Asymptotic expansion of the mean-field approximation - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2020

Asymptotic expansion of the mean-field approximation

Résumé

We established and estimate the full asymptotic expansion in integer powers of 1 N of the [ √ N ] first marginals of N-body evolutions lying in a general paradigm containing Kac models and non-relativistic quantum evolution. We prove that the coefficients of the expansion are, at any time, explicitly computable given the knowledge of the linearization on the one-body meanfield kinetic limit equation. Instead of working directly with the corresponding BBGKY-type hierarchy, we follows a method developed in [22] for the meanfield limit, dealing with error terms analogue to the v-functions used in previous works. As a by-product we get that the rate of convergence to the meanfield limit in 1 N is optimal.
Fichier principal
Vignette du fichier
ppasymptfinaldcdsrevised.pdf (635.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01579763 , version 1 (31-08-2017)
hal-01579763 , version 2 (05-09-2017)
hal-01579763 , version 3 (10-10-2017)
hal-01579763 , version 4 (15-01-2018)
hal-01579763 , version 5 (12-10-2018)

Identifiants

Citer

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems - Series A, 2020, 39 ((4)), pp.1891-1921. ⟨hal-01579763v5⟩
732 Consultations
153 Téléchargements

Altmetric

Partager

More