A supervised learning approach based on STDP and polychronization in spiking neuron networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

A supervised learning approach based on STDP and polychronization in spiking neuron networks

Résumé

We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algorithm, based on a margin criterion, that has effect on the synaptic delays linking the network to the output neurons, with classification as a goal task. The network processing and the resulting performance are completely explainable by the concept of polychronization, proposed by Izhikevich (2006). The model emphasizes the computational capabilities of this concept.
Fichier non déposé

Dates et versions

hal-01583544 , version 1 (07-09-2017)

Identifiants

  • HAL Id : hal-01583544 , version 1

Citer

Hélène Paugam-Moisy, Regis Martinez, Samy Bengio. A supervised learning approach based on STDP and polychronization in spiking neuron networks. 15th European Symposium on Artificial Neural Networks, ESANN'07, Apr 2007, Bruges, Belgium. pp.427-432. ⟨hal-01583544⟩
105 Consultations
0 Téléchargements

Partager

More