APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE SYSTEMS - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2019

APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE SYSTEMS

Résumé

Let $d\geq 2$ be an integer, $1\leq l\leq d-1$ and $\varphi$ be a differential $l$-form on $\R^d$ with $\dot{W}^{1,d}$ coefficients. It was proved by Bourgain and Brezis that there exists a differential $l$-form $\psi$ on $\R^d$ with coefficients in $L^{\infty}\cap \dot{W}^{1,d}$ such that $d\varphi=d\psi$. Bourgain and Brezis also asked whether this result can be extended to differential forms with coefficients in the fractional Sobolev space $\dot{W}^{s,p}$ with $sp=d$. We give a positive answer to this question, in the more general context of Triebel-Lizorkin spaces, provided that $d-\D\leq l\leq d-1$, where $\D$ is the largest positive integer such that $\D<\min(p,d)$. The proof relies on an approximation result for functions in $\dot{W}^{s,p}$ by functions in $\dot{W}^{s,p}\cap L^{\infty}$, even though $\dot{W}^{s,p}$ does not embed into $L^{\infty}$ in this critical case.
Fichier principal
Vignette du fichier
Hodge-system-fractional.pdf (524.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01581993 , version 1 (05-09-2017)

Identifiants

Citer

Pierre Bousquet, Emmanuel Russ, Yi Wang, Po-Lam Yung. APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE SYSTEMS. Journal of Functional Analysis, 2019, 276 (5), pp.1430-1478. ⟨10.1016/j.jfa.2018.08.003⟩. ⟨hal-01581993⟩
238 Consultations
377 Téléchargements

Altmetric

Partager

More