖q − q̂‖2k−1 + ‖u− û‖2k − 2

∫
Ω

(q − q̂) ·∇(u− û)dΩ,

‖ẑ − rû‖2r−1 = ‖z − ẑ‖2r−1 + ‖u− û‖2r − 2

∫
Ω

(z − ẑ)(u− û)dΩ

and

∫
Ω

c
∂(u− û)2

∂t
dΩ = 2

∫
Ω

c
∂(u− û)

∂t
(u− û)dΩ

= −2

∫
Ω

(q − q̂) ·∇(u− û)dΩ− 2

∫
Ω

(z − ẑ)(u− û)dΩ,

(34)

we get an extension of the well-known Prager-Synge theorem [49] to parametrized evolution (time-dependent)
problems, linking the CRE measure ECRE to a global measure of the discretization error u − û over the
space-time domain Ω×I :

E2
CRE = 9q − q̂ 92

k−1 + 9 z − ẑ 92
r−1 + 9 u− û 92

k + 9 u− û 92
r +‖u− û‖2c

> 9u− û 92
k + 9 u− û 92

r +‖u− û‖2c =: 9u− û92,
(35)

where 9 ·92
� =

∫
I
‖·‖2�dt are energy norms in the space-time domain Ω×I, and ‖u− û‖2c =

∫
Ω
c(u− û)2

|t=T dΩ.

Similarly, an extension of the Prager-Synge equality (see [28]) can be derived from (35) by introducing fluxes

q̂∗ =
1

2
[q̂ + k∇û] and ẑ∗ =

1

2
[ẑ + rû] :

1

2
E2

CRE = 2 9 q − q̂∗ 92
k−1 +2 9 z − ẑ∗ 92

r−1 +‖u− û‖2c . (36)

Remark 3. For steady-state diffusion problems, the previous equalities simply read :

E2
CRE = ‖q − q̂‖2k−1 + ‖u− û‖2k = 4‖q − q̂∗‖2k−1 . (37)

Consequently, the CRE measure ECRE defines an upper bound (guaranteed estimate) of the global error
(measured in the energy norm) between the exact solution u and its approximation û.

4.2. Global error estimator on the PGD approximation

The technical point in the CRE framework is the computation of an admissible triplet denoted by
(ûm, q̂m, ẑm). Such an admissible solution can be defined from the data and the approximate solution
fields (uh,∆t

m , q̂hm) provided by the PGD method. On the one hand, uh,∆t
m satisfies initial and Dirichlet

boundary conditions, so that we usually choose ûm = uh,∆t
m . On the other hand, considering q̂hm which

verifies equilibrium with uh,∆t
m in the FE sense, and applying classical equilibration techniques used in the

FEM context (see [28, 50, 51] and the references therein for an overview of the topic), it is possible to
construct an admissible flux q̂m that satisfies full equilibrium with uh,∆t

m for all (t,p) ∈ I×P :∫
Ω

(
c
∂uh,∆t

m

∂t
v + q̂m ·∇v + ruh,∆t

m v

)
dΩ =

∫
Ω

fdvdΩ +

∫
∂qΩ

gdvdS ∀v ∈ V. (38)

The admissible flux q̂m then takes the following separated form :

q̂m(x, t,p) = r̂(x, t) +

m∑
i=1

φ̂i(x)
(
cλ̇∆t

i (t) + rλ∆t
i (t)

)∏
j

γj,i(pj), with r̂(x, t) =

S∑
s=1

αs(t)r̂s(x), (39)
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where r̂s (resp. φ̂i) is obtained from a post-processing of r̂hs (resp. φ̂
h

i ), and αs are the time functions
involved in the separated form (20) of functional L. Here, we use hybrid-flux (also referred to as Element
Equilibration Technique (EET) or Element Equilibration + Star-Patch Technique EESPT in [51]) strategies
which lean on an energy relation, called extension condition (or prolongation condition), that takes the
following form [28] : ∫

E

(
τ̂ − τ̂h

)
·∇ϕh

i dΩ = 0 ∀E ∈ Ωh, ∀i ∈ E, (40)

where E is an element of the space mesh Ωh, ϕh
i is the FE shape function associated to any node i connected

to element E, and τ is a flux of interest (rs or φj). τ̂
h (resp. τ̂ ) refers to a given (resp. researched)

approximation of τ satisfying FE (resp. full) equilibrium with uh,∆t
m in the sense of (18) (resp. (38)). This

condition, in addition to FE properties of τ̂h, enables to determine equilibrated fluxes on element edges
by solving well-posed local algebraic systems associated with each node of the space mesh Ωh. Eventually,
the equilibrated flux τ̂ is computed at the element level by solving Neumann problems that involve the
pre-computed fluxes over element boundaries. Further details on the practical construction of admissible
fluxes can be found in [51].

Consequently, according to (35), the CRE measure ECRE computed from the admissible triplet solution
(uh,∆t

m , q̂m, ẑm = ruh,∆t
m ) verifies for all p ∈ P :

E2
CRE = 9q̂m − k∇uh,∆t

m 92
k−1

> 9u− uh,∆t
m 92

k + 9 u− uh,∆t
m 92

r +‖u− uh,∆t
m ‖2c = 9u− uh,∆t

m 92
(41)

and therefore defines, for any p ∈ P, a guaranteed estimate (upper bound) of the global error (measured in
the energy norm) between the exact solution u and the approximate PGD solution uh,∆t

m of the problem.

4.3. Adaptive algorithm
The error estimate E2

CRE previously defined in (41) takes into account the various error sources inherent
to the PGD approach, i.e. including :

– the PGD truncation error (indicated by subscript m) due to the restriction of the PGD modal repre-
sentation to a limited (finite) number of modes m ;

– the discretization error (indicated by superscripts h and ∆t) due to the use of numerical methods
(FEM here) to compute PGD modes, this error source being itself split into space discretization and
time discretization errors.

The other possible error sources (algebraic error due to the use of iterative solvers, numerical integra-
tion error, roundoff error due to machine precision, . . .) are assumed to be negligible compared to both
discretization and PGD truncation errors.

In this section, we wish to assess the relative contribution of each error source to the error estimate E2
CRE

in order to efficiently drive an adaptive algorithm based on a greedy approach. For that purpose, we follow
a natural procedure which has been already employed in previous works dealing with error estimation and
adaptivity within the CRE framework [52, 53, 54]. The idea consists of introducing specific error indicators
based on the CRE concept applied to admissible fields in the sense of intermediate reference problems
(weaker sense compared to the initial reference problem (1)). In practice, we consider a new (intermediate)
reference problem defined as the discrete space-time weak formulation of the initial reference problem (1)
using the same discretization space Vh ⊗ T∆t as for the PGD approximation uh,∆t

m ; it reads for all p ∈ P :

find uh,∆t ∈ Vh ⊗ T∆t such that b(uh,∆t, v) = l(v) ∀v ∈ Vh ⊗ T∆t, (42)

with uh,∆t
|t=0 = 0. Using the following Galerkin orthogonality condition defined for all p ∈ P :

b(u− uh,∆t, v) =

∫
I

∫
Ω

(
c
∂(u− uh,∆t)

∂t
v + k∇(u− uh,∆t) ·∇v + r(u− uh,∆t)v

)
dΩdt = 0 ∀v ∈ Vh ⊗ T∆t,

(43)
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with v = uh,∆t − uh,∆t
m , we obtain :

9u− uh,∆t
m 92 = 9u− uh,∆t 92 + 9 uh,∆t − uh,∆t

m 92 +

∫
I

∫
Ω

c(u− uh,∆t)
∂(uh,∆t − uh,∆t

m )

∂t
dΩdt, (44)

where the norm 9 · 9 is defined in (35). The global error ∆2 = 9u− uh,∆t
m 92 can then be split into :

∆2 = ∆2
PGD + ∆2

dis, (45)

where ∆2
PGD = 9uh,∆t − uh,∆t

m 92 quantifies the error coming from the PGD truncation alone (∆PGD → 0
when m → +∞) whereas ∆2

dis = ∆2 − ∆2
PGD = 9u − uh,∆t

m 92 − 9 uh,∆t − uh,∆t
m 92 quantifies the error

coming from the space-time discretization alone (∆dis → 0 when h→ 0 and ∆t→ 0).

Both contributions ∆PGD and ∆dis can be assessed from the CRE property (35) and a direct post-
processing of available approximate fields uh,∆t

m , q̂hm and q̂m :

– we first compute the CRE measure Eh,∆t
CRE applied to a pair (uh,∆t

m , q̂h,∆t
m ) which is admissible in the

FE sense of the intermediate reference problem (42), i.e. satisfying the following equilibrium equations
for all p ∈ P :∫

I

(∫
Ω

(
c
∂uh,∆t

m

∂t
v + q̂h,∆t

m ·∇v + ruh,∆t
m v

)
dΩ−

∫
Ω

fdvdΩ−
∫
∂qΩ

gdvdS

)
dt = 0 ∀v ∈ Vh ⊗ T∆t.

(46)
Noticing that the flux q̂hm has been constructed in such a way that it verifies the FE equilibrium (18)
for all t ∈ I, and denoting by N = [N0(t), N1(t), . . . , NN (t)]T (N being the number of time steps :
T = N∆t) the vector of shape functions used for the FEM in the time domain I, the flux q̂h,∆t

m may
be recovered as a simple post-processing (linear interpolation) of q̂hm over I = [0 , T ] :

q̂h,∆t
m =

(∫
I

NTNdt

)−1

NTG, with G = [G0,G1, . . . ,GN ]T and Gj =

∫
I

q̂hmNjdt. (47)

We then define an indicator ηPGD of the PGD truncation error ∆PGD as :

∆2
PGD ≈ Eh,∆t

CRE

2
= 9q̂h,∆t

m − k∇uh,∆t
m 92

k−1 =: η2
PGD; (48)

– we eventually deduce an indicator ηdis of the discretization error ∆dis as :

∆2
dis ≈ E2

CRE − η2
PGD = 9q̂m − k∇uh,∆t

m 92
k−1 − 9 q̂h,∆t

m − k∇uh,∆t
m 92

k−1 =: η2
dis. (49)

Furthermore, we also propose consistent error indicators ηh and η∆t in order to quantify the error
contributions coming from space and time discretizations, respectively ; they read :

η2
h = 9q̂m − q̂hm 92

k−1 and η2
∆t = η2

dis − η2
h. (50)

It is then possible to identify whether the source of the discretization error is due to the spatial or the
time discretization.

Remark 4. In the case where an incremental numerical method (time integration scheme) is used to solve
evolution problems (13) and compute time functions λi (1 6 i 6 m), it is possible to define an equivalent
variational formulation by introducing some weight functions [55]. Then, one can use the simple recovering
technique described in (47) to build an admissible field q̂h,∆t

m in the sense of the incremental numerical
method.
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Previously defined error indicators can then be used as stopping criteria or adaptation indicators in a
greedy algorithm in order to adaptively construct a suitable PGD approximation uh,∆t

m and thus control
the computation process, searching for the highest error contributions (between PGD truncation and modes
discretizations) and minimizing them. In practice, after computing each mode i ∈ {1, . . . ,m}, the adaptive
strategy is conducted as follows :

1. we identify the parameter set pmax = arg maxp∈P ECRE(p) (worst case scenario) as well as associated
error indicators ;

2. we compare the relative contributions of ηPGD(pmax) and ηdis(pmax) to the error estimate ECRE(pmax) :

– if ηPGD(pmax) > ηdis(pmax), the mode (i+ 1) is computed keeping the same space-time discreti-
zation as for the mode i ;

– otherwise, i.e. if ηPGD(pmax) < ηdis(pmax), discretization parameters (h,∆t) are modified in order
to compute the mode i and next modes with better accuracy. For that, optimal mesh adaptation
techniques based on local contributions of ηh and η∆t, as well as on asymptotic convergence rates
predicted by a priori error estimates, are used to reach a given discretization error threshold [28].
In practice, this error threshold is chosen as αηPGD(pmax) with α ∈ ]0 , 1] a scalar parameter
to set. We emphasize that the (i − 1) modes previously computed with coarser meshes are kept
unchanged.

The adaptive procedure is performed until maxp∈P ECRE(p) 6 γtol for a given mode mtol, where γtol is a
predefined error tolerance.

The identification of the parameter set pmax (corresponding to the parameter values which maximize
the error estimate ECRE(p) over p ∈ P ) may be a computational issue for high-dimensional parametric
approximation space (i.e. for large dimensions np). For low-dimensional parametric approximation space,
the screening of the parameter domain P can be easily performed over a multidimensional numerical grid as
the number of dimensions np is limited. Conversely, for high-dimensional parametric approximation space,
it would require dedicated strategies and specific algorithms such as those used for solving optimization
problems in large dimension or in the empirical interpolation method (EIM) [56].

The adaptive process could be optimized comparing ηPGD(p) and ηdis(p) for each value p ∈ P , leading
to parametrized adaptivity and refined meshes. However, this strategy looks complex to implement and use
in practice.

Remark 5. After performing mesh adaptation, the intermediate reference problem (with discrete space-
time weak formulation) used to compute error indicators is changed. Consequently, for modes computed
before mesh adaptation, part of the discretization error (the one which can be captured with the new finer
mesh) is transferred into the indicator ηPGD of the PGD truncation error. This procedure is consistent with
the definition of discretization error (which should tend to zero when the mesh size used for the current
PGD mode goes to zero).

5. Extension to goal-oriented error estimation

Error measured in a global (energy) norm is clearly not the best criterion for control and adaptivity
when one is interested in specific outputs of interest of the problem. In this section, we define a goal-oriented
error estimation method, based on the classical extraction (adjoint-based) technique [57, 58, 59, 60, 61] and
the CRE concept, which is dedicated to the accurate and robust computation of outputs of interest from a
PGD approximation.

5.1. Adjoint problem and associated PGD approximation

We consider a functional output of interest Q, possibly depending explicitly on p, linear and continuous
with respect to u, which is defined globally (over the space-time domain Ω×I) by means of an extraction
pair (qΣ, fΣ) :

Q(u) =

∫
I

∫
Ω

(qΣ ·∇u+ fΣu) dΩdt. (51)
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Space-time functions qΣ and fΣ, referred to as extraction operators or extractors, may be defined explicitly
or implicitly (depending on the quantity of interest Q) possibly using Dirac distributions in the case of
pointwise outputs.

Remark 6. For nonlinear functionals Q with respect to u, a classical approach consists in using linearization
techniques and yields unguaranteed local error bounds [62, 63]. An alternative approach, valid only for non-
linear pointwise quantities in space, relies on projection procedures and allows to recover strict local error
bounds [64].

Then, following the optimal control approach [61] based on duality arguments, we now introduce the
space-time weak formulation of the adjoint problem, defined on the space-time domain Ω×I, associated with
functional Q ; it reads for all p ∈ P :

find ũ ∈ L2(I;V), with
∂ũ

∂t
∈ L2(I;V∗), such that b(v, ũ) = b∗(ũ, v) = Q(v) ∀v ∈ L2(I;V), (52)

with ũ|t=T = 0, where bilinear form b∗(·, ·) is the adjoint operator defined on L2(I;V) by [65] :

b∗(ũ, v) :=

∫
I

∫
Ω

(
−c∂ũ

∂t
v + k∇ũ ·∇v + rũv

)
dΩdt. (53)

The adjoint problem (52) is linear and reverse in time. Furthermore, performing the change of variable
t → T − t, this dual problem becomes a diffusion-reaction problem similar to the primal problem (2) but
with another loading composed of the extractors (qΣ, fΣ) defining the quantity of interest Q. In practice,
primal and dual (adjoint) problems may be solved in parallel for computational efficiency.

An approximate solution ũh
′,∆t′

m′ , with potentially order m′ 6= m and discretization parameters

(h′,∆t′) 6= (h,∆t), is first computed using the PGD method. An admissible triplet solution (ˆ̃u, ˆ̃q, ˆ̃z) =

(ũh
′,∆t′

m′ , ˆ̃qm′ , z̃
h′,∆t′

m′ = rũh
′,∆t′

m′ ) is then derived using the equilibration technique presented in Section 4. In
particular, this solution satisfies the following full equilibrium for all (t,p) ∈ I×P :∫

Ω

(
−c∂ũ

h′,∆t′

m′

∂t
v + ˆ̃qm′ ·∇v + z̃h

′,∆t′

m′ v

)
dΩ =

∫
Ω

(qΣ ·∇v + fΣv) dΩ ∀v ∈ V. (54)

Consequently, the CRE measure ẼCRE expressed as ẼCRE = 9ˆ̃qm′ − k∇ũh
′,∆t′

m′ 9k−1 defines, for any p ∈ P,
an upper bound (guaranteed estimate) of the global error (measured in the energy norm) between the exact

solution ũ and the approximate PGD solution ũh
′,∆t′

m′ of the adjoint problem (52).

Remark 7. A non-intrusive approach, henceforth known as handbook techniques, can be introduced for the
approximate solution of the adjoint problem (52) [66, 67, 64, 68]. Noticing that the adjoint loading (qΣ, fΣ)
usually applies on a local subdomain of Ω×I (provided the quantity of interest Q refers to local features in
space and time of the solution u), and therefore leads to an adjoint solution with localized high gradients in
the space-time domain, the idea is to introduce local enrichment functions in the vicinity of the space-time
region of interest where the quantity Q is defined. This enrichment is particularly well-suited to handle
pointwise quantities of interest and yields accurate local error bounds without requiring any regularization
(e.g. mollification [60]) of the functional being considered or any specific local remeshing technique.

5.2. Local error estimator on a functional output of interest

Using the linearity assumption for the functional Q, a representation of the local error ∆Q = Q(u) −
Q(uh,∆t

m ) between the exact value Q(u) and the approximate PGD value Q(uh,∆t
m ) of the output of interest

Q can be defined as a weighted residual from the adjoint solution ũ [60] ; it reads for all p ∈ P :

∆Q = Q(u− uh,∆t
m ) = b∗(ũ, u− uh,∆t

m ) = b(u− uh,∆t
m , ũ) = l(ũ)− b(uh,∆t

m , ũ) =: R(ũ), (55)
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where R(·) is the weak residual functional associated with the primal space-time weak formulation (2) of
the reference problem.

Remark 8. A simple PGD truncation error indicator based on (55) is defined in [25] ; it merely consists in

replacing the exact adjoint solution ũ with an accurate PGD approximation ũh
′,∆t′

m′ of order m′ > m, and
potentially with finer space-time discretization (h′,∆t′) 6 (h,∆t). Despite its computational efficiency, this
method does not provide robust and guaranteed bounds of the local error ∆Q on the functional Q as the

term R(ũ− ũh
′,∆t′

m′ ) is neglected. In the following, we use a technique which takes this term into account in
the error estimation procedure and thus leads to strict local error bounds.

Introducing the approximate PGD adjoint solution ũh
′,∆t′

m′ in (55), we get :

∆Q−R(ũh
′,∆t′

m′ ) = R(ũ− ũh
′,∆t′

m′ ) = b(u− uh,∆t
m , ũ− ũh

′,∆t′

m′ ) = b∗(ũ− ũh
′,∆t′

m′ , u− uh,∆t
m ), (56)

where R(ũh
′,∆t′

m′ ) is a computable correction term involving both approximate PGD solutions uh,∆t
m and

ũh
′,∆t′

m′ of primal and dual (adjoint) problems, respectively. Following an approach similar to the one in-

troduced in the FEM context in [33, 69, 34, 66, 70], we define an upper bound of |∆Q − R(ũh
′,∆t′

m′ )| using

properties of admissible solutions (uh,∆t
m , q̂m, z

h,∆t
m ) and (ũh

′,∆t′

m′ , ˆ̃qm′ , z̃
h′,∆t′

m′ ), as well as associated CRE

measures ECRE and ẼCRE.

Indeed, noticing that both admissible solution (ũh
′,∆t′

m′ , ˆ̃qm′ , ˆ̃z
h′,∆t′

m′ ) and exact solution (ũ, q̃ = k∇ũ, z̃ = rũ)
verify the full equilibrium (54), and that u− uh,∆t

m ∈ V, for all (t,p) ∈ I×P , we obtain :

b∗(ũ− ũh
′,∆t′

m′ , u− uh,∆t
m )

=

∫
I

∫
Ω

(
−c∂(ũ− ũh

′,∆t′

m′ )

∂t
(u− uh,∆t

m ) + k∇(ũ− ũh
′,∆t′

m′ ) ·∇(u− uh,∆t
m ) + r(ũ− ũh

′,∆t′

m′ )(u− uh,∆t
m )

)
dΩdt

=

∫
I

∫
Ω

(
(ˆ̃qm′ − k∇ũh

′,∆t′

m′ ) ·∇(u− uh,∆t
m ) + (ˆ̃zh

′,∆t′

m′ − rũh
′,∆t′

m′ )(u− uh,∆t
m )

)
dΩdt

=

∫
I

∫
Ω

(
1

k
(ˆ̃qm′ − k∇ũh

′,∆t′

m′ ) · (q − k∇uh,∆t
m ) +

1

r
(ˆ̃zh

′,∆t′

m′ − rũh
′,∆t′

m′ )(z − ruh,∆t
m )

)
dΩdt.

(57)
Consequently, a first bounding can be easily derived by applying the classical space-time Cauchy-Schwarz
inequality :

|∆Q−R(ũh
′,∆t′

m′ )| 6
√

9ˆ̃qm′ − k∇ũh
′,∆t′

m′ 92
k−1 + 9 ˆ̃zh

′,∆t′

m′ − rũh′,∆t′

m′ 92
r−1×

√
9u− uh,∆t

m 92
k + 9 u− uh,∆t

m 92
r

6 ẼCREECRE.
(58)

Observing that both admissible solution (uh,∆t
m , q̂m, ẑ

h,∆t
m ) and exact solution (u, q = k∇u, z = ru) satisfy

the full equilibrium (38), and that ũh
′,∆t′

m′ ∈ V, for all (t,p) ∈ I×P , the correction term R(ũh
′,∆t′

m′ ) can be

rewritten in terms of both approximate PGD solutions uh,∆t
m and ũh

′,∆t′

m′ as well as the admissible flux pair
(q̂m, ẑ

h,∆t
m ) only :

R(ũh
′,∆t′

m′ ) = b(u− uh,∆t
m , ũh

′,∆t′

m′ )

=

∫
I

∫
Ω

(
c
∂(u− uh,∆t

m )

∂t
ũh
′,∆t′

m′ + k∇(u− uh,∆t
m ) ·∇ũh

′,∆t′

m′ + r(u− uh,∆t
m )ũh

′,∆t′

m′

)
dΩdt

=

∫
I

∫
Ω

(
(q̂m − k∇uh,∆t

m ) ·∇ũh
′,∆t′

m′ + (ẑh,∆t
m − ruh,∆t

m )ũh
′,∆t′

m′

)
dΩdt.

(59)
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A more accurate bounding can also be deduced from (57) by introducing the pair (q̂∗m, ẑ
h,∆t∗
m ) =

1

2

[
(q̂m, ẑ

h,∆t
m ) + (k∇uh,∆t

m , ruh,∆t
m )

]
and using the extended Prager-Synge equality (36) ; it reads :

|∆Q−Qcorr| =
∣∣∣∣∫

I

∫
Ω

(
1

k
(ˆ̃qm′ − k∇ũh

′,∆t′

m′ ) · (q − q̂∗m) +
1

r
(ˆ̃zh

′,∆t′

m′ − rũh
′,∆t′

m′ )(z − ẑh,∆t∗
m )

)
dΩdt

∣∣∣∣
6
√

9ˆ̃qm′ − k∇ũh
′,∆t′

m′ 92
k−1 + 9 ˆ̃zh

′,∆t′

m′ − rũh′,∆t′

m′ 92
r−1×

√
9q − q̂∗m 92

k−1 + 9 z − ẑh,∆t∗
m 92

r−1

6
1

2
ẼCREECRE,

(60)
where Qcorr is a computable correction term defined as :

Qcorr = R(ũh
′,∆t′

m′ ) +

∫
I

∫
Ω

(
1

k
(ˆ̃qm′ − k∇ũh

′,∆t′

m′ ) · (q̂∗m − k∇uh,∆t
m ) +

1

r
(ˆ̃zh

′,∆t′

m′ − rũh
′,∆t′

m′ ).(ẑh,∆t∗
m − ruh,∆t

m )

)
dΩdt

=

∫
I

∫
Ω

(
1

k
(q̂m − k∇uh,∆t

m ) · ˆ̃q∗m′ +
1

r
(ẑh,∆t

m − ruh,∆t
m )ˆ̃zh

′,∆t′∗
m′

)
dΩdt.

(61)
Consequently, (60) provides guaranteed bounds ρ on the local error ∆Q (or directly on the exact output
Q(u)) for any value of parameters p ∈ P :

|∆Q| 6 |Qcorr ±
1

2
ẼCREECRE| =: ρ. (62)

It is worthwhile to point out the effects of the correcting term Qcorr : having at hand an accurate

approximate solution (ũh
′,∆t′

m′ , ˆ̃qm′ , ˆ̃z
h′,∆t′

m′ ) of the adjoint problem enables to compute very sharp bounds

on ∆Q (or on Q(u)) for any p ∈ P as ẼCRE tends to zero when (ũh
′,∆t′

m′ , ˆ̃qm′ , ˆ̃z
h′,∆t′

m′ ) converges toward the
exact adjoint solution (ũ, q̃, z̃) and Qcorr tends to an asymptotic value R(ũ) equal to the exact local error
∆Q. Indeed, we have Qcorr = R(ũ) = ∆Q when the dual (adjoint) problem is solved exactly. We also notice
that Qcorr = 0 = ∆Q when the primal problem is solved exactly.

Remark 9. Sharper bounds, based on alternative strategies to the classical space-time Cauchy-Schwarz
inequality (58) or (60), can still be obtained using tools introduced in previous works. In [71], a bounding
technique based on Saint-Venant’s principle and properties on homothetic domains was proposed to improve
bounding in the space domain Ω. In [69], weighted CRE functionals and Legendre-Fenchel inequality were
used to improve bounding in the time domain I. Nevertheless, these bounds will not be considered in the
following.

5.3. Adaptive algorithm

Here again, it is still possible to assess the relative contributions of error sources that contribute to the
total local error ∆Q on a given quantity of interest Q (i.e. PGD truncation error and discretization error).
Indeed, considering a linear functional Q and introducing the approximate FE value Q(uh,∆t) of the output
of interest Q obtained from the approximate FE solution uh,∆t of the discrete space-time weak formulation
(42) of the reference problem, the local error ∆Q = Q(u)−Q(uh,∆t

m ) can be split into :

∆Q = ∆QPGD + ∆Qdis, (63)

where ∆QPGD = Q(uh,∆t)−Q(uh,∆t
m ) is part of the local error due to truncation in the PGD decomposition

alone (∆QPGD → 0 when m→ +∞) whereas ∆Qdis = ∆Q−∆QPGD = Q(u)−Q(uh,∆t) is the one due to
space-time discretization alone (∆Qdis → 0 when h→ 0 and ∆t→ 0).

Both contributions ∆QPGD and ∆Qdis can be easily assessed from previously defined techniques :
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– using the method introduced in Section 4.3, we first construct an admissible pair (uh,∆t
m , q̂h,∆t

m ) (resp.

(ũh
′,∆t′

m′ , ˆ̃qh
′,∆t′

m′ )) in the discretized (FE) sense (42) and compute the associated CRE measure Eh,∆t
CRE

(resp. Ẽh,∆t
CRE) for the primal/reference (resp. dual/adjoint) problem. We then define an indicator ρPGD

of the PGD truncation error ∆QPGD as :

|∆QPGD| ≈ |Qh,∆t
corr ±

1

2
Ẽh,∆t

CREE
h,∆t
CRE | =: ρPGD, (64)

where the correcting term Qh,∆t
corr as well as the CRE measures Eh,∆t

CRE and Ẽh,∆t
CRE are computed from

(uh,∆t
m , q̂h,∆t

m ) and (ũh
′,∆t′

m′ , ˆ̃qh
′,∆t′

m′ ).

– we finally deduce an indicator ρdis of the discretization error ∆Qdis as :

|∆Qdis| ≈ ρ− ρPGD = |Qcorr ±
1

2
ẼCREECRE| − |Qh,∆t

corr ±
1

2
Ẽh,∆t

CREE
h,∆t
CRE | =: ρdis. (65)

These error indicators are then used to build up a greedy algorithm that aims at controlling the error on the
PGD approximation in a goal-oriented manner. The adaptive strategy is similar to the one developed for
the control of global error in Section 4.3, with a comparison between ρPGD and ρdis after computing each
mode i ∈ {1, . . . ,m}, and the use of the local contributions to the discretization error indicators ηdis and
η̃dis to drive space and time mesh adaptations.

6. Numerical results

We present in this section one-, two-, and three-dimensional numerical experiments which illustrate the
proposed error estimation method and adaptive strategy.

6.1. One-dimensional beam problem with time-dependent traction loading

We first consider a 1D transient diffusion problem on a beam structure (see Figure 1). The structure, of
length L = 1 m, is clamped at both ends x = 0 and x = L, and is subjected to an evolutive affine source term
f(x, t) = 1 + 2xt over the time period I = [0 , T ] with T = 1 s. The diffusion coefficient k ∈ Pk = ]0 , 100] is
considered as an extra-coordinate in the PGD representation um(x, t, k) of the solution.

k

f(x, t) = 1 + 2xt

x

Figure 1: 1D beam problem.

The initial discretization used to compute the PGD approximate solution uh,∆t
m is made of 20 2-nodes

bar elements (21 dofs) in space and 10 2-nodes bar elements in time (FEM in space and time). The first
three PGD modes are given in Figure 2, whereas a representation of the space-time PGD solution uh,∆t

m for
various numbers m of PGD modes and for k = 2.07 is given in Figure 3.

For fixed discretization parameters, Figure 4 shows the evolutions of the error estimate ECRE and asso-
ciated error indicators ηPGD, ηh and η∆t with respect to the number m of PGD modes and for the maximal
value obtained with k ∈ Pk. We observe that the PGD decomposition is converged at order m = 4, so that
the error estimate and associated error indicators (measured in energy norm) become very small and sensi-
tive to numerical noise. Such numerical effects could explain the slight increase of some error indicators after
mode m = 4. Conversely, Figure 5 shows the convergence of the error estimate and associated indicators
when performing the adaptive strategy. Discontinuities in the curves correspond to adaptations of the space
and time discretizations.
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Figure 2: Space functions ψm(x), time functions λm(t) and parameter functions γm(k) (from left to right) obtained for order
m = 1, 2, 3 (from top to bottom).
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Figure 3: Space-time mapping of the approximate PGD solution uh,∆t
m given for order m = 1, 2, 5 (from left to right).

6.2. Two-dimensional transient thermal problem

We consider a transient thermal problem on the structure represented in Figure 6, which contains two
symmetric rectangular holes in which a fluid circulates ; exploiting symmetries, we study only one quarter,
denoted Ω, of the whole 2D domain. It is clamped on the external boundary, and is subjected over the
time interval I = [0 , T ] (with T = 10 s) to a given unit flux gd = −1 applied on the hole boundary,
homogeneous Neumann boundary conditions gd = 0 on the symmetry planes, and a time-independent
source term fd(x, y) = 200xy in domain Ω.

Extra parameters in the PGD decomposition are related to diffusion coefficient k ∈ Pk = [1 , 10] and
thermal capacity c ∈ Pc = [1 , 10] (assumed to be uniform in space domain Ω), so that the PGD representation
of the solution reads um(x, t, k, c).

The initial mesh of the space domain Ω is made of Nh = 85 regular 4-nodes quadrangular elements of
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Figure 6: 2D thermal problem : space domain (left) and associated FE mesh (right).
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uniform size h = 0.1, and a forward Euler time scheme is used with N∆T = 1 000 time steps of uniform size
∆t = T/N∆T = 0.01 s. We give in Figure 7 the FE solution uh,∆t and associated flux qh,∆t for (k, c) = (1, 1)
and at final time t = T .

Figure 7: FE solution uh,∆t (left) and associated flux components qh,∆t
x (center) and qh,∆t

y (right).

We represent in Figure 8 the first five PGD modes obtained without any adaptive strategy.
We give in Figure 9 the convergence of the error estimate ECRE and associated error indicators ηPGD and

ηdis with respect to the number m of PGD modes, for m = 1, . . . , 10 and for the maximal values obtained
with pairs (k, c) ∈ Pk×Pc. We observe that the error indicator ηdis provides a relevant assessment of the
discretization error ∆dis, even for small values of order m. Furthermore, we can see that ηdis becomes larger
than ηPGD for m > 3 ; this is automatically taken into account in the adaptive process (see Figure 10)
in which the number m of computed modes is first increased up to m = 3, before refining time and space
discretizations in order to improve the quality of the approximate PGD solution. The refined meshes obtained
after performing mesh adaptation for m = 3 then m = 5 are also given in Figure 10. Nested FE meshes
based on quad-tree technique are used for practical reasons.

We now consider the control of the local error on a quantity of interest Q defined as the maximal value,
for any pair (k, c) ∈ Pk×Pc, of the average value of the temperature u over a local zone ω ⊂ Ω and at final
time t = T :

Q(u) = max
(k,c)∈Pk×Pc

1

|ω|

∫
ω

u|T dω,

where subdomain ω is shown in Figure 6, and |ω| represents its measure.
We give in Figure 11 the adjoint FE solution ũh,∆t and associated flux q̃h,∆t for (k, c) = (1, 1) and at

time t = T −∆t.
The evolutions of the normalized upper bound on ∆Q−Qcorr as well as specific normalized error indicators

of ∆QPGD−Qh,∆t
corr and ∆Qdis−Qcorr+Q

h,∆t
corr are given in Figure 12 with respect to the number m of computed

modes.
We give in Figure 13 the convergence of the normalized upper bound on ∆Q − Qcorr when performing

the adaptive strategy, as well as the refined mesh obtained to compute mode m = 6.
Eventually, considering Q(u) as a function of k and c, we give in Figure 14 the obtained mapping of

Q(uh,∆T
m ) +Qcorr and associated guaranteed error bounds over the range of variations of (k, c) ∈ Pk×Pc, for

m = 5.

6.3. Three-dimensional elasticity problem

We eventually consider an elastic cube, of size 1 m×1 m×1 m with three spherical inclusions for which
Young’s moduli Ei ∈ PE = [1 , 10] (1 6 i 6 3) are parameters, so that the order m PGD representation reads
um(x, E1, E2, E3). The three inclusions have the same radius r = 0.1 m, and their centers are respectively
located at points c1 = (0.2, 0.2, 0.2), c2 = (0.6, 0.3, 0.5) and c3 = (0.4, 0.7, 0.8) (see Figure 15). The cube is
clamped along the plane located at x = 0 and subjected to a unit traction force F d = +x applied on the
plane located at x = 1.

The initial FE mesh contains 17 731 4-nodes tetrahedral elements and 3 622 nodes (10 866 dofs). The
first five PGD modes of the PGD approximate solution uh

m(x, E1, E2, E3) are given in Figure 16 for space

21



1st
m

o
d

e
2

n
d

m
o
d

e
3

rd
m

o
d

e
4

th
m

o
d

e
5

th
m

o
d

e

Figure 8: Space functions ψm(x), time functions λm(t) and parameter functions γ1,m(k) and γ2,m(c) (from left to right)
obtained for order m = 1, . . . , 5 (from top to bottom).

functions ψm(x) and in Figure 17 for parameter functions γ1,m(E1), γ2,m(E2) and γ3,m(E3). Note that the
first and fifth space functions ψ1(x) and ψ5(x) are global modes, whereas the second, third and fourth space
functions ψ2(x), ψ3(x) and ψ4(x) are local modes mostly concentrated around the first, second and third
inclusions, respectively.

The evolutions of the error estimate ECRE and associated error indicators ηPGD and ηdis with respect to
the number m of PGD modes are shown in Figure 18, for m = 1, . . . , 6 and for the maximal values obtained
with triplets E1, E2, E3 ∈ PE . The error estimate converges quite fast toward the indicator associated to
the discretization error, while the one related to the PGD truncation error decreases toward zero.

Spatial distributions of local contributions to the error estimate E2
CRE and to the PGD truncation error

indicator η2
PGD are shown in Figure 19 for different PGD decompositions ranging from order 1 to 5. It should

be noted that the highest contributions of the error estimate are concentrated around the clamped boundary,
while the ones of the PGD truncation error indicator are mainly located around the three inclusions for the
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Figure 9: Evolutions of the error estimate E2
CRE and associated error indicators η2

PGD and η2
dis with respect to the number m

of PGD modes.
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Figure 10: Evolution of the global error estimate E2
CRE in the adaptive strategy with respect to the number m of PGD modes,

and associated refined meshes at order m = 3 and m = 5.

Figure 11: Adjoint FE solution ũh,∆t (left) and associated flux components q̃h,∆t
x (center) and q̃h,∆t

y (right).

orders m = 1, 4 and 5, the second and third inclusions for the order m = 2 and only the third inclusion
for the order m = 3. Note that the contributions to the PGD truncation error indicator become negligible
compared to the ones of the discretization error indicator for order m > 4.

The computation of space and parameter modes takes around 3 (resp. 4, 6, 8, 10 and 13) min for mode 1
(resp. 2, 3, 4, 5 and 6), whereas the computational cost incurred by the error estimation procedure is about
1 min.
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Figure 12: Evolutions of the error estimate and indicators with respect to the number m of PGD modes.
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Figure 13: Evolution of the normalized upper bound on ∆Q − Qcorr in the adaptive strategy with respect to the number m
of PGD modes, and associated refined mesh at order m = 6.

Figure 14: Evolutions of the predicted value of Q(uh,∆T
m ) + Qcorr and associated error bounds with respect to parameters k

and c.

7. Conclusions and prospects

We presented a strategy, based on the Constitutive Relation Error concept, that enables to obtain
strict and accurate error estimates and drive adaptive strategies when dealing with the verification of PGD
reduced-order models. It takes into account discretization and PGD truncation errors, and is applicable
for controlling global error or local error in quantities of interest. Therefore, virtual charts associated with
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Figure 15: 3D elasticity problem : space domain with three inclusions and associated FE mesh.
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Figure 16: Magnitude of space functions ψm(x) obtained for order m = 1, . . . , 5 (from top to bottom).

quantities of interest which may be computed from an approximate solution of PGD reduced-order models
can now fully benefit from robust verification tools to satisfy a prescribed accuracy.

Future works will deal with the derivation of PGD verification tools for evolution (time-dependent)
nonlinear problems in Computational Mechanics. The CRE approach (and associated admissible fields)
seems to be a promising way for that purpose, as it has a direct extension to such complex mechanical
problems using the concept of dissipation error (associated to the non-verification of the material evolution
law) [53, 33, 34]. This enables to define a residual with strong mechanical foundations.
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[51] F. Pled, L. Chamoin, P. Ladevèze, On the techniques for constructing admissible stress fields in model verification :
Performances on engineering examples, International Journal for Numerical Methods in Engineering 88 (5) (2011) 409–
441. doi :10.1002/nme.3180.
URL http://dx.doi.org/10.1002/nme.3180
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control, in : P. Ladevèze, J. Oden (Eds.), Advances in Adaptive Computational Methods in Mechanics, Vol. 47 of Studies
in Applied Mechanics, Elsevier, 1998, pp. 231–256. doi :10.1016/S0922-5382(98)80013-5.
URL http://dx.doi.org/10.1016/S0922-5382(98)80013-5

[54] J.-P. Pelle, D. Ryckelynck, An efficient adaptive strategy to master the global quality of viscoplastic analysis, Computer
& Structures 78 (1–3) (2000) 169–183. doi :10.1016/S0045-7949(00)00107-3.
URL http://dx.doi.org/10.1016/S0045-7949(00)00107-3

[55] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The Finite Element Method : Its Basis and Fundamentals, Butterworth-
Heinemann, 2005.

[56] M. Barrault, Y. Maday, N. C. Nguyen, A. T. Patera, An ‘empirical interpolation’ method : application to efficient
reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique 339 (9) (2004) 667–672.
doi :10.1016/j.crma.2004.08.006.
URL http://dx.doi.org/10.1016/j.crma.2004.08.006

[57] R. Becker, R. Rannacher, A feed-back approach to error control in finite element methods : Basic analysis and examples,
Journal of Numerical Mathematics 4 (1996) 237–264.
URL http://hal.inria.fr/inria-00343044/en/

[58] M. Paraschivoiu, J. Peraire, A. T. Patera, A posteriori finite element bounds for linear-functional outputs of ellip-
tic partial differential equations, Computer Methods in Applied Mechanics and Engineering 150 (1-4) (1997) 289–312.
doi :10.1016/S0045-7825(97)00086-8.
URL http://dx.doi.org/10.1016/S0045-7825(97)00086-8

[59] J. Peraire, A. T. Patera, Bounds for linear-functional outputs of coercive partial differential equations : Local indicators
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[66] L. Chamoin, P. Ladevèze, A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs
of interest in linear viscoelasticity problems, Computer Methods in Applied Mechanics and Engineering 197 (9-12) (2008)
994–1014. doi :10.1016/j.cma.2007.09.021.
URL http://dx.doi.org/10.1016/j.cma.2007.09.021
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[69] L. Chamoin, P. Ladevèze, Bounds on history-dependent or independent local quantities in viscoelasticity problems sol-
ved by approximate methods, International Journal for Numerical Methods in Engineering 71 (12) (2007) 1387–1411.
doi :10.1002/nme.1978.
URL http://dx.doi.org/10.1002/nme.1978
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