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APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE

SYSTEMS

PIERRE BOUSQUET, EMMANUEL RUSS, YI WANG, PO-LAM YUNG

ABSTRACT. Let d > 2 be an integer, 1 <1< d —1 and ¢ be a differential I-form on R¢ with Wt
coefficients. It was proved by Bourgain and Brezis (|5, Theorem 5]) that there exists a differential
I-form v on R? with coefficients in L N W such that dy = dip. Bourgain and Brezis also asked
whether this result can be extended to differential forms with coefficients in the fractional Sobolev
space W*?P with sp = d. We give a positive answer to this question, in the more general context of
Triebel-Lizorkin spaces, provided that d —k <1 < d — 1, where & is the largest positive integer such
that & < min(p,d). The proof relies on an approximation result for functions in W*? by functions
in WP N L, even though W*? does not embed into L* in this critical case.
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1. INTRODUCTION

For k € Nand 1 < p < oo, let Wk (]Rd) be the homogeneous Sobolev space on R?, that is the
completion of C>°(R%) under the norm |0 f|| Lr(rd)- 1t is well-known that while Wk»(R%) embeds
continuously into L*P/(4=kP)(R?) when kp < d, the embedding fails when kp = d. In a ground-
breaking paper [5] (see also [4]), Bourgain and Brezis found a remedy for this failure when k = 1
and p = d. They showed that for any f € WH4(R?) and any & > 0, there exists F' € Wh4 0 L>®(RY)
and a constant Cs > 0 independent of f, such that

d—1
(1.1) S N0i(f = F)lipa < 6l flyiras
i=1
and
(1.2) [Fl[Lee + [1Fllyira < Csll fllyir.a-

The failure of the embedding of W14(R%) into L>(R?) makes this result rather non-trivial. They
also derived many important consequences of this approximation theorem. Among them, they
proved that if [ € [1,d — 1] and ¢ is a differential I-form on R? with W' coefficients, then there
exists a differential I-form ) on R% with W14 N L™ coefficients such that

dy = dep.
In this paper, we give an extension of these results to a range of critical Triebel-Lizorkin spaces
F;‘ P(R?) that barely fail to embed into L>. In particular, our results cover the higher order Sobolev
spaces WH/k(RY) where k is an integer with 1 < k < d, and the Sobolev spaces W®4/*(R%) of
fractional order « € (0, 1), giving an answer to the Open Problem 2 in [5].
Our main result can be stated as follows:

Theorem 1.1. Let o > 0 and p,q € (1,00) such that ap = d. Let k be the largest positive integer
that satisfies k < min{p,d}. Then, for every § > 0, there exists a constant Cs > 0 such that, for
every f € Fy"P(RY), there exist F € Fy'P N L= (RY) such that

K
Y N0i(f = F)llga-1o < 6l1f | gor,
i=1
and
Il + 1Fll oo < Coll Il por-

From Theorem we derive:

Theorem 1.2. Let « > 0, p,q € (1,00) such that ap = d and | € [d — k,d — 1], where k
is the largest positive integer such that k < min(p,d). Let ¢ € F;"p(Ale). There exists 1 €
EOP(ARY) N L®(A'RY) such that

dip = dp
and

19l oo aimay + 191l o (prmay S 14l po-tp nigay -

By an P(A'R?), we mean the space of differential I-forms on R?, the coefficients of which belong
to Fy'P(R?) (see Definition [2.1 below). The above statement extends the main result in [6] which
was restricted to the conditions kK = 1 (which amounts to solving the equation div X = f with
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feEMP), a>1/2and p > q > 2; see also the earlier papers by Maz’ya [I6] and also Mironescu
[18] when x =1, and p = ¢ = 2.

If we do not require the solution % in Theorem to be in F;‘ P then the theorem can be
deduced from Proposition 2.1 of Van Schaftingen [30], which has a very elegant and simple proof.
This elementary approach introduced in [27, 26] has been exploited in various settings, see in
particular Lanzani and Stein [I5] and Mitrea and Mitrea [19]. Up to our knowledge however, even
in the framework of Sobolev spaces W1¢, there is no simple argument to prove the existence of a
solution 9 which is both in L% and in W<, In the case of the equation divX = f with f € L,
an algorithmic construction of a solution X € L was proposed in [24].

Many extensions, applications and recent developments of the original results established by
Bourgain and Brezis in [5], 4] are presented in the excellent overview by Van Schaftingen [32]. We
only quote some of them here:

(1) more general (higher order) operators than the exterior derivative have been studied in Van
Schaftingen [28] 29, [31],

(2) similar problems have been considered when the space R? is replaced by more general
domains: half-spaces in Amrouche and Nguyen [I], smooth domains with specific boundary
conditions in Brezis and Van Schaftingen [§], homogeneous groups in Chanillo and Van
Schaftingen [9], Wang and Yung [33], symmetric spaces in Chanillo, Van Schaftingen and
Yung [12), 11], and C'R manifolds in Yung [34].

(3) related Hardy inequalities were established by Maz'ya [17] (see also [7]),

(4) further applications of this theory can be found in Chanillo and Yung [I3] and in Chanillo,
Van Schaftingen and Yung [10].

Let us first briefly recall the strategy of Bourgain and Brezis in their proof of the approximation
theorem of W1H4(R%) (that is, and above), before we turn to the difficulties we must face
in proving Theorem First they observe that for f € led(Rd), the Littlewood-Paley projections
A; f are uniformly bounded in R? for all j, by Bernstein’s inequality:

1A fll oo (may < CIV fllLa(may-

By normalizing f, one may thus assume that [|A;f| egey < 1 for all j € Z. As a result, to
approximate f =3 ., A;f =3 ",7 A;f -1 by a bounded function F, one is tempted to set

Fz) =Y Ajf() [~ a5 f@)),
J€L i'>j

which would be automatically bounded by a partition of unity identity (see Lemma below). Of
course this cannot work, for this construction does not distinguish between the “good” directions
O1,...,04—1 from the “bad” direction dy (whereas distinguishes those). Thus Bourgain and
Brezis introduce an auxiliary function w;(z), which controls A f(z) in the sense that

1A f] < wj < 1A fl poo ey,
while satisfying good derivative bounds such as
|Ow;| < C277%w; fori=1,...,d—1, and [Qqw;| < C2w;;

here o > 0 is a large parameter only depending on §. These w;’s are constructed in [5] by using a sup-
convolution (where one takes a supremum instead of an integral in the definition of a convolution),
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namely:

wj(z) = sup ’Ajf(y)|672j|xd*yd‘*2j7°|x’fy"’
yER?

where ' — ¢ = (x1 — Y1, ..., T4—1 — Yg—1). With this in hand, one may be tempted to define the
approximating function F' by setting

F(z) =Y Ajf() [T —wj()),
JEL 3>
which again would be automatically bounded by a partition of unity identity, and which has a

better chance of obeying estimate (|1.1). It turns out that this is still not sufficient; indeed, if F’
were such defined, then
f=F =Y wu
J

for some functions y; given by
pi@) =Y Apf(x) J[ (1 —wp().
7'<j J<j"<y

These ji;’s are pointwisely bounded by 1 under our normalization of f. Thus to give an upper
bound for ||0;(f — F)||;a, one term to be controlled is the L%-norm of > 1jOiw;. But

(1.3) M lowillngl| <D 2wl
J Ld J rd
it is therefore hopeless to conclude this way, since the right-hand side of (1.3) is even bigger than

127125 1l o
while one can only afford a bound by || HQjAijZQ HLd ~ ||V f||La. Bourgain and Brezis have a clever

way out: if instead of HZJ 2jij , we only needed to estimate
L

Z Ywjxa,
J Ld

where A; is the set defined by A; := {z € R%: w;(x) > 3,002 'w;j—¢(x)} and x4, is the char-
acteristic function of the set A;, then we would be in good shape because we have a pointwise
bound

(1.4) ZQjoXA]- < QSuijwj,
j J
and the crucial estimate:
. o(d—1)
(1.5) sup(2/w;) <C2 v |Vlzewe
JEZ Lp(RY)

for any 1 < p < co. Thus they decompose
Ajf(z) = Ajf(@)xac(x) + A f(@)xa, (@) = gj(@) + hj(z)
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sothat f =)".c79j+> ez hj.- They then proceed to approximate g := .7 gj and h:= 3.7 h;

by
g_Zg]H (1-Gjy) and ﬁ::Zth(l—Uj/)

JEZ  §'>j JEZ  §'>]

respectively, where GG; and U; are some suitable controlling functions that satisfy pointwisely g; <
Gj <1and hj < U; <1 (so that g and h are automatically bounded), whereas G; and U; are
constructed from the w;’s, so that the L%norms of 9;(g — §) and 0;(h — il) satisfy good estimates
for i =1,...,d — 1. Indeed, in [B], h — h is written as a sum of products, which in turn allows
a direct estimate of 0;(h — fL) by the Leibniz rule; the heuristics centered around equations ([1.4)
and suggest that ||9;(h — h)||« may be small. On the other hand, ;(g — §) is estimated
using Littlewood-Paley inequalities, since it is a sum of pieces that are well-localized in frequency:
indeed, note that

(1.6) 185 £ (@) xas(@) < 3027wyl

t>0

and while a derivative on the left hand side of heuristically gains only 27, a derivative on each
term on the right hand side of gains 2/t which is better when ¢ is large. It is this interplay
that allows them to conclude with the estimate for 9;(g — g), and hence the proof of their theorem.

Now that we have recalled this basic strategy, we can address the difficulties we faced in extending
the result of Bourgain and Brezis for W4(R%), to the full Theorem . for F{"P(RY). The first
difficulty arises when o > 1: if we define the controlling functions w; as in [5 ] by using a sup-
convolution, then the w; are at best Lipschitz, and in general may not be differentiated more than
once. But an approximation theorem for F;‘ P(R?) naturally involves taking a derivatives, so a
sup-convolution construction for the w;’s cannot be expected to work when o > 1. Following [33],
where Bourgain and Brezis’ result was extended to subelliptic settings, we overcome this by taking
a discrete P convolution instead; morally speaking, this means that we take

1/p
TP/ i—o |\ P
(1.7) wile) = | S (18 fl(r)e R
re2-izd
(here v’ and 7" are the first x and the last d — k variables of r respectively, where « is defined as in
Theorem similarly for 2/ and z””). For some technical reasons, this is not the precise definition

of wj we will use; see (3.3)) in Section |3| below for the precise construction of w;. Once the correct
definition of wj; is in place, roughly speaking we would consider the sets

= {z e R w;(x) > ) 27w (x)}
t>0

(note the dependence of this set on «), and split
Ajf(x) = Ajf(x)xas (@) + A f(z)xa,; (@) = gj(x) + hj(z)

as above (actually we would use a smooth version of y 4; instead of the sharp cut-off given by
the characteristic function of A;). We would then proceed as in [5] to approximate ., h; and
> jez 9, except that several further difficulties must be overcome.

One of them is the proof of the analog of in the case ¢ > p. This arises, for instance, when we
prove an approximation theorem for W*4/k(R%) with d/2 < k < d (in which case ¢ = 2 > d/k = p).
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In general, to prove Theorem |1.1|for Fi"P(R%), we would like to prove an inequality of the form

(1.8) sup(20‘jwj)

5 2% f nen .
ez H HFq P(R4)

Lr(R4)

If w; was defined as in the putative definition (1.7, then morally speaking, the above inequality
would admit an easy proof when ¢ < p: indeed, heuristically we have

1/p
wj) = | 32 (18716 - 2—jr)e—lr”l—2*°\r'|>f’
rezd
SO
p
sup(2ajwj) = / Sup(Qajwj(m))pd:(;
JeL Lr(R4) R4 jEZ
: Z/ (2%w;(x))Pdx
jez /R?
= Z Z (e_|r//|—20r’)p(20‘j)p/ A f(x — 2_j7')|pdl‘.
JEL rezd Rd

The last integral is equal to [pq |A; f|(z)Pdz, and 3, cza(e™ " 172771 P < 295 Thus

p
sup(2)| 52 [ (2091 f(@))Pd
JeL Lp(RY) R ez
p/q
so [ [ Sevias@]

JEZ

where in the last line we have used the embedding ¢¢ < (P if ¢ < p. This would prove (|1.8))
when ¢ < p, under the putative definition of wj. Unfortunately this simple argument is
insufficient in handling the case when g > p. We found a way out using a logarithmic bound for
some vector-valued ‘shifted” maximal functions (see Corollary , which we prove using an old
argument going back to Zé ([35]). We then get a slightly weaker bound than , one that is off
by a logarithmic factor (see Proposition , but that is still sufficient for our purpose.

A second difficulty arises when « is not an integer or when ¢ # 2. Recall that in one step,
Bourgain and Brezis estimated 9;(h — h) in L%(R%) by writing it as a sum of products, and then
using the ordinary Leibniz rule. In our case, we need to estimate 9;(h — h) in F2~"P(R?), which
is defined only via Littlewood-Paley projections when « is not an integer, or when ¢ # 2. Thus we
must know how to estimate the derivative of a sum of products within the realm of Littlewood-
Paley theory. If it were not for the sum involved, we could just apply the fractional Leibniz rule
for the space F;‘ —Lp (]Rd). But since the sum is present, we found it easier to proceed directly,
without resorting to the fractional Leibniz rule. It may also be worth noting here that we run
into an additional difficulty, in the case 0 < a < 1: we find it necessary then to exploit some
additional cancellations offered by the Littlewood-Paley projections A;’s, when we deal with certain
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high frequency components of h — h (see the introduction of the parameter T' in Section [5| when
0<a<l).
A final difficulty arises when o € (0,1/2]. In this case, « is rather small, so the set A;, given

by AS = {z € R%: wj(z) < 31002 “wj—¢(x)}, is relatively large. As a result, g; := A;f - Xac is
relatively large, and one expects it to be relatively harder to estimate 9;(g — g) in Fy' —Lp (RY). This
is manifested in our need to introduce a parameter a, in Section [f] (see Proposition [6.1)), which is

smaller than 1 when « € (0,1/2].
Let us end up this introduction with three open problems:

Open problem 1.3. The condition k < min(p,d) in the statements of Theorems and
may not be necessary in general. In [IT], Maz’ya proves that for every wvector function X €
Fg/z’z(Rd;Rd), there exists Y € (F2d/2’2 N L®)(R%RY) and a scalar function u € F21+d/2’2(Rd)
such that

X =Y+ Vu.

This coincides with the statement of Theorem when p = ¢ =2, « = d/2 and |l = 1, except
that this set of parameters is not covered by our assumptions when d > 3. Indeed, the condition
l € [d— k,d— 1] cannot be satisfied in that case: this would require k = d — 1, which is impossible
in view of the conditions k < p =2 and d > 3. Is it true that Theorems and remain true
when the condition k < min{p,d} is replaced by Kk < d ¢

Open problem 1.4. In [33], the conclusion of [5] is extended to a subelliptic context, namely the
case of the Heisenberg groups endowed with a subelliptic Laplacian. The extension of Theorems
and [1.2] to the case of the Heisenberg group is an open problem.

Open problem 1.5. It is likely that Theorem can be extended to the case of smooth bounded
domains in R?, in the spirit of [6].

The paper is organized as follows. After gathering instrumental facts about Triebel-Lizorkin spaces
and maximal functions in Section [2 we describe the approximating function F' in Theorem in
Section |3 Section [4|is devoted to proving key estimates for the w;’s, which are then used to derive
bounds for h—h (resp. g—g) in Section (resp. Section @) The proof of Theorem is completed
in Section [7, while Theorem [I.2]is established in Section

Throughout the paper, if two quantities A(f) and B(f) depend on a function f ranging over
some space L, the notation A(f) < B(f) means that there exists C' > 0 such that A(f) < CB(f)
for all f € L, while A(f) ~ B(f) means that A(f) < B(f) < A(f). The Euclidean ball centered at
0 with radius r will be denoted B,.
Acknowledgment. Wang was partially supported by NSF Grant No. DMS-1612015. Yung was
partially supported by the Early Career Grant CUHK24300915 from the Hong Kong Research
Grant Council.

2. PRELIMINARIES

For a brief overview on homogeneous Triebel-Lizorkin spaces, we refer to [25, Chapter 5], [3] and
also [2I, Chapter 2].
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2.1. The Triebel-Lizorkin spaces. We fix a function A € S(R?) such thatE|

(2.1) A 0B\ By),
and
(2.2) Y A@x)=1, vreR\{0}.
JEZ
Notice that assumption (2.1)) yields that, for every polynomial P,
(2.3) / P(2)A(z) dz = 0.
Rd
For all j € Z and all x € RY, define Aj(z) := 2/9A(27x).
Let

ZRY) = {f € SR : 07£(0) =0, ¥y € N}
The dual space Z’(R?) of this closed subspace of S(R?) can be identified as the set { f|z, f € S’'(RY)},
or equivalently as the factor space S'(R%)/P(R), where P(R?) is the collection of all polynomials
on R%.
For all f € Z'(R9), let A, f := f*Aj; this is well-defined for f € Z'(R%) = S'(R?)/P(R?) since the
Fourier transform of a polynomial is supported in {0}. Moreover, it is a straightforward consequence
of the Paley-Wiener theorem that A;f belongs to LP(R?) for all p € [1,00].

Definition 2.1. Let o € R and p,q € (1,00). Let f € Z'(R%). Say that f € Fy"P(R%) (or F5P) if
and only if

11l oo gy = 112%7 2 flea(zy | oy < oo
In view of (2.1) and ([2.2)), we have
(2.4) VEEZNFEZ,  Af=D MAf= > AAF
jez i—k|<1

This implies
Proposition 2.2. Let o > 0 and 1 < p,q < oo. Then for all f € F{P(R?),
oo
(2.5) f=> Ajf
j=—00
where the series converges in Fy'P.
Another useful property is given by the following proposition:

Proposition 2.3. [3, Proposition 5] For every a,p,q € R, for every f € 2'(R9),

d
[f1] pr > Z 10i f Il o1

=1

Remark 2.4. We only need to prove Theorem under the additional assumption that f € qu P
has only finitely many A; f different from 0.

IThe function A can be obtained as follows. Let p € C° (B \B%) such that p =1 on Cg° (B% \B%) and0<p<1
on R%. Then 1 < djez p(27z) <2 on R?\ {0}. We then define A(z) = <22 on R?\ {0} and A(0) = 0.

Zjez p(29z)
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Indeed, assume that the theorem is true for such distributions f. Then for an arbitrary f € Fi'P
we consider for every J € N the distribution

J
fr= Y Af
j==J

For every § > 0, we thus get a function Fy € F PN L which satisfies

(2.6) zjll8 = FD)ll o1 <0l Sl prors
and
(2.7) IFsllz + 1 Ell e < Cill ol

Proposition implies that the sequence (fj)jen strongly converges to f in an P Hence, the
sequence (Fj)jen is bounded in F;‘ PN L>®. We can extract a subsequence (still denoted by
F;) which converges to some F' weakly* in L, and thus also in Z’. By the Fatou property [3|
Proposition 7], F € L™ N F;"P and remains true with ' and f instead of F; and f;. Since
0;(f7 — Fy) also converges weakly* in Z’, the Fatou property again implies that remains true
for f and F.

We assume henceforth in all the sequel of the paper that f is such that only finitely many A;f
are different from 0.

2.2. Inequalities involving the Hardy-Littlewood maximal function. For all functions g €
L} (R?) and all x € R?, define the Hardy—Littlewood functional by

loc
My(x) := sup — / l9(y)l dy,
B>z ‘B ‘
where the supremum is taken over all Euclidean balls of R? containing x. Let us summarize the
properties of M which will be used in the sequel:
Proposition 2.5. The Hardy-Littlewood functional satisfies the following properties:
(1) M is of weak type (1,1) and LP-bounded for all p € (1, 00], E|

(2) one also has the vector-valued version of the previous assertion: for all p,q € (1,00), for
all (g5)jez € LP(R;04(Z)),

(2.8) IMgjlleaciyllize < I gilleaciylle,

(3) for allp € [1,00], all functions g € LP(R?), all decreasing functions ¢ : [0,00) — [0, 00) such
that A == [pa@(|lyl)dy < ooﬂ and all measurable functions ¢ such that |o(y)| < ¢ (||y])
for all y € R?, the convolution g * ¢ is defined almost everywhere and one has

(2.9) g * ¢(x)| S AMg().
Proof. See (|23 Chapter 1, Theorem 1], [23, Chapter 2, Theorem 1]) and [22, Chapter 3, Theorem
2(a)]) respectively. O

2 Note that M is a sublinear operator. That M is LP-bounded (resp. is of weak type (1,1)) means that
[Mgll, < llgll, (resp. that, for all A >0, [{Mg > A} < 5 llgll,)-

3Helre and after || - || stands for the Euclidean norm.
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Remark 2.6. Note that (2.9) applies in particular when ¢ € S(R?), since every Schwartz function
on R? can be dominated by a radially decreasing integrable function.

Proposition 2.7. For all v € N¢, j € Z and x € RY,

(2.10) 07A; f ()| S 27V MAf (x).

Moreover, for all a >0 and 1 < p,q < oo such that ap = d,

(2.11) 078 f ()] S 27V || £l e

The implicit constants in both inequalities do not depend on x, 7y, j nor on f.

As a particular case of (2.11]) where we take v = 0, we obtain the following Bernstein inequality
when ap = d:

(2.12) 18 f e S 11 [l jzger-
The implicit constant in only depends on « and p (but neither on j nor on f).
Proof of Proposition [2.7. In view of , we have
@) s Y 2@ ARA L2V Y (@A),
j—kl<1 j—kI<1

where (97A)x(x) = 28 (97A)(2Fx). Taking (2.9) into account and applying Remark to ¢ =
(07A)g, this yields

074 f ()] S 2T MA; £ ().
This proves the first assertion. It follows therefrom that

(2.13) 072 f ()] S 27V 1A £l oo -

Using (2.4) again, we have

1Al < D 1ARAG o
li—kI<1

Holder’s inequality then implies

1A fl e < D 1Al 128551 1o
|k—<1

Using a change of variables and the expression of Ag, we thus get
id .
(2.14) 18 fll e S 27 185l e = 2 118G fll o < [1f [l eer s
where we have used that ap = d and the definition of an P Inequality ([2.11)) is now a consequence

of [13) and ([2-14).
O
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3. THE APPROXIMATIONS OF f

The present section is devoted to the definition of the function F' in Theorem Let o > 0
and p > 1 such that ap = d. Let f € an’p(Rd), 6 > 0 and o be a large positive integer to be chosen
(only depending on ¢). For x = (x1,...,z4), we define z, := (27%21,...,27 %24, Txt1,...,24). The
parameter o discriminates the good directions x1,...,z, from the other ones. In particular, when
one differentiates a function of the form x — wu(z,) along a good direction, an additional factor
277 arises.

Let E be the Schwartz function defined by

(3.1) B(z) = e (Hlael®)?.
For all j € Z and all x € RY, let Ej(z) := 2/9E (27 x).

Define also

(3:2) T(z) :=min (1, 2] V)
and

Tj(z) == 2797 (27 )

for all j € Z and all x € R%.
We introduce an auxiliary function which can be seen as a substitute of |A;f|, j € Z:

(3.3) wi(@) = | Y [T1A Q7 E@z-r)]"] | zeR%
rezd

Here and in the sequel, we use the notation Tj|A; f| for the convolution T} * |A; f|. We will prove
that w; inherits the L> bounds of |A; f|. More precisely,

1A fllLe S lwjllne S 25| Ay fll oo

In contrast to |A; f|, w; is smooth, as a discrete £ convolution. Moreover, it behaves differently with
respect to good and bad coordinates. This allows to obtain improved estimates on its derivatives
along good directions.

Remark 3.1. Notice that, if, for some z € R? and some j € Z, w;(z) = 0, then the definition of
wj yields that T |A; f| (277r) = 0 for all 7 € Z. Since T} is positive everywhere, it follows that A; f
has to vanish on all RY, which entails that w;(y) = 0 for all y € R%.

Let R >> o be another positive integer to be chosen. Let us consider a smooth function (;
approximating the characteristic function of the set

z € RY 2%u;(z) < 29K ()

N

k<j,k=j(mod R)

More specifically, notice first that, if the function ), <jk=j(mod R) 20k, vanishes at some point

r € R? then it identically vanishes (see Remark 3.1). In order to define (¢j, we thus fix a smooth
function ¢ : [0,00) — [0,1] such that ( = 1 on [0, 5] and ¢ = 0 on [1,00) and we define, for all
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J €L,

QO‘jwj 1 ak
Cj = ¢ if Zk<j,k5j(mod R) 2%%wy, £ 0,

ak
Zk<j,kzj(mod R) 20%wy,
otherwise .

We split f = Zj A, f into the sum of two functions: f = g + h, given by

(3.4) h = Z hj, g:= Z 9j,

j=—o00 j=—o00
with
hj(x) == (1= () A f(x),  gj(x) = ((@)A; f ().
The approximating function £ in Theorem is also defined as the sum of two functions: F = §+h,
where

(3.5) h:= i h; H(1—U]~,) with  U; = (1 — {)w;

j=—oco  j'>j

(3.6) g= g JI -6y with Gji= ) 2%

¢=0 j=c(mod R) j'>j t>0
j'=c(mod R) t=0(mod R)

The definition of g involves some infinite products, the convergence of which will be discussed at
the end of Section 4] while, as we shall see, the products involved in the definition of & are actually
finite. We will show that F' satisfies all the conclusions of Theorem provided that || f]| foor 1
sufficiently small. The latter can be assumed without loss of generality, as explained at the end of
this section, see Proposition [3.3] below.

The definitions of & and § are inspired by [5] and [33]. They are motivated by two crucial facts:
the Bernstein inequality and the following algebraic identity, see e.g. [33, Proposition 6.1]:

Lemma 3.2. Let (a)r>z be a sequence of complex numbers. Assume that, for some integer ko € Z,
ar, = 0 whenever |k| > kog. Then, for all j € Z,

1= Zaj/ H (1 *CL]’//) + H(l —aj/).
3> J<y’<y’ 3>

In particular, the above identity implies that if 0 < a; <1 for every j € Z, then

(37) Z CLj/ H (1 — aj//) S 1.

J'>j J<j"<j’
The functions U; in the definition of h are constructed in order to satisfy
15l Lee S NUjllzee S llwjllzee < 2771 A f | oo
Taking a; = Uj in (3.7) and using Bernstein inequality, one can see that when || f|| fop is sufficiently

small, 0 < U; < 1 and thus |Al|z < 1. A similar computation can be made with §. This will
imply the desired L™ estimate on F.
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Regarding the F;‘ P estimates, the strategies for h and g follow two different paths. For every
x € R h(z) is the sum of the largest Littlewood-Paley projections |A, f(z)|. Roughly speaking,
this is exploited to reduce the sum of these projections to only one term. More specifically, we will
use the following fact:

3.8 E 2 W X oam ak,, < 3R sup 2w,,.
( ) mX2 wm>% Zk<m,k5m(mod R) 2 kwk - mEI% m
MEZ

Indeed, writing

mXQamw'm> Zk<m k=m(mod R) 2akwk mXQamwm>% Zk<m,k5]’(mod R) 2akwk’
meZ J=0 m=j(mod R)

we consider for every j = 0,..., R—1 the largest index m; in the sum ) - above such

m=j( mod R)
hat th T nding term 20”” i h an index m; exi
that the corresponding te WmXgome, > LS Ly 20, 1S > 0 (such an index m; exists

since we have assumed that only finitely many Ay f are different from 0). Then

am am; ak
Z 2 me2ame>% Zk<m,k£m(mod R) 2akwk S 2 mej T Z 2 Wk
m=j(mod R) k<mj,k=j(mod R)
<3 2%Mwp,, < 3sup 2wy,
meEZ

from which follows. The estimate of the FjP norm of the right hand side of (3.8) is the most
delicate part in the F;"? approximation of h by k. This is the object of Propositio below. Let
us also mention that the good derivatives play a central role in this first part of the approximation.

The F;‘ P estimate of g — g is less elaborate. As explained in the introduction, it is obtained
using Littlewood-Paley inequalities. Here, the role of R becomes crucial.

In order to carry out the above arguments rigorously, we need to assume that || f|| fgow is suffi-
ciently small. This is not a restriction since Theorem is a consequence of the following (appar-
ently weaker) statement:

Proposition 3.3. Let o > 0 and p,q € (1,00) such that ap = d. Let k be the largest positive
integer that satisfies k < min{p,d}. Then for every 6 > 0, there exists ng > 0 such that for every
f e F&P(RY) with ||f||pgvp < ns, there exist F € F;P 0 L®°(R%) and a constant Ds > 0 with Ds
independent of f, such that

K

(3.9) 21 10:(f = E) g0 < O[1f (| o + Da\lfl!%;,p,
1=

and

(3.10) |Fllz~ + | ll s < Ds.

We proceed to explain how Proposition [3.3] implies Theorem Let 6 > 0. By Proposition
there exist 75 > 0 and Ds > 0 satisfying the above properties.
Let f € Fg*P) f # 0. We then apply Proposition [3.3[ to the function

min (775, D%;)
1Flzes
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We thus obtain a function F' which satisfies (3.9) and (3.10)), with f instead of f. Finally, we set

7o

min (775, D%;)

Then multiplying the estimates by || || o / min <775, Di,;) and using that H f ‘

= mi g
por = min (7]5, Da)

yields
~ )
> 10S = Pl -to < 1l + Ds i (775, D5) |l < 260 £] o
1=
and D
1)
Fllzs + I1Fl o < —2—[1fl o
min (775, DT)

This proves Theorem with Cs = Ds/o/ min (775 /25 ﬁ).

A word about notations is in order. In the above, we have defined the functions E;, T}, A;, wj,
¢, hj, g;, Uj and G;. Morally speaking, all these are localized in frequency to [£] < 27. Some like
E;,T; and A; are L'-renormalized dilations of a fixed function (in particular, we note in passing
that they satisfy

id
1Ejllr = 2¢" || E| Lo

for all p; similarly for T; and Aj). The others are not dilations of a fixed function, but if we take

k derivatives of wj, (j;, hj, gj, Uj or Gj, we can obtain an upper bound that involves a factor 27k,

This will be made explicit in the next three sections, which are devoted to the proof of Proposition
. )

4. PROPERTIES OF wj
In this section, we collect all the estimates of w; needed in the sequel.
4.1. Pointwise estimates. First we have (see [33, Section 9]):

Proposition 4.1. For all j € Z and all z € RY,
1/p

(4.1) wi(z) ~ | > (TjlAf|(z +277r)E(r))”
rezd

(4.2) 1A f1(2) S wj(x).

The proof of Proposition relies on the following estimate for the function T defined in ([3.2)):
Lemma 4.2. For every z,y € R, if ||y|| < Vd, then T(z +vy) < T(x).
Proof of Lemma 2] Note that T'(z) > (2/d)~(@*1) for all z € R? with ||z < 2v/d. Thus

T(z+y) <1< (2Vd)T ()
whenever ||z|| < 2v/d. On the other hand, if ||z|| > 2v/d and ||y| < V/d, then ||z + y|| > ||z||/2, so
T(z+y) = o +yl|” D < 25|z 7@ = 2T1T(a).

This shows T'(z +y) < CT(x) with C = (2V/d)?+1. O
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Proof of Proposition [4.1]: The proof of (4.1]) is analogous to the one of [33 Proposition 9.2]. The
only difference is that the function Sj;n introduced in [33] is now replaced by the function T}

which satisfies the same (crucial) property as S;. x, namely: for every x,y € R%, if ||y| < 277V/4d,

(4.3) Tj(w +y) = Ty(a).
In turn, this follows from the definition of 7} and Lemma From (4.3) one deduces that
(4.4) Ti|A; fl(x =277 (y + 7)) = Ty A f|(x = 277r)

whenever z € R, r € Z% and ||y|| < V/d. Arguing as in the proof of [33, Proposition 9.2], we rewrite
Wwj as
1/p

wilw) = | D (T|Afl@ =277 (y+r)E(y + )

rezd

where y € [0,1)¢ is the ‘fractional part’ of 2/z. In particular, ||y|| < v/d. The estimate (&.1)) then
follows from (.4 and the fact that whenever r € Z¢,

(4.5) E(y+r)~ E(r).

Let now K be a Schwartz function on R%, whose Fourier transform K is identically 1 on Bs, and
vanishes outside Bs. Then by (2.1)), for every & € R,

AR () = A(9).
Hence, Ajf = A, f * K; where K;(z) = 274K (2/z) for all x € R%. Moreover, since K € S, there
exists C' > 0 such that, for all z € R?, |K(x)| < CT(z). We deduce therefrom |K;| < CTj and thus

|8 f (@) < [A;f]* Kl (x) < CIA; f] * Tj ().
In view of (4.1]), this gives the desired conclusion |A;f(z)| S wj(z).

We also have:

Proposition 4.3. (1) For all j € Z,

(4.6) wj S 2" MMA;F.
(2) For all j € Z,
(4.7) lwjllzee < 2%M1A; fllzee S 27\l -

Proof. From (4.1]), we deduce
wile) S Y Ti|A f|(x +277r) B(r).

rczd

Using (4.4) and (4.5)), we get

5@ €Y [ BIA @+ 2+ B+ ) dy = ETIA @),
TEZd (071)d

We then observe that T;|A; f|(z) < M|A;f|(z) and thus E;T;|A; fl(z) S 2°°M (T |A; f|). Both

are consequences of (2.9)). This proves the first item. The second item is now an easy consequence

of (4.6) and the Bernstein inequality (2.12)). O
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The derivative estimates for w; can be obtained in a similar manner to the proofs of [33, Propo-
sition 9.6] and [33, Proposition 9.7] and they depend on how many derivatives are computed in the
good directions 2’ := (z1,...,2x).

Proposition 4.4. For every v € N* and v € N¢,
(4.8) |878;,/w]-| < 2(|v/|+\vl)j2—|v’\owj‘
The implicit constant may depend on |y| and |7/| but neither on j nor on f.

Proof. We can assume that w; # 0, and thus w;(z) > 0 for all x € R? see Remark The

function w : z — (1+ H:U||2)1/ ? is the Euclidean norm of the vector (1,z) in R, By homogeneity,
it follows that [0 u(z)| <1 for all v € N\ {0}. By the Fai di Bruno formula (i.e. the expression
of the iterated derivatives of the composition of two functions), we obtain the pointwise estimate
107 (exp o(pu))(z)| < expo(pu)(z). By definition of E, see (3.1)), it follows that for every v € N
v e N¥,

(4.9) ‘ava;Y,’Ep(ij _ r)’ < 2j("7‘+|’y’|)2*‘7’|O'EP(2J'$ —7).
By definition of wj, see (3.3)), it follows that

‘maw;wp‘ < i+ Ng—lo P
/g J

1/p
Writing w; = (w? ) , the Faa di Bruno formula applied to the functions w? and ¢t — /P gives
/ . + / |~
)ma;,wj‘ < 2 D=l
This proves the proposition. O

From Proposition [£.4] we deduce:
Proposition 4.5. For every ' € N* and v € N¢,
|8787,/Cj| < oW l+Iig=1Vlo
T ~

Proof. Since the result is obvious when ¢; = 0, we assume that (; # 0. We write

Gl@) = ¢ (2”‘*’]')

Uj

where v;(2) = > 5 k=j(mod R) 2%F ;. By Proposition

(4.10) \678;,/1)]-\ < Z 20k (W H+1 Dkg=Iloy,, < 2(\v\+|w|)j27|'w|avj_

k<
k=j(mod R)

We now prove by induction on |y| + |/| that

< o(lrl+hDig—lle 1

(4.11) a’yag,'i
”

J




APPROXIMATION IN FRACTIONAL SOBOLEV SPACES AND HODGE SYSTEMS 17
Since 0 = (9782,/ (vj - (1/v;)), the Leibniz formula implies
.awgﬁ'l — N (Y By =P . 989" L
Uj x’ Vj T Z /3 B/ @’ v a! Vj '

B<,B/<~ J
1BI+18' <7+ 17|

Using (4.10) and (4.11)) for every || + |8'| < |v] + |7/[, it then follows that

<1 S alhs -8 igh -8l QU418 Dig-181e L < i+ Nig-hle L
Vj Uj

1
oL
Uj

Uj
B<y,B <y
1BI+18" 1< |7+

By Leibniz formula and Proposition this gives

057 (26”%‘)‘ < o(hl+hDig—1le (2%"]‘)

Uj Uj

and the desired estimate now follows from the Faa di Bruno formula applied to the functions ¢ and
295 and also the fact that ¢j(z) = 0 when 2%w;(z) > vj(z).

. )
Vj

g

4.2. Integral estimates. We first establish:
Proposition 4.6. For1l < p,q < oo, a >0,
(4.12) @ wi)lleagllze S 2% f 1l por

Proof. This follows from item 1 in Proposition and ([2.8)). O

The key result of this section is an integral estimate on sup(2° w;), which will be used crucially
to bound ||01(h — iL)HF;A,p in section .

Proposition 4.7. One has

~

(4.13) I sgg(w‘wj)um S a2 | fll e
J

The proof of Proposition [£.7] is more involved than the previous ones. It relies on the following
estimate:

Proposition 4.8. Let p € (1,00) and q € [1,00]. Then there exists C = C(p,q,d) > 0 such that
for every f = (fj)jez € Lp(Rd;fq(Z)), for every r € R?,

(4.14) T3S+ 2797))jezllenylloay < Cn(2 + IrIDIIE) jezllen @)l oo gay-

The proof of Proposition 4.8 will be given in Appendix [10] below. Let us now derive Proposition
from Proposition [4.8
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Proof. By Proposition for every = € R,

sup(2¥w;(2))? S sup Y (2 T;|A;f|(x + 279r) E(r))?

JEZ j

I€5 ega
Z E(r)P sup(2¥T;| A f|(z 4+ 2777))P
rezd JEL
P
= 3 B0 [sup(2 LA, fl(a +2777)
rezd
S EEPIRYTA f (2 + 2777)) ezl
rezsd
Integrating over = € RY, we get
Isup2%7esj|3, S 32 BV IIEITHA I +277r)) ezl
je rezd

By Proposition this gives
lsup 2wl £ D B2+ P IS e
i€ rezd

In order to estimate Y, .74 E(r)P[In(2 + |r[|)]P, we first observe that for every r € Z%, for every
zer+[0,19

E(r) < e lrell < elralh/vVd < (277 k+(d=r)/Vd—lzoll, /v,
Here ||z||; is the ¢!-norm given by |z1|+ - -+ |z4|. Moreover, In(2+ ||7||) < In(3+||z[;). It follows
that

S B n@ + |r]) < / e P/ Va0 (3 1 |12]l,))? da
Rd

rezd
< / e Pl /N0 (3 4 27 ||z, | )P da
Ra
_ QM/ e Pleli/Va[y (3 4 27 |||, )P da
R4
< gP2ok,
This completes the proof of Proposition .

What will be important for us above is that the power of 27 in (4.13]), namely %, is strictly less
than 1.
We will use Proposition [£.7] in the following form:

Lemma 4.9.
(4.15) 125" wmXgaman > L 55 o my 205 s 20 S RO2 2| f]] o

Proof. Since ¢}(Z) continuously embeds in £9(Z), one gets

H H2amwmx2amwm>% Zk<m,k§m(mod R) 20Fwy qu(m) ”LP S H Z:Z 2amme2amwm>% Zk<m,k§m(mod R) 20wy, HLP‘
me
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It is enough to combine (3.8]) with Proposition to conclude the proof of the lemma.
O

We end up this section by establishing the expected L> bounds on F' under a smallness condition
on ||f||F;¢,p. More precisely, in view of (4.2)) and (4.7)), there exists n > 0 such that if 27 Hf”p;m <,
then for every j € Z

[will oo s 1A fll oo < 1.
By definition of Uj, h; and g;, see (3.4 and (3.5]), this implies

(4.16) 1Uill oo 1l oo 5 g5l poo < 1.
We can also obtain L>° bounds on G}, h and §:
Lemma 4.10. Assume that 2° ”f”F;t,p < n with n as above. Then
|, <
(2) there exists jo € N such that for every x € RY, and every j € Z,

min (2—aR7 Q—Q(j—jo))
Gyla)] <

In particular, |Gj|| e < 3o

(3) The infinite products involved in the definition (3.6) of § are uniformly convergent on R?.
If we further assume that aR > 1, then ||Gj||r~ <1 and ||g|| ~ S R.
Proof. Using that

hj(@)] = (1= G(@) [A; f(z)] £ (1 —¢(2)w;(z) = Uj(x),
and that 0 < U; <1 by the choice of 1, we have

Jil,. = 3 vTIa-u)

j=—o0  §'>j
which implies the first item by (3.7). We now estimate G;. Let jo € N be an index for which
Ajf =0forall j > jo. Then w; = 0 for all j > jo. By the choice of 0, ||wj||,~ < 1 for every j € Z.
It follows that for every z € R%,

0<Gj(z) < Z g—at < Z o—aRk

t>0,5—t<jo k>ko
t=0(mod R)

where kg is the lowest positive integer such kgR > j — jo. This implies

g-oftko  min (270R, 2-li—j))

Gile) < T-5=r < | —2-oR

and the second item follows. .
Moreover, whenever j > jo, |G| oo (ray S 2-(i=Jo) (with an implicit constant depending on R)
from which we obtain the uniform convergence of H (1—Gj) on R? for all j. This implies

-/

j'=c(mod R)



20 PIERRE BOUSQUET, EMMANUEL RUSS, YI WANG, PO-LAM YUNG

the first part of the third item. Finally, in order to obtain the estimate for §, we assume that
aR > 1. By the second item, this implies |G|z~ < 1. We next observe that when (;(z) > 0,

2%w;(z) < Z 2%k

k<j
k=j(mod R)
and thus
(4.17) 19;(2)| S Ga)wi(@) S > 22w =G,
k<j
k=j(mod R)
It then follows that
R—1
lgl=<>, > G I -Gk
¢=0 j=c(mod R) i'>j
j'=c(mod R)
This completes the proof. O
In the next two sections, we will always assume that
(4.18) 1flgr <270
and also that
(4.19) aR > 1.

5. ESTIMATING h — h

We still write 0, for a derivative in any of the “good” directions, namely 0y, ..., dx. This section
is devoted to the proof of the anfl’p estimate for the derivatives of h — h:

Proposition 5.1. Let o, p, q and x be as in Theorem . Define h (resp. h) by (3.4) (resp. (3.5) ).
Then

7 —min(l,a)+%)o max(1—a,0)+x(1+[a]+1) o
001 = 10 S Ro® (257l g 2l O (o )

~ )

and for any 1 <1i <d,
7 o max(l—ao,0)+k( 1+ +1))e
10401 = g1 S Ro® (257l r + 27020 () )

where the implicit constants depend on o, p and q but not on f, R, 0.
Here, [a] is the integer part of «.

Proof of Proposition .1 We only prove the first inequality of the statement. The proof of the
second one is very similar (and easier to establish).

Step 1. Let
ij = Zh]/ H (].*U]//)
J'<J J'<g"<j

Then
(5.1) h—h=> UV;
J
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Identity (5.1)) is a consequence of Lemma

o0

h—i= Y (1= [Ja-uy)

Jj=—00 3'>7
S G
i i>i i<ir<y
7 J<i"  J<j’<y’ J
Step 2: estimates on U;, V; and their derivatives. Let us first collect the estimates for Uj:

Lemma 5.2. (1) For every v € N*,v € N? and every m € Z,x € R?,
|878:Z’ Um(x)‘ 5 2mh|2(m_o)h ‘wm(x)XQ"mwm>% Zk<m,k§m(mod R) 20k, ('I)’
(2) Por every 7 € NA, 107Ul S 27125 | ] o

In the above statement as well as in the lemmata below, the implicit constants may depend on
the number of derivatives |y| and |y/| (but neither on m, z nor on f).

Proof. When there exists k¥ < m with £ = m(mod R) such that wy # 0, estimate (1) follows
from the definition of the functions U,,, see , Proposition Proposition and the Leibniz
rule. We also rely on the fact that (1 — () = 0 and thus U,, = 0 on the set where 2w, <
%Zk<m,k5m(mod R) 20k, When wy, = 0 for every k < m,k = m(mod R), Uy, = w,, and one
therefore has )
10707, Uy ()] < 2m2m=a) Iy, (2).

If wy,(z) > 0, the conclusion readily follows. Otherwise, wy, identically vanishes and the estimate
is obvious.

It follows from the first item and that, for every v € N%,
107 Ullzee S 2" lwm e S 2717125 ]| v,
which proves the second item. [
Lemma 5.3. For allm € Z and v € N¢,
10 Rl e S 2700 £l
Proof. By definition of h,,, the Leibniz rule and Proposition

10l 5 2 2 07 A g
0<v'<y t

We now rely on ([2.11)) to get

10kl e Y 22 fll e S 27D f o
0<y'<y

Here are now the estimates for V,,:

Lemma 5.4. (1) For everym € Z, |Vy| S 1.
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(2) For every v € N4 |07V,,| < 2m‘7‘2”|7|"HfHFg,p.
Proof. The first item follows from the construction of Vj,, (3.7) and the fact that for all z € R?,

hj(2)] S (1= G(2)w;(x) = Uj(z) <1,

where the last inequality above is due to (4.16]).
Let us prove the second item. Arguing as in [33] (6.8)], one obtains
V= (Okhow = ViwOpUpr) [ (1= Upr).

m/'<m m/<m/’ <m

Using this calculation, one can prove by induction on ||, v € N%, that

(5.2) NMVi= > Ol = D car@Upd Vi I a-vw)

m/'<m o<a<y m/<m/’ <m

where ¢, is some positive integer for each 0 < a < <. Indeed, for any finite sequence I =
(I1,...,I) where I,..., Iy € {1,...,d} and k € N, we have

01V = | Orhu — > U Ve | I - Unn)

m'<m J#D m'<m/ <m
J subsequence of I

where for each non-empty subsequence J of I, I'\ J is the subsequence of I obtained by removing
J from I. (A subsequence J of I = (Ii,...,1}) is a finite sequence of the form (I;,,...,I;,) with
(<kand1<i3 <---<ip<k.) From (5.2) we deduce that for every v € N¢,

10" Viallze < > {107 hllzee +C Y 10Ut L= 107 Vi [ 1.0

m/'<m 0<a<ly
By item (2) in Lemma
02T ellzoe S 21125 ] e

Moreover, as a consequence of Lemma 107 || oo < 27D £ an,p.This implies

107V || 1o < Z om'Ivl Z 2m/|a\2m”avfavm,HLoc Hf||an,p.

m/<m O0<a<ly

The result then follows by induction on ||, since induction hypothesis implies ||07"*V,||pe S
o/ (rl=leDg(vI=lalse if < o < .
O
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Step 3 Completion of the proof of Proposition From we see that
100 (B = )| o0 = 1127 A (B (B = 1) o | 2
= 112%™ A (B Y U Vi)l a0

JEZ
= || ”2(a71)mAm(ax/ Z UT_A'_m‘/:r_A'_m) ||gq(m) HLP.
r€Z
By the triangle inequality, this gives
(5.3) 102 (h = 1)l go10 < D~ 112 A (Br (Upm Vism)la oyl -

re€Z
We now introduce a positive integer T' to be defined later and we split the sum into three parts
that we estimate separately: > ..., D gcpcp---and > o....

5.1. Estimate of ) _ . In this case, we let 0,/ differentiate the Littlewood-Paley projection A,.
By Lemma [9.1] below and the fact that ||V, || ;e S 1 (Lemma [5.4),

128D A (B (Urm Vet ) lea(my |22 S 12972 Ui Vi | a0
(5.4) S 27 2% Unnll s ) Nl -
By Lemma and the definition of Uj,

12" Urnllesimyllze S M2 omXgaman, st 50 e leagmy o
S Ro2v | fl| oo
Hence, by summing over r > T, one gets

Y 2™ A (O (U Vit m) sy 120 S Ro2™ 5 | ] g

r>T

5.2. Estimate of )  _,. Let a be the integer part of a. By Lemma and (2.3, there exist
Schwartz functions A such that
A=Y AD.

Ivl=a
Then
Ap(z) = 2MAQ ) = Y 2™@TAD](2mz) =27 >~ 97 [(AD),](x)
Iv[=a lv|=a
where (AM),,(x) = 2"A0)(272). Hence,

| ”2(ail)mAm(aw’(Um+7“vm+7")) ”Z‘l(m) (7

< S 2T AD) ) (Dot (Umr Vinsr) oy 2o
lv|=a

(5.5) _ Z I ||2(cx—1—a)m(A(W))m(a(ﬂax/ (UnmtrVinsr ) lea @y | v

[v]=a

< 2O ™0 (U Vi)l o | -
lv|=a



24 PIERRE BOUSQUET, EMMANUEL RUSS, YI WANG, PO-LAM YUNG

In the last line, we have used Lemma applied to the function A, This implies
(5.6)

127D Ay (B (Un-tr Vimer ) lea gy e S 277707 1120079 (07 0 (U Vi) g eyl -
[v|=a

Now, by the Leibniz rule,

(5.7) 10705 (U Vin)| S [Vin (070 Un)| + D (@0 ) (@57 Vi) -

=0
Here, 0. refers to the full partial differential operator of order ¢ and similarly for 92T!=¢ By
Lemmata [5.2] and one gets

1870 (Up Vi) | S 2772 (a+1)

W, 1 k
mX2amw7n>§ Zk<m,k£m(mod R) 29%wy,

a
2m€w . . 2(a+1—£)m2(a+1—é)fia o,
+ @Z mX2 wm>% Zk<m,k£m(mod R) 2 kwk ||f||Fq P
=0

5 (270 + 2(a+1)m7”fHF;(’p)Qm(aJrl)

w. 1 k .
ngamwm>§ 2 k<m,k=m(mod R) 2**Wk

We deduce from ([5.6)) that

| ||2(a71)mAm(ax’(Um-H"Vm—i-r)) ”Eq(m) 17
S(277 4 2058 £ )27 (O 20

wmxgamwm>% Zk<m,k£m(mod R) Qkak HK‘I(m) HLP
<Ro(27° 2(a+1)no’ . 27(04717a)r2ﬂ .
SRo(27 + 20405 ]l 1) P

where the last line follows from Lemma [£.9]
Thus by summing over r < 0 (taking into account that a < 1+ a),
(5.8)

a—1l)m —14+%)o ko(at+1+2
S 12" O Vs sl B (275l er + 2711

r<0

5.3. Estimate of ), ;. This is exactly the same calculation as in the case ), _, except that
in ([5.5) we take a = 0; that is, we do not perform the preliminary integration by parts and we keep

A, instead of introducing Ag;{). Hence, when summing over 0 < r < T, (5.8]) is replaced by
(5.9)
a—1)m — a2 o RO 1—‘1-l

> I 0 O Vsl i < CalTIRe (297 e+ 2 0D )
0<r<T
where

C20-T  jf o < 1,

Co(T) =S CT if =1,
C if > 1.

Remark 5.5. Note that it is crucial for the sequel to obtain an arbitrarily small factor in front of
7l foop I the right-hand sides of (5.8) and (5.9)). This in turn follows from Lemma and the

fact that we take one derivative in a “good” direction in (5.7]).
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5.4. Conclusion. From the three above subsections, one gets, with a = [«],
(1) When « > 1, one can take T' = oo:

7 —1+%)o ko (at+1+1
1001 = Bl g1 S B (275 o+ 2112 ).
(2) When «v = 1, one can take T' = o, which implies

7 —14+5)s ko (241
||8x/(h7h)HF$_1,p < Ro <02( +3) ||f||an,p+o2 ( p)HfHQ >

Froor
(3) When 0 < a < 1, one can take T' = o, which yields

~ (-5 l—a+r(1+1))o
H@I,(h—h)”F;_l,pgRo— <2 (a—2) ||f||F(?,p+2( + (+p)) I1£]12 )

nlety
Fq

Altogether this proves Proposition [5.1 O

6. ESTIMATING g — g

Proposition 6.1. Let a,p,q be as in Theorem . Define g (resp. g) by (3.4) (resp. (3.6))). We
also introduce a number aq € (0,a] such that a, < ﬁ when o < 1 and a, = 1 when o > 1. Then

(6.1) Hax(g — g)”Féfop 5 (2“0R27min(l,aaa)R”f”anm + 2([04]+2)m73227min(l,aaa)RHf”%;’p) ’

where the implicit constant depends on « and a, p, q but not on f, R, 0.

Recall that [a] is the integer part of «. Also, we have written 0, for any partial derivative 0;,
1<i<d.

Remark 6.2. Note that, contrary to Proposition [5.1, we do not state an improved estimate for
the derivatives in the good directions.

Step 1. Let

me Y 4 I -G

J'<i 3'<5"<j
j'=j(mod R) j""=j(mod R)

Then, as in Step 1 of the proof of Proposition [5.1
g—3=>Y G;Hj
J

Step 2 Estimates on G,,, H, and their derivatives. Let us collect the upper bounds for
Gy, and H,, which will be needed in the sequel (see [33, Propositions 11.2-11.7]). In the lemmata
below, the implicit constants may depend on || but neither on m, o, R nor on f.

Lemma 6.3. For all m € Z and all v € N¢,
7G| 277 Y 27T MMA,, i f.

t>0
t=0(mod R)
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Proof. By definition of G,,, see (3.6, and Proposition one has
7G| < D 27D S Y 2y,

t>0 t>0
t=0(mod R) t=0(mod R)

By (4.6)), this implies
7G| 2% Y 27T MMA,, L f.

t>0
t=0(mod R)
O
Lemma 6.4. For all m € Z and all v € N¢,
107 gm| S 2V MA,,, £
Proof. By definition of g,, see (3.4]), the Leibniz rule and Proposition
107 g < Z oly='Im ’(‘WAmf _
0<y'<y
We now rely on ([2.10) to get
O7gm| S Y 2D Ima I mA, S 2 MA, f.
0<y'<v
O

Lemma 6.5. For all m € Z and all v € N¢,

|H,| <1, [07Hp| < 9lvlko Z 2‘7‘(m7t)MMAm_tf.

t>0
t=0(mod R)

Proof. In order to prove the estimate on |H,,|, we recall that under the conditions (4.18)) and (4.19)),
T) < (G;| < 1. In view of (.17), namely |g;(z)| < Gj(x), this, in conjunction with (3.7)), implies
H,(x)| < 1.

For the second estimate, we argue by induction, assuming the correct bound for (WIHm‘ with
|7'| < |v|. We have the analogue of (5.2)) for H,, in place of V,,:
O"H,, = Z " g — Z waﬁalemlaPnyHm/ H (1—=Gpr).
m’' <m 0<~/' <~ m/<m’’ <m
m/=m(mod R) m/'=m(mod R)
Thus
OHA S Y gl Y > |0 G | = T4 11
m/<m, m/<m, 0<y' <~
m/=m(mod R) m/=m(mod R)

In view of Lemma
1< Y 2O MM(AR - f).

t>0
t=0(mod R)
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Using instead Lemma [6.3| and the induction assumption, we get

I1< 9lvlke Z Z Z 2*at2|7,|(m,*t)MMAm,_tf ) 2‘7’7/|(m,’l)MMAm/_lf

m/<m, 0<y'<y  t>0,1>0,

m/=m(mod R) t=Il=0(mod R)
Lae S oYY e M2 T AMMA
m/'<m, 0<y'<vy  t>0,1>0,
m/=m(mod R) t=I1=0(mod R)

We split the innermost sum into two parts according to whether t > [ or [ > ¢ and estimate by 1
the factor MMA,/_+f and MMA,,,_; f respectively (remember that ||A,,f|;~ < 1 under the
condition (4.18])); this gives

oo 2 I MMA L f 27T IMMAL L S YD 272 T MMA, i f.

t>0,1>0, t>0,
t=l=0(mod R) t=0(mod R)
Finally,
I < ohlke Z glym/ Z 27~ MMA 1 f
m/<m, t>0,
m/=m(mod R) t=0(mod R)
=2hlke {" > 2T MMA, i f.

>0 t>0,

>0,
{=0(mod R) t=0(mod R)

We sum this double sum by first summing over the pairs (¢,1) where [ + ¢ is constant, and then
sum over the remaining variable. This gives the desired conclusion. O

Step 3 Completion of the proof. As in the proof of (5.3,
195(9 — )l -t < 3 N2 A (B (G Hon) ey -
reZ
By definition of G, 1, (see (3.6)) and the triangle inequality,
102(9 = Pl g1 < D 27 D2 A (B (wrtm—t Hrrm)) a2

t>0, rez
t=0(mod R)

For each fixed ¢, we now split the sum over r into three parts as follows

Z...:Z...+ Z et Z el

reZ r<0 0<r<aat r>aqt
where a, > 0 was defined in Proposition We proceed to estimate the three terms separately.
6.1. Estimate of Zrzaat' As in the proof of (5.4]) we integrate by parts to let 0, hit A,,, and use
[Hml[pe S 1 to get

112879 A (e (rtme—tHr ) oy 22 S 2721129 im0y | -
This implies
11267V A (O (wrtm—tHrm)leamy |2 S 2772707 £ g,
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by Proposition Summing over r and ¢, one gets

Z Z 27%”H2(a71)mAm(8ﬂc<wr+m—tHr+m))Hf‘l(m)”LP S 2% Z Z 27 HfHF;”’p

t>0 r>aat t>Rr>aat
t=0(mod R)

(6.2) < 27270 f]| o

6.2. Estimate of > _,. Let a > 0 be an integer. Arguing as for the proof of (5.6), we write Ay,

as an a-th derivative and integrate by parts to hit 0, (wm+tr—tHm+tr), and obtain
(6.3)

127 A (Do (Wit r—t o) ooy 2o S 27717120075 (wpoe Hin) s (ol -

Here 01! refer to the full partial differential operator of order a + 1.
We now use the fact that for every £ € N

Wm—t S 2OMMAirf)  1Fwm—t] £ 2"
(see Propositions and and also for k € N*
[Hau| ST |05 Hp| S 257 2R MMA,,y f
t'>0
(see Lemma . By the Leibniz rule, this implies

|a§+1(wm7th)‘ 5 2(m—t)(a+1)wm7t+2(a+2)no’ Z Z 2<t/_t>€2(&+1)(m_t/)MMAmftf'MMAm_t/f-
t'>0 £=0

We split the sum over ¢ into two parts according to whether ¢ < t or ¢ > t and we estimate by

Hf“F;c,p the factor MMA,,,_¢f or MMA,,,_y f respectively (here we use (2.12)):

3 S 20D MMA o f - MMA o f

t'>0 £=0

< HfHanp Z 2(a+1)(m_t/)MMAm7t/f + Z2(t,_t)a2(a+1)(m_t,)MMAmftf

o<t/ <t t'>t
S Ul S 2t MMA,, .
0<t/<t
Putting these together,
|8(I1+1(wm_th)| 5 2(m—t)(a+1)wm_t + 2(a+2)ng||f”F;"p Z 2(a+1)(m_tl)MMAm_t/f.
o<t/ <t

Setting Ba,a(t) =D gcp< 2(e=1=a)" "\ye deduce that
126~ (05 (wm—t Hum))la o | 2

S2O 11220 Doy e + 2972 fll w27 D129 MM Ao f g0 | 2
0<t/<t

2O 12wl | o+ 29D f | o Baa (D12 MM Ari f L4y | 2
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By Proposition this implies
1124 (35 (Wit Hon )l a | 20
212wl ga oy | 2o+ 29T D || £1] pw Baa (D 1112°™ Ao f [l a oy | 2
<O e+ B (£)260 2

OGP
FLZ

where the last line is a consequence of Proposition [4.6]

Coming back to (6.3)), we get
(6.4)

12 A (D Hnr D e 1 S 2770 (2720 f s+ B (612 |l )

Choose now a = [a], so that By o(t) < 1. Summing up on r < 0, which is possible since a—a—1 < 0,
we thus obtain

D 2™ A (O (Wit Homtr ) a2 S 27727 ]| w4+ 200425 f |2
<0 ! !
Summing over ¢, we finally get
(6.5) Z 27 Z | H2<a_1)mAm(8m(wr+m—tHr+m)) qu(m) lLp

>0, <0
t=0(mod R)

S 202 DR | ] po p 4 2@ DRogm0R) g2,
q
6.3. Estimate of ZOSTSaQt‘ Applying (6.4) with a = 0, we obtain

12677 A @ e Fmr) e 1 S 2770 (2727 o+ Boa (02 £ )
where
C if a <1,
Boo(t) = ¢ Ct ifa=1,
c2—Dt if o > 1.
Summing on 0 < r < ant, we get

> M2 A O @iyt Honir) sy 10 S Aa(t) (27727 £l o + Boa(®)22 | I3 )

0<r<ant

where
Cc20-®aat if o < 1,
An(t) = ¢ Cagt if =1,
C ifa>1.

Summing over ¢, one gets

S 2 ST 2 A (D (@it Hotr)) oo (ol o

t>0 0<r<ant
t=0(mod R)

< 320G (1) (272 g + 2% Boal0)]f s ) -
t>R
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When a > 1, one has a, = 1. Since A,(t) = C and By (t) = C2(@=1t this implies
— —1 —-R 2 —-R 2
Z 27 Z H||2(a )mAm(aw(merrfthM))HEEI(m)”LF S 2772 ”fHF;‘*P‘i'Q 72 ”f“p;xap-

t>0, 0<r<ant
t=0(mod R)

When a = 1, the choice a, =1 leads to A4 (t) = Ct and By (t) = Ct. Hence
Yoo 27% D 2 AR @ntr—tHmr ) sy | 2o S 27 R2TE| F ] gt 270 B2 f |3

t>0, 0<r<ant
t=0(mod R)

When a < 1, A, (t) = C2(l=aat 54 Bo,o(t) = C. One needs to take aq < 1% for the sum to
converge and one gets

Z 27t Z I ||2(a_1)mAm(ax (Wmr—tHmir)) ”Z‘Z(m) 173

t>0, 0<r<ant
t=0(mod R)

< 2502—R(1—(1—a)aa)HfHF;m + 92ro9—R(a—(1-a)aa) ||f”FO¢p

In any case, for every o > 0, and assuming further that a, < a when a < 1, we have

6.6) > 27 3 1207 A L (9 (Wit Hin ) oy | 2

t>0, 0<r<ant
t=0(mod R)
< 2m7R2 Rmin(1, aaa)Hf”Fa b+ 22n0R22 Rmin(1,aaq) ”fHFO‘ v
6.4. Conclusion. The three subsections above, namely 1nequaht1es 1 2), (6.5) and ( ., imply

the desired estimate (6.1]). This completes the proof of Proposition

7. COMPLETION OF THE PROOF OF PROPOSITION 3.3

Let us summarize the current state of the proof. For every o € N*, we define

k+1
A
min(1, aay)
where a,, has been introduced in Proposition This automatically implies the condition
since ol > (k +1)o/aq > 1. Then by Lemma Proposition and Proposition [6.1] there
exists 17 > 0 such that for every f € F P with ||f”Fap < p27he there exists amap F = g+ h in

F “P such that

gl S R[] 51

and in the good directions x':
7 min(1,a) max(l—a,0)+x( 14| +1
0t = Blggr o (2P ) g+ 2O (D)o,
while in all directions:

~ L max(l—a,0)+k( 1+[a]+=
1050~ Ml ggso S 0° (257l + 2070000 (D))o,

102(9 = D o0 S (727l + 22T |2, )
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In order to prove Proposition we take for every 0 > 0 an integer o > 0 such that
32(— min(1,a)+ ) o _ 1)

<7 279 < —
20 9% =3

This is possible in view of the fact that 3 < min(1, @). This implies that
100 (f = F)l| g1 < 110ar (h = W)l go-1.0 + 102 (g = )| po-1.0 < Ol ll g + D51 £
for some Ds > 0 which may depend on o (and thus on ¢). We also have
1Pl < 13l + |3 < Ds.
and using Proposition

I1Ell g < |

g =l + 11
< Dy,

by enlarging Dj if necessary. This completes the proof of Proposition [3.3]

8. SOLVING HODGE SYSTEMS

Proof of Theorem [L.2]: We follow [5], p. 284]. On the space F;’p(Ale) of [-forms with coefficients
in F;P(R%), we use the norm

H)‘HF;’T’(AZRd) = 1|T11\i}l( ||>\I||F;7P(Rd)

if A =3 /2 Arder. Let o € FP(ARY). Since d : Fj'P(A'R?) — ESYP(AIRY) is bounded with
closed range, by the open mapping theorem, there exists A(9) ¢ an P(A'R?) such that

A\ = dyp
and

(8.1) HA(O)‘

EP (AR ¢ Hd(‘OHFg_l’p(Ale) :

Choose ¢ > 0 such that C'§ < % Let I ¢ N¢ be a multi-index with length I. Theorem provides

a function ﬁ}o) € E5°P(RY) N L(R?) such that, for all j € [1,d] \ I (note that there are at most &
such indexes),

Ha ( B >‘ FgmhP(RD) T H)‘f ) FOoP(RY) < C0llde porr(aimay
and
L gy 20 <o
Set B0 =37, ﬁ] Jda. Then, 8 € Fy ’p(Ale) N LOO(AZ]Rd). Moreover, since dp = d\(©),
Hd(so - ﬁ(o))‘ poto(aigd) Iy ThAX H({“)j()\gO) _ }0)>) f b <3 ldll o1 pray
and
8 smcnm 18 ey < € g
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The same argument, applied to 2(¢ — () instead of ¢, yields 31 € FP(ARY) N L>(A'R?) such

that
(o-5)

]
1
< 1 HdSDHF(g*LP(Asz) :

g = o

Lo Alle)

< ||d90||an*11P(Ale)

F2OP(AIRD) E2LP(AIRE)

and

Hdsp iy (ﬁ(m N 150))
2 Fg L P (AR

Tterating this procedure, we construct a sequence (8());>¢ € Fi"P(A'R?) N L>°(A'R?) such that, for

all N > 0,
N . o
dp —d (Z 2_1B(Z)> < ON+1T Hdg@HFg—l,p(Ale)
1=0 F;‘—LP(AZRd)
and
(N) (N)
HB ‘ EP(AIRY) H/B HLoo Ale) HdSDHFa LP(AlRE)
Therefore, if ¢ : =372, 21501, 1) satisfies all the conclusions of Theorem O

9. APPENDIX: SOME PROPERTIES OF SCHWARTZ FUNCTIONS
As a consequence of Proposition

Lemma 9.1. There ezists a constant C' which depends only on A such that for all p,q € (1,00),
for all (fm)mez € LP(R%£4(Z)), for all k € N,

1105 A frnllea gy llzo < CIIZP™ Frnllea gyl -
For every v = (71,...,7v4) € N4, we denote
V=n+-+7 , OT=0"---0)".
Moreover, X7 is the polynomial X7" ... X ¢ and for every polynomial P(Xi,..., Xq) = Z'y a, X7,
P(D) is the differential operator »__ a,d7

Lemma 9.2. Suppose ¢ is a Schwartz function on R? and m € N. Assume that for every polynomial
P of degree less or equal to m, fRd P(z)¢(z)dx = 0. Then for every v € N such that |y| =m+1,

there exists a Schwartz function ¢O) such that
b= Z 97
Iy|=m+1

Proof. In terms of the Fourier transform 1 of ¢, the assumption means that 0,1 (0) = 0 for every
|| < m while the conclusion amounts to the existence of Schwartz functions (") such that

= Z 1)
[y[=m+1
Let n € C°(R?) is a smooth cut-off function with 7 = 1 near the origin. By the Taylor formula:

V¢ € RY, = ) ¢ (m'/ (1 — )"0, (t€) dt) :

[v[=m+1
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By the identity |¢[2(m+1) = I €27 with ¢y = (m + 1)!/(!...74!), we also have

1 ! . 1 —n(¢) 2
_ o = _ — >/ &7,
CRCIPE (5 [ a-trasega) + 52w P
We can thus set
1 é’y
%Z)(W)(E) = (&) (m,/o (1 =)™ 0y(tE) dt> + ¢y (1 = (&) |£|2(m+1)¢(§)-

The proof is complete.

10. APPENDIX: PROOF OF PROPOSITION [.§
We begin with the following result.

Proposition 10.1. Let {k;j}jcz be a sequence of non-negative integrable functions on R?, with

(10.1) sup ||kl 1 gey S 1
JEZL

and
(10.2) [ suplyly— o)~ ky(aldy < 4

lyll=4ll=ll jeZ
for some constant A > 1. Then the associated mazximal function
(10.3) Mf :=sup|f|*k;

JEL

is of weak-type (1,1), and is bounded on LP(R?) for all 1 < p < co; more precisely,
(10.4) [ f (1o S All Iz
and
(10.5) 190 f 2o S AP flle, 1< p< oo
Also, M satisfies a vector-valued weak-L' and strong-LP bound, namely
(10.6) 9 filleall oo S Allll filleallzr, 1< g < o0,
and
(10.7) R filleall e S AYPUI filleallzo, 1 <p < g <o0.

The first part of the statement, namely and , is essentially in the work of Z¢ [35],
whose proof we reproduce below. One relies on a Banach-valued version of the singular integral
theorem. To prove , we consider the Banach spaces By = C, By = £°°, and the vector-valued
singular integral

[ Tf={fx*k}ljer
which is a mapping of a Bj-valued function f to a Bg-valued function Tf = {f x k;}jcz. For
technical reasons, we consider truncations of this operator T', namely T f := {f * kj}jecz,j1<m
for M € N, and show that the operator norm ||Ths|f1_p1.00(p0) is S A uniformly for M € N. At
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almost every point x € R?, the kernel {k; (%)} jez,j|<m can be thought of as a linear map from By
to Ba, whose operator norm is supjez,|;j<ar |5 ()], and we note that the latter is in L'(R%) since

(10.8) /R sup |kj(:n)|d:n§/Rd ST (@)l < M.

1€ 1IsM JELJjI<M
Since Tpy: L — L (¢*°) with norm < 1, the vector-valued singular integral theorem ([2, Theorem
4.2]) gives
1 Tas || s preepey S A,
and interpolation in turn gives
| Tat || o Lo (o) S AMP
for all 1 < p < co. Both bounds being independent of M, we obtain and by letting

M — +4o00. Similarly, to prove (10.6]), we consider the Banach spaces By = ¢4, By = (4(¢*°), and
for each M € N the vector-valued truncated singular integral

f=AfiYiez = Tuf = {fi* kj}ijen)ji<m
which is a mapping of a Bj-valued function f = {fi}icz to a By-valued function Ty f = {f; *
kj}ijez|ji<m- The By norm of Ty f at z is by definition
1/q
> sup |fi x kj ()|’

; ic
i€z J
l71<M

At almost every point = € R?, the kernel {kj(%)}jez,j|<m can be thought of as a linear map from
Bj to By, whose operator norm is SUPjez, |j|<M |k;(z)|. As before, we note that this latter expression
isin L' for all M € N. Now if 1 < ¢ < oo and M € N, gives Thy: LI(07) — LI(£9(£°)), with
norm < AY4 yniformly in M. Hence the vector-valued singular integral theorem gives

1Tl 21 eay— 1 pa o)) S A,
and interpolation in turn gives

IT0e || ooy o eaeey) S AMP

for all 1 < p < g. Therefore, (10.6) and (10.7) follow, as we let M — +oo. To apply Proposi-
tion [10.1] we use the following Lemma:

Lemma 10.2. Suppose ¢: R — R is a non-negative integrable function on R? satisfying

(10.9) / ey)dy S 1,
Rd
(10.10) / oy)dy SR for all R> 1,
lyll>R
and
(10.11) / oy —2) — e(y)|dy < ||zl for all x € RY with ||z|| < 1.
Rd

Define, for all j € Z and all x € RY,
(10.12) pj(z) = 2%V ),
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and define, for r € RY,

(10.13) ki(z) == pj(x +2777).
Then the kernels k; satisfy (10.2) with A < In(2 4+ ||r])), i.e
[ suplkyly— o)~ ky(w)ldy S o2+ o],
lyll>4l|z|| 5€Z

Proof. The proof is a variant of the argument in [23, Chapter II, Section 4.2]. Indeed, it suffices to
replace the sup by a sum, and show that

(1019 [y Sty =)~ ksl S -+ )
lyl=4llz]l ez,
We assume ||r|| > 2, for the case ||r|| < 2 follows from a simple modification of the following
argument. We Spht the sum intO three parts: ZjEZ = ZQ”‘Z‘”SI+Zl<2j|le<”7’|l "‘ZQJHZ,”Z”TH
The first sum can be estimated using condition (10.11]):

/ S sy — @) — ki()ldy < / S (2 (y — a) + 1) — p(2y + 7)|dy
lyl| >4l 2j||x||§1

27||z||<1

/ Z (y — 2z +7r)— oy +7)|dy

27 |a|| <1

S D 2l

2z <1
<1

The second sum can be estimated using condition '

kj(y — d
/y>4w||1<27Z by —2) = k@ldy < 5 /

Il <7l 1< ]| <]Ir|

:22/

1<27 | <[l
< log |r]l-

The last sum can be estimated using condition (|10.10):

[ Y wmo-kwas Y 2k
Iyl =4l 27 ||| > 7] 2 ||z || > |7l lyll>2]l|l

= Z / y+7)dy

20 ||| > 17| yll>22fux||
DY
; IIxH
27 ||| > ||
~ ~
]|

Altogether we get ((10.14)). O
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Combining Proposition and Lemma [10.2] we see that:

Corollary 10.3. If ¢ is as in Lemma r € RY, and ©j, ki and M are as defined as in (10.12)),
(10.13) and (10.3) respectively, then M is bounded on LP with norm < [In(2 + ||r|)]*/P, and it
satisfies the vector-valued estimate

(10.15) 19 fillea | 2o < M2+ N DIPUN filleallze, 1 <p < g < oo

The above statement is reminiscent of similar estimates in the scalar-valued case [23, Chapter

11.5.10] and [20, Theorem 4.1]. See also [14, Theorem 3.1] for a more general vector-valued estimate,
that includes the case p > q.
We are now in position to prove Proposition We apply Corollary when ¢ = T, where
T(z) := min(1, ||lz||~@*D) as in (B-2). We first verify conditions (10.9)), and with
T in place of . Indeed and are obvious, and follows since if z € R? with
]l < 1, then

/ Ty — ) — T(y)ldy < / 2dy + /
R4 1—||lz||<[lyl| <14l || lyl|>1+]z]|

z
S ol + | =,
=1+l 191192
<zl

where the first inequality relies on the fact that T(y — ) = T(y) = 1 when |ly|]| < 1 — ||z]]
while in the second inequality we have used the mean value theorem to estimate the integrand (if
lyll > 1+ ||z]| and ||z|| < 1, then [|y|| > 2|z, so ||y — tz| > ||ly||/2 for all ¢ € [0,1], hence the
desired estimate). Hence Corollary applies. Now for any r € R? and any j € Z, we have
T;| fil(x + 2797) = | fj| * kj(x) < M fj(x) for all z € RY. Hence from Corollary we conclude
that

. 1 :
(TG 151C +277r)sezlleazy | o ay S (2 + [I7ID]7 [ (f5)jezllesz) |l Lomay 11 <p < g < oo
Duality between LP(¢9) and LP (¢7') then shows that

1 1
ly —af|d+t  lylldtt

dy

. kS .
T3 151G+ 277r)) jezlleaz | oray S (2 + (7 DI 1(F7)jezlleazy | orey i1 < g <p < oo

are bounded from above by In(2 + ||7||), (4.14]) then

=

Since both [In(2 + [|#[)]7 and [In(2 + ||r|)]?
follows.
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