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ASYMPTOTIC EXPANSION OF THE MEAN-FIELD1

APPROXIMATION2

THIERRY PAUL AND MARIO PULVIRENTI3

Abstract. We consider the N -body quantum evolution of a particle system in the mean-field approximation. We

show that the jth order marginals FNj (t), for factorized initial data F (0)⊗N , are explicitly expressed, modulo N−∞,

out of the solution F (t) of the corresponding non-linear mean-field equation and the solution of its linearization

around F (t). The result is valid for all times t, uniformly in j = O(N
1
2
−α
) for any α > 0. We establish and

estimate the full asymptotic expansion in integer powers of 1
N

of FNj (t), j = O(
√

N), whose computation at order

n involves a finite number of operations depending on j and n but not on N . Our results are also valid for more

general models including Kac models. As a by-product we get that the rate of convergence to the mean-field limit

in 1
N

is optimal in the sense that the first correction to the mean-field limit does not vanish.
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1. Introduction19

The mean-field limit concerns systems of interacting (classical or quantum) particles20

whose number diverges in a way linked with a rescaling of the interaction insuring an21

equilibrium between interaction and kinetic energy. In the case of an additive one-body22

kinetic energy part and a two-body interaction, and without taking in consideration23

1



2 T. PAUL AND M. PULVIRENTI

quantum statistics, this equilibrium is reached by putting in front of the interaction a1

coupling constant proportional to the inverse of the number of particles.2

The system is then described by isolating the evolution of one (or j) particle(s) and3

averaging over all the other. This leads to a partial information on the system driven4

by the so-called j-marginals. The mean-field theory ensures that the j-marginals tend,5

as the number of particles diverges, to the j-tensor power of the solution of a non-linear6

one-body mean-field equation (Vlasov, Hartree,...) issued from the 1-marginal on the7

initial N -body state. This program has been achieved in many different situations,8

and the literature concerning the mean-field approach is enormous. We refer to [30]9

for a review and recent references.10

As regards the fluctuations around this limit, namely the correction to be added to11

the factorized limit in order to get better approximations of the true evolution of the12

j-marginals, there are some results.13

The identification of the leading order of these fluctuations with a Gaussian sto-14

chastic process has been established in the quantum context first in [16] and in the15

classical one in [5]. For the classical dynamics of hard spheres, the fluctuations around16

the Boltzmann equation have been computed at leading order in [29], generalizing to17

non-equilibrium states the results of [3]. More recently, for the quantum case, fluctu-18

ations near the Hartree dynamics have been derived in [23] (after [22]) and in [2] also19

for the grand canonical ensemble formalism (number of particles non fixed), using in20

both cases the methods of second quantization (Fock space) (see also [25] for a proof21

using the usual quantization formalism). In the case of pure states, the N -body wave22

function is shown to be 1√
N

-close in L2 norm to a sum of partially factorized states23

constructed out of the so-called Bogoliubov hierarchy. Note that these results rise a24

problem fundamentally different from the one treated in the present paper, whose goal25

is to compute mean-field approximation of the N -body problem with an accuracy of26

any order in powers of 1
N .27

Nevertheless the basic object of our analysis, namely the kinetic error Ej (see below28

for the definition), is strictly related to the expectation of the fluctuations of intensive29

observables (see e.g. [5]). However the analysis of the fluctuations problem from30

the present point of view requires an additional analysis which goes beyond the main31

purposes of the present paper.32
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Recently, we developed (together with S. Simonella) in [26] a method to derive mean-1

field limits, alternative to the ones using empirical measures or direct estimates on the2

“BBGKY-type” hierarchies (systems of coupled equations satisfied by the set of the3

j-marginals). This method rather uses the hierarchy followed by the “kinetic errors”4

Ej−k (defined below), already used (under the name “v-functions”) to deal with kinetic5

limits of stochastic models [10, 7, 4, 11, 12, 6, 8, 13] and recently investigated in the6

more singular low density limit of hard spheres [27] (note that error terms are also used7

in [23, 22, 2, 25] for the total (pure state) wave function with a quite different point8

of view). These quantities are, roughly speaking, the coefficient of the decomposition9

of the j-marginal as a linear combination of the k-th tensor powers, k = 1, . . . , j, of the10

solution of the mean-field equation issued from the 1-marginal of the initial full state.11

We developed in [26] a strategy suitable in particular for Kac models (homogeneous12

original one [17, 18] and non-homogeneous [9]) and quantum mean-field theory. This13

strategy allowed us to derive the limiting factorization property of the j-marginals up14

to, roughly speaking, j ≲
√
N . This threshold is, on the other side, the one obtained15

by heuristic arguments as shown in [26] and rigorously in [15] for the Kac’s model. At16

the contrary, let us recall that the quantum mean-field limit was obtained in [19] for17

marginals of order j = o(N), for pure states initial data.18

Here and in all this article, N denotes the number of particles of the system under19

consideration.20

In the present paper we provide and estimate a full asymptotic expansion in powers of21

1
N of the difference between the evolution of j-marginals and its factorized leading order22

form (Theorem 3.2), following a similar result for the kinetic errors Ej(t) (Theorem23

3.1). Our results are valid for j ≤ C
√
N for some explicit constant C and are valid for24

quantum, Kac’s models and in the framework of the abstract formalism, slightly more25

general than the one developed in [26], described in Appendix A.26

The non-vanishing of the first correction is established, showing therefore that the27

rate of the mean-field convergence is at most of order 1
N (Corollary 3.4) : we will28

prove that the first marginals (of order j = 1,2) are kept away from their mean-field29

factorized limits at a distance bounded from below by CN−1,C > 0 (and not, e.g. N−2)30

as N →∞1
31

1This has not to be mistaken with the problem of optimality in j → ∞ versus N → ∞ for which it has been established in [19] a rate of

convergence in
√

j
N

, for pure states initial data.
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Moreover, as the mean-field solution issued from the first marginal of the N body1

symmetrical factorized initial data determines the leading order of the j-marginal, we2

show that the additional knowledge of the linearization of the mean-field flow around3

it gives an explicit construction of the full asymptotic expansion of the j-marginals in4

powers of 1
N uniformly in j,N satisfying j ≤ CN 1

2
−α for any C,α > 0 (Theorem 3.5).5

Let us note the analogy with the quantum propagation of semiclassical observables,6

driven by the classical underlying flow at leading order in the Planck constant, and7

whose full asymptotic expansion is explicitly computable by the only knowledge of the8

linearized flow.9

Let us summarize in words our main result:10

The knowledge of the mean-field flow F (t) and its linearization around F (t) determines11

explicitly, modulo N−∞, uniformly for j = O(N 1
2
−α), α > 0, the j-marginals of the N -12

body flow issued from F (0)⊗N .13

2. Quantum mean-field14

Let L1(L2(Rd)) be the space of trace class operators on L2(Rd), with their associated15

norms.16

We consider the evolution of a system of N quantum particles interacting through a

(real-valued) two-body, even potential V , described for any value of the Planck constant

h̵ > 0 by the Schrödinger equation

ih̵∂tψ =HNψ , ψ∣
t=0

= ψin ∈ HN ∶= L2(Rd)⊗N ,

where

HN ∶= −h̵
2

2

N

∑
k=1

∆xk +
1

2N
∑

1≤k,l≤N
k≠l

V (xk − xl).

We assume in this paper that V is bounded, which implies that the N -body Hamil-17

tonian HN is self-adjoint on H2(Rd), the second Sobolev space.18

Instead of the Schrödinger equation written in terms of wave functions, we shall

rather consider the quantum evolution of density matrices. An N -body density matrix

is an operator FN such that

0 ≤ FN = (FN)∗, traceHN(FN) = 1 .
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The evolution of the density matrix FN ↦ FN(t) of a N -particle system is governed1

for any value of the Planck constant h̵ > 0 by the von Neumann equation2

(1) ∂tF
N = 1

ih̵
[HN , F

N],

equivalent to the Schrödinger equation when FN(0) is a rank one projector, modulo a3

global phase.4

Positivity, norm and trace are obviously preserved by (1) since HN is self-adjoint.5

For each j = 1, . . . ,N , the j-particle marginal FN
j (t) of FN(t) is the unique trace

class operator on Hj such that

traceHN [FN(t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj ⊗ IHN−j)] = traceHj[FN
j (t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj)] .

for all A1, . . . ,Aj bounded operators on H. Alternatively and equivalently, the FN
j can6

be defined by the partial trace of FN on the N −j last “particles”: defining FN through7

its integral kernel FN(x1, x′1; . . . ;xN , x
′
N), the integral kernel of FN

j is defined as (see8

[1])9

FN
j (x1, x

′
1; . . . ;xj, x

′
j) ∶= (Trj+1 . . .TrNFN)(x1, x

′
1; . . . ;xj, x

′
j)

∶= ∫
Rd(N−j)

FN(x1, x
′
1; . . . ;xj, x

′
j;xj+1, xj+1; . . . ;xN , xN)dxj+1⋯dxN .(2)

It will be convenient for the sequel to rewrite (1) in the following operator form10

(3) ∂tF
N = (KN + V N)FN

where KN , V N are operators on L1(L2(RNd)) defined by11

(4) KN = 1

ih̵
[−h̵

2

2
∆RdN , ⋅], V N = 1

2N
∑
k,l

Vk,l with Vk,l ∶=
1

ih̵
[V (xk − xl), ⋅].

The self-adjointness of HN implies that12

(5) ∥et(KN+V N)∥L1(L2(Rd))→L1(L2(Rd)) = ∥etKN∥L1(L2(RNd))→L1(L2(RNd)) = 1, t ∈ R.

We will denote13

(6) L ∶= L1(L2(Rd)) so that L⊗n = L1(L2(Rnd)), n = 1, . . . ,N,

and, with a slight abuse of notation,14

(7)

⎧⎪⎪⎨⎪⎪⎩

∥⋅∥1 the trace norm on any L⊗j,

∥⋅∥ the operator norm on any L(L⊗i,L⊗j)

for i, j = 1, . . . ,N (here L(L⊗i,L⊗j) is the set of bounded operators form L⊗i to L⊗j).15
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A density matrix F n ∈ L⊗n is called symmetric if its integral kernel F n(x1, x′1; . . . ;xn, x
′
n)

is invariant by any permutation

(xi, x′i)↔ (xj, x′j), i, j = 1, . . . , n.

Note that the symmetry of FN is preserved by the equation (1) due to the particular1

form of the potential.2

We define, for n = 1, . . . ,N ,3

(8) Dn = {F ∈ L⊗n ∣ F > 0, ∥F ∥1 = 1 and F is symmetric}.
Note that FN

j ∈ L⊗j (FN
0 = 1 ∈ L⊗0 ∶= C) and FN

j > 0, ∥FN
j ∥1 = ∥FN∥1, and obviously

FN
j is symmetric as FN . That is to say:

FN
j ∈ Dj.

The family of j-marginals, j = 1, . . . ,N , is solution of the BBGKY hierarchy of4

equations (see [28] and also [1])5

(9) ∂tF
N
j = (Kj + Tj

N
)FN

j + (N − j)
N

Cj+1F
N
j+1

where:6

(10) Kj = 1

ih̵
[−h̵

2

2
∆Rjd, ⋅]

7

(11) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vi,r

and8

(12) Cj+1F
N
j+1 =

j

∑
i=1

Ci,j+1F
N
j+1

with9

Ci,j ∶ L⊗(j+1) → L⊗j

Ci,j+1FN
j+1 = Trj+1 (Vi,j+1F

N
j+1) ,(13)

where Trj+1 is the partial trace with respect to the (j + 1)th variable, as in (2).10

Note that, for all i ≤ j = 1, . . . ,N ,11

(14) ∥Tj∥ ≤ j2∥V ∥L∞
h̵

, and ∥Ci,j+1∥ ≤
∥V ∥L∞
h̵

.

(meant for ∥Tj∥L⊗j→L⊗j and ∥Ci,j+1∥L⊗(j+1)→L⊗j in accordance with (7)).12
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The Hartree equation is1

(15) ih̵∂tF = [−h̵
2

2
∆ + VF (x), F ], F (0) ∈ D1,

where VF (x) = ∫Rd V (x − y)F (y, y)dy, F (y, y′) being the integral kernel of F .2

Note that (15) reads also3

(16) ∂tF =K1F +Q(F,F ),

with4

(17) Q(F,F ) = Tr2(V1,2(F ⊗ F )).

Since V is bounded, (15) has for all time a unique solution F (t) > 0 and ∥F (t)∥1 = 15

(see again [28] and [1]).6

In order to define the correlation error in an easy way, we need a bit more of notations7

concerning the variables of integral kernels.8

For i ≤ j = 1, . . . ,N, we define the variables zi = (xi, x′i), and Zj = (z1, . . . , zj). For9

{i1,⋯, ik} ⊂ {1,⋯, j}, we denote by Z
/{i1,⋯,ik}
j ∈ R2(j−k)d, the vector Zj ∶= (z1, . . . , zj)10

after removing the components zi1, . . . zik.11

Definition 2.1. For any j = 1, . . . ,N , we define the correlation error Ej ∈ L⊗j by its12

integral kernel13

(18) Ej(Zj) =
j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

(−1)kF (zi1) . . . F (zik)FN
j−k(Z

/{i1,⋯,ik}
j ).

By convention and consistently we set14

(19) FN
0 = ∥F ∥1 = 1,E0 ∶= 1 ∈ L⊗0 ∶= C.

In [26] it was shown that (18) is inverted by the following equality:15

(20) FN
j (Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (zi1) . . . F (zik)Ej−k(Z/{i1,⋯,ik}
j ), j = 0, . . . ,N.

i.e. FN
j is the operator of integral kernel given by (20).16

Theorem 2.4, Theorem 2.1 and Corollary 2.2 in [26] state the following facts, among17

others.18
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The kinetic errors Ej, j = 1, . . . ,N, satisfy the system of equations1

∂tEj = (Kj + 1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D−1

j Ej−1 +D−2
j Ej−2,(21)

where the operators Dj,D1
j ,D

−1
j ,D

−2
j , j = 0, . . . ,N , are defined at the beginning of the2

Section 4, formulas (42)-(45).3

We note that the operators Dα
j , α = 1,−1,−2 map functions of j + α variables into4

functions of j variables.5

Theorem 2.2 (out of Theorem 2.2. and Corollary 2.3 in [26]).6

Let Ej(0) satisfy for some C0 > 17

(22) ∥Ej(0)∥1 ≤ Cj
0 ( j

√
N
)
j
, j ≥ 1.

Then, for all t > 0 and all j = 1, . . . ,N , one has8

(23) ∥Ej(t)∥1 ≤ (C2e
C1t∥V ∥L∞

h̵ )
j

( j
√
N
)
j
, j ≥ 1.

for some C1 > 0, C2 ≥ 1 explicit (see Theorem 2.2 in [26]),9

Let us suppose moreover that the initial data for (1) is FN(0) = F (0)⊗N and F (t) is10

the solution of (15) with initila data F (0). Then11

(24) ∥FN
j (t) − F (t)⊗j∥1 ≤D2e

D1t∥V ∥L∞
h̵

j2

N
,

where D2 = sup{B2, (eC0)2},B1 = sup{B1,2C1}, B1,B2 being taken in Theorem 2.2 in12

[26] at the value B0 = 0).13

3. Asymptotic expansion and main result14

15

Two questions arise naturally:16

(1) are the estimates (23) sharp?17

(2) Could (24) be improved with a r.h.s. of any order we wish?18
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Of course, defining FN,n
j (t), n = 1, . . . , j, by its integral kernel FN,n

j (Zj) =1

j

∑
k=j−n

∑
1≤i1<⋅⋅⋅<ik≤j

F (zi1) . . . F (zik)Ej−k(Z/{i1,⋯,ik}
j ), we get by (20), (23) and (24) that,2

for any n ≤ j, ∥FN
j (t) − FN,n

j ∥ = O(N−(n+1)/2). However one cannot go further in3

the approximation that is, in any case useless without the knowledge of the true4

Ejs.5

As we will see later on, one of our main results states that, not only estimates (23)6

are true, but Ej(t) ∶= N j/2Ej(t) has a full asymptotic expansion in positive powers of7

( 1
N ) 1

28

More precisely we will show that, under the hypothesis (22) on the initial data, and9

for all time t and all j = 1, . . . ,N , there exist sequences (E `j(t))`∈N such that10

(25) Ej(t) ∼
∞

∑
`=0

E `j(t)N−`/2

(in the sense that for all k ∈ N, ∥Ej(t) −
k

∑
`=0
E `j(t)N−`/2∥1 = o(N−k/2)).11

In fact part of our results will deal with coefficients E `j(t) which will happen to have12

a (bounded) dependence2 on N . To avoid any ambiguity with respect to this fact, we13

precise the meaning of ∼ in (25) we consider in this paper:14

E ∼
∞

∑
k=0
EkNN−k

2

⇕
∀n ≥ 0,∃Nn ∈ N,En,Cn > 0 such that

∀N ≥ Nn, ∣EnN ∣ ≤ En and ∥E −
n

∑
k=0
EkNN−k

2 ∥1 ≤ CnN−k+1
2 .

Of course, whatever is the dependence on N of the coefficients Ek, the important point15

is to construct an approximation of Ej(t) valid up to any order in N− 1
2 .16

The coefficients E `j can be determined as solutions of a partial differential equa-17

tion which can be solved recursively. More than that, E `j(t) turn out to be explicitly18

computed in terms of a perturbative expansion, after the knowledge of the lineariza-19

tion of the mean-field equation (15) around the solution of (15) with initial condition20

F (0) = (FN(0))1 which will be discussed in detail later on.21

2Let us remark that this situation is standard in perturbation theory, e.g. in KAM theory where the well known Arnold cut-off introduces

such a dependence in the perturbation parameter.
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The starting point of our analysis is the evolution equation for Ej(t), obtained by1

the substitution Ej = N−j/2Ej in (21):2

(26) ∂tEj =HjEj +N− 1
2∆+

j Ej+1 +N− 1
2∆−

j Ej−1 +∆=
jEj−2

where3

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Hj = Kj + Tj
N +Dj(t)

∆+
j = D1

j

∆−
j = ND−1

j

∆=
j = ND−2

j

the D′
js being given by formulas (42)-(45) below. It follows that Hj,∆+

j ,∆
−
j ,∆

=
j act on4

functions of j, j + 1, j − 1, j − 2 particles, namely L⊗j,L⊗j+1,L⊗j−1,L⊗j−2.5

Inserting the expansion (25) into (26) we find for (Ekj (t))j=1,...,N,k=0,... the following6

sequence of equations7

(28) ∂tEkj =HjEkj +∆=
jEkj−2 +∆+

j Ek−1
j+1 +∆−

j Ek−1
j−1

with the convention,8

(29) Ek0 (t) = δk,0, Ek−1(t) = Ek−2(t) = E−1
j (t) = 0

and the ones inherited from (46).9

(28) can be solved recursively. Indeed we realize that10

(30) ∂tE0
j =HjE0

j +∆=
jE0

j−2

can be solved by iteration in j (note that E0
1(t) = 0). Thus knowing E0

j , we can also11

solve12

(31) ∂tE1
j =HjE1

j +∆=
jE1

j−2 +∆+
j E0

j+1 +∆−
j E0

j−1.

by iteration in j and so on.13

However we will see below that the computation of Ekj (t) depends actually only on Ek′j′14

k′ ≤ k, j′ ≤ j+k through a number of operations depending only on j and k independent15

of N .16

We now introduce the two-parameter semigroup defined by17

∂tUj(t, s) = Hj(t)Uj(t, s).(32)

Uj(s, s) = I.
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The existence of Uj(t) is guaranteed by the classical theory of perturbation of semi-1

group, Kj generating an isometric semigroup and
Tj
N and Dj(t) being bounded. More-2

over, let us define U(t, s) as the linearisation of the Hartree flow around F (t), namely3

∂tU(t, s) = (K1 +∆1))U(t, s), ∆1 ∶= Q(⋅, F (t)) +Q(F (t), ⋅)(33)

U(s, s) = I.

We will see in Section 4.3 that Uj(t, s), when acting on symmetric states, is a per-4

turbation of U(t, s)⊗j, and can be explicitly computed out of U(t, s) by a convergent,5

entire, expansion in j2

N
∥V ∥

h̵ . In particular, we’ll see that expansions of Uj(t, s) up to any6

power of 1
N can be explicitly obtained under the only knowledge of the linearisation of7

the Hartree flow around F (t).8

Using of this semigroup Uj(t, s) leads immediately to solving (28) by the family of9

relations:10

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ekj (t) = Uj(t,0)Ekj (0)
+ ∫

t
s=0Uj(t, s)(∆=

jEkj−2(s) +∆+
j Ek−1

j+1 (s) +∆−
j Ek−1

j−1 (s))ds,
Ek0 (t) = δk,0,

∆−
1 (E0

0) ∶= −Q(F,F ),
∆=

2 (E0
0) ∶= T1,2(F ⊗ F ) −Q(F,F )⊗ F − F ⊗Q(F,F ),

Ek−1(t) = Ek−2(t) = E−1
j (t) = 0 by convention.

We are now in position of stating the main results of the present paper.11

Theorem 3.1. Consider for j = 0, . . . ,N, k = 0, . . . , t ≥ 0 the system of recursive12

relations (34). Then, for all t, s ∈ R, the knowledge of Uj(t, s) (see Remark 3.6 below)13

makes true the following14

(i) Ekj (t) is explicitly determined by Ek′j′ (0), j′ ≤ j + k, k′ ≤ k15

(ii) Ekj (t) = 0 if Ekj (0) = 0, for all j, k, j + k odd16

(iii) Let Ej(t) be the solution of (28) with the condition ∥Ej(0)∥ ≤ (Aj2)j/2 for some17

A > 1. Let us take moreover Ekj (0) = δk,0Ej(0) (concerning this hypothesis, see18

Remark 3.6 below). Then the following estimate holds true19

(35) ∥Ej(t) −
2n

∑
k=0

N−k/2Ekj (t)∥1 ≤ L2n(t)N−n− 1
2(L′2n(t)j2)j/2,

where Lk(t), L′k(t) are defined in (57) below and satisfy, as k, ∣t∣→∞,20

(36) logLk(t) = 3k
2 (log k + ∣t∣∥V ∥∞

h̵ ) +O(k + ∣t∣∥V ∥∞
h̵ ) and logL′k(t) = O(k + ∣t∣∥V ∥∞

h̵ ).
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The proof of the theorem is given in Sections 4.1 and 4.2.1

Note that the estimate (36) gives that Len(t) ∼ (2n)3n as n→∞ so that, as expected2

in perturbation theory, the bound (35) does not provide convergence of the series3

∞

∑
k=0
N−k/2Ekj (t).4

Let us set, for j = 1, . . . ,N, n = 0, . . . , Ekj (0) = δk,0Ej(0) and5

(37) En
j (t) =

2n

∑
k=0

N−
j+k
2 Ekj (t)

and FN,n
j (t) the operator of integral kernel FN,n

j (t)(Zj) defined by6

(38) FN,n
j (t)(Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)En
j−k(Z

/{i1,⋯,ik}
j ),

(that is (20) truncated at order n).7

Theorem 3.2. Let FN(t) the solution of the quantum N body system (1) with initial8

datum FN(0) = F⊗N , F ∈ L(L2(Rd)), F ≥ 0,TrF = 1, and F (t) the solution of the9

Hartree equation (15) with initial datum F .10

Then, for all n ≥ 0 and N ≥ 4(e
√
L′2n(t)j)2,11

∥FN
j (t) − FN,n

j (t)∥1 ≤ N−n− 1
2

2L2n(t)e
√
L′2n(t)j√

N
.

Moreover the expansion of FN,n
j (t) contains only integer powers of 1

N .12

Remark 3.3. The condition of factorization of the initial condition FN(0) = F⊗N ,13

equivalent to Ej(0) = δj,0, is not necessary. It can be mildly modified by taking any14

Ej(0) satisfying (22) and the associated sequence Ej(0). We leave to the interested15

reader the elaboration of the precise corresponding statements out of Theorem 3.1.16

Proof. The proof is similar to the one of Corollary 2.2 in [26].17

The fact that En
j (t), and therefore FN,n

j (t) contains only integer powers of 1
N comes18

from the fact that the factorization of FN(0) implies that Ekj (0) = δk,0δj,0 and therefore19

Ekj (0) = Ekj (t) = 0 for j + k odd.20
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Moreover1

∥FN
j (t) − FN,n

j (t))∥1

≤
j

∑
k=0

( j

j − k)∥Ek −En
k ∥1 ≤ N−n− 1

2

j

∑
k=1

(j
k
)L2n(t)(

L′2n(t)k2

N
)
k/2

≤ N−n− 1
2L2n(t)

j

∑
k=1

j(j − 1) . . . (j − k + 1)
⎛
⎝

√
L′2n(t)√
N

⎞
⎠

k
kk

k!

≤ N−n− 1
2L2n(t)

j

∑
k=1

⎛
⎝
je

√
L′2n(t)√
N

⎞
⎠

k

≤ N−n− 1
2

2L2n(t)e
√
L′2n(t)j√

N

for N ≥ 4(e
√
L′2n(t)j)2 (we used that E0(t) = En

0 (t) = 1 and kk

k! ≤ ek√
2πk

). �2

Let us remark that, under the hypothesis of Theorem 3.2, (37) gives that En
j (t) =3

O(N−2) for j > 2, En
0 (t) = 1, En

1 (t) = N−1E1
1(t) + O(N−2) and En

2 (t) = N−1E0
2(t) +4

O(N−2).5

Therefore, keeping in FN,1
j (t), given by (38), only the terms k = j − 1, j − 2, and6

defining G−1
1 (t) = E1

1(t), G−1
2 (t) = E0

2(t) and G−1
j (t), j > 2, by its integral kernel7

G−1
j (t)(Zj) = ∑

1≤i1<⋅⋅⋅<ij−2≤j
F (t)(zi1) . . . F (t)(zij−2)E0

2(Z
/{i1,⋯,ij−2}
j )

+ ∑
1≤i1<⋅⋅⋅<ij−1≤j

F (t)(zi1) . . . F (t)(zij−1)E1
1(Z

/{i1,⋯,ij−1}
j ),

we get, by Theorem 3.2, that8

FN
j (t) − F (t)⊗j = 1

N
G−1
j (t) +O(N−3/2).

For j = 1,2, G−1
j (t) ≠ 0 by Lemma 4.6 below.9

For j > 2, let us pick-up a neighbourhood Ω ⊂ R ×R2d such that the integral kernel

∣F (t)(z)∣ ≥D > 0. We get that, ∀(t, z) ∈ Ω, j > 2,

G−1
j (t)(z, . . . , z) = F (t)(z)j−2(( j

j−2)E0
2(t)(z, z) + ( j

j−1)F (t)(z)E1
1(t)(z)),

so that G−1
j (t)(z, . . . , z) = 0 would imply that F (t)(z)E1

1(t)(z) = −(j − 2)E0
2(t)(z, z),

incompatible with (28). Therefore, for all j = 1, . . . ,

∥FN
j (t) − F (t)⊗j∥1 =

1

N
∥G−1

j (t)∥1 +O(N−3/2) ≥ CN−1, C > 0, for N large enough,

and we get the following by-product.10

Corollary 3.4. The rate of convergence to the mean-field limit in 1
N is optimal.11
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As we mentioned already, Uj(t, s) is given by a convergent perturbative expansion1

out of U(t, s)⊗j where U(t, s) is the flow generated by the linearization of the Hartree2

equation around its solution F (t).3

More precisely, let ∆̃j = 1
NTj +Dj − ∆j and, for n ∈ N, let us define the truncated4

Dyson expansion of Uj(t, s) as5

Un
j (t, s) =(39)

2n+1

∑
k=0
∫

t

s
dt1...∫

t2n

s
dt2n+1U(t, t1)⊗j∆̃j(t1)U(t1, t2)⊗j∆̃j(t2) . . . U(t2n, t2n+1)⊗j.

For α ∈ (0, 1
2), n ∈ N, let us define FN,n,α

j (t) as the operator of integral kernel6

FN,n,α
j (t)(Zj) given by7

(40) FN,n,α
j (t)(Zj) =

j

∑
k=j−[

n+1/2
α ]

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)E
n,n
j−k(Z

/{i1,⋯,ik}
j ),

with the convention Ej−k = 0 for j − k < 0, and En,n
j (t) ∶= N−

j
2

2n

∑
k=0
N−k

2Ek,nj (t) where8

Ek,nj (t) are the explicit solutions of the recurrence relations9

(41)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ek,nj (t) = Un
j (t,0)E

k,n
j (0)

+ ∫
t
s=0U

n
j (t, s)(∆=

jE
k,n
j−2(s) +∆+

j E
k−1,n
j+1 (s) +∆−

j E
k−1,n
j−1 (s))ds,

Ekj (0) = δk,0Ej(0)
with the same conventions as in (34) (Un

j (t, s) is defined in (39)).10

Obviously the solution of (41) satisfies the items (i) − (ii) of Theorem 3.1 and the11

statements of Proposition 4.1.12

Theorem 3.5. Let α ∈ (0, 1
2) and C > 0. Then, under the same hypothesis as in13

Theorem 3.2, one has, for any n ∈ N, t ∈ R and j ≤ CN 1
2
−α,14

∥FN
j (t) − FN,n,α

j (t)∥1 ≤Mn,α,C,tN
−n− 1

2

for all N > Nn,α,C.t (Mn,α,C,t and Nn,α,C.t are given in (85)).15

Note that the expansion of FN,n,α
j (t) contains again only integer powers of 1

N and, by16

the construction of Un
j and Proposition 4.1, its explicit computation involves a finite17

number of operations depending only on j and n (and not in N) and the only knowledge18

of F (t) and the solution of the Hartree equation linearized around it.19

The proof of the theorem is given in Section 4.3.20
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Remark 3.6. [Nature of the expansion in 1
N ] In the asymptotic expansion Ej(t) ∼1

∞

∑
k=[(j+1)/2]

cjk(t)N−k the coefficients cjk(t), such as each coefficient Ekj (t), depend on N2

as well: first by the dependence in N of ∆+
j = (1 − j

N )Cj+1 and also by the dependence3

in N of Uj(t, s) defined by (32). Moreover, since the condition ∥Ej(0)∥1 ≤ (Aj2)j/24

in Theorem 3.1 is a condition only on the size, all the results of this paper hold true5

under any dependence of Ej(0), that is of FN(0), on N . In particular, this allows to6

reincorporate in Ej(0) all the terms Ekj (0)N−1/2, k = 1 . . . , as done in the second item7

of Theorem 3.1.8

4. Proofs of Theorems 3.1 and 3.59

Let us first recall from [26] the expression of the ingredients present in equation (21):10

For any operator G ∈ L⊗n, n = 1, . . . ,N ,G(Zn) denotes its integral kernel and, for11

any function F (Zn), n = 1, . . . ,N , F (Zn)
⋀

is defined as the operator on L⊗n of integral12

kernel F (Zn). Moreover J ∶= {1, . . . , j}.13

Dj ∶ L⊗j → L⊗j

Ej ↦
N − j
N

∑
i∈J

Ci,j+1 (F (zi)Ej(Z/{i}
j+1 )
⋀

+ F (zj+1)Ej(Zj)
⋀

)(42)

− 1

N
∑
i≠l∈J

Ci,j+1F (zl)Ej(Z/{l}
j+1 )
⋀

D1
j ∶ L⊗(j+1) → L⊗j

Ej+1 ↦
N − j
N

Cj+1Ej+1(43)

D−1
j ∶ L⊗(j−1) → L⊗j

Ej−1 ↦
1

N
∑
i,r∈J

Ti,rF (zi)Ej−1(Z/{i}
j )
⋀

− j

N
∑
i∈J

Q(F,F )(zi)Ej−1(Z/{i}
j )
⋀

(44)

− 1

N
∑
i≠l∈J

Ci,j+1F (zl)F (zj+1)Ej−1(Z/{l}
j )
⋀

− 1

N
∑
i≠l∈J

Ci,j+1F (zl)F (zi)Ej−1(Z/{i,l}
j+1 )
⋀
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and1

D−2
j ∶ L⊗(j−2) → L⊗j

Ej−2 ↦
1

N
∑
i,s∈J

Ti,sF (zi)F (zr)Ej−2(Z/{i,r}
j )
⋀

(45)

− 1

N
∑
i≠l∈J

Q(F,F )(zi)F (zl)Ej−2(Z/{i,l}
l )
⋀

,

where, by convention,2

(46)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D1
N ∶=D−2

1 ∶= 0

D−1
1 (E0) ∶= − 1

NQ(F,F ) ,
D−2

2 (E0) ∶= 1
N (T1,2(F ⊗ F ) −Q(F,F )⊗ F − F ⊗Q(F,F )) .

In (42)-(45), F (z) is meant as being the integral kernel of F (t), solution of the Hartree3

equation (15).4

4.1. Recursive construction and proof of Theorem 3.1 (i)-(ii). Specializing (34)5

to k = 0, we get immediately that (we recall E0
0(t) = 1)6

(47) E0
j (t) = Uj(t,0)E0

j (0) +Uj(t,0)∫
t

0
Uj(0, s)∆=

jE0
j−2(s)ds, j ≥ 1,

with the convention Ekl = 0, l < 0, and ∆=
2 (E0

0) ∶= T1,2(F⊗F )−Q(F,F )⊗F −F⊗Q(F,F ).7

Therefore, for j = 1, . . . ,N, t ∈ R, the knowledge of Uj(t, s), ∣s∣ ≤ ∣t∣, and E0
j′(0) for8

j′ = 1, . . . , j guarantees the knowledge of E0
j′(t), t ∈ R, j′ ≤ j. We write this fact as9

(48) (E0
j′(0))j′=1,...,j ↝ (E0

j′(t))t∈R,j′=1,...,j

Since Ek−1(t) = 0 by convention and Ek0 (t) = 0 for k ≥ 1 since E0(t) ∶= 1, we find after10

(48) that E1
1(t) and E1

2(t) are determined by E1
1(0) and E1

2(0). Therefore, by (34),11

E1
j (t), j = 1, . . . ,N are determined by (E1

j (0))j=1,...,N , and determine E2
1(t) and E2

2(t).12

These ones determine in turn all the E2
j (t), j = 1, . . . ,N and so on.13

Therefore, the knowledge of (Ek′j′ (s))∣s∣≤∣t∣,k′≤k−1,j′=1,...,j+1 and Ekj (0) guarantees for all14

j, k, by induction, the knowledge of Ekj (t). Thus15

((Ekj (0), (Ek
′

j′ (s))∣s∣≤∣t∣,k′≤k−1,j′=1,...,j+1)↝ (Ek′j′ (s))∣s∣≤∣t∣,k′≤k,j′=1,...,j.

Supposing now (Ek′j′ )k′≤k,j′≤j known,16

(Ek′j′ (s))s≤t,k′≤k−2,j′=1,...,j+2 ↝ (Ek′j′ (s))s≤t,k′≤k−1,j′=1,...,j+1 ↝ Ekj (t).

and by iteration17

(E0
j′(s))s≤t,j′=1,...,j+k ↝ Ekj (t)
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so that, by (48),1

(E0
j′(0))j′=1,...,j+k ↝ Ekj (t).

We just proved the following result.2

Proposition 4.1. For any j = 1, . . . ,N, t ≥ 0, k = 0, . . . , let Ekj (t) be the solution of (34).3

Then Ekj (t) is determined by the values Ek′j′ (0) for 0 ≤ k′ ≤ k, 1 ≤ j′ ≤ j + k. Moreover4

the number of operations leading to Ekj (t) depends on j and k, but is independent of5

N .6

Formula (34) will give easily the following result.7

Proposition 4.2. Let Ek′j′ (0) = 0 for j′ ≤ j, k′ ≤ k, j′ + k′ odd. Then Ekj (t) = 0 for j + k8

odd.9

Proof. Let us suppose Ek′j′ (0) = 0 for j′ ≤ j, k′ ≤ k, j′ + k′ odd. By (34) we have that10

E0
1(t) = 0 since E0

1(0) = 0. Therefore, by induction on j in (34), E0
j (t) = 0 for all j odd.11

Since E0(t) ∶= 1, E j0(t) = 0, j > 0, so that E1
2(t) = 0 by (34) and therefore E1

j (t) = 0 for12

all j even, since then j ± 1 is odd, and therefore E0
j±1(s) = 0 . This gives E2

1(t) = 0 by13

(34) and so on. �14

Propositions 4.1 and 4.2 are precisely the contents of the two first items of Theorem15

3.1.16

4.2. Estimates and proof of Theorem 3.1 (iii). In order to simplify the expres-17

sions, we will first suppose that ∥V ∥L∞
h̵ = 1.18

Note that one has therefore the following estimates:19

(49) ∥Dj∥, ∥∆1
j∥ ≤ j and ∥∆−

j ∥, ∥∆=
j∥, ∥∆−

1(E0)∥, ∥∆=
2(E0)∥ ≤ j2.

Let us first recall that (21) expressed on the Ejs reads20

(50) ∂tEj =HjEj +N− 1
2∆+

j Ej+1 +N− 1
2∆−

j Ej−1 +∆=
jEj−2

and that (22) and (23) can be rephrased as21

(51) ∥Ej(0)∥ ≤ (Aj2)j/2 Ô⇒ ∥Ej(t)∥ ≤ (Atj
2)j/2, At = C ′AeCt

for some explicit constants C ′,C.22

Furthermore for the reader’s convenience we recall the equations for Ekj (t)23

(52) ∂tEkj (t) =Hj(t)Ekj (t) +∆=
jEkj−2(t) +∆+

j Ek−1
j+1 (t) +∆−

j Ek−1
j−1 (t)
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. Calling Ēnj =
n

∑
k=0
N−k/2Ekj , one easily check that1

∂tĒnj (t) = Hj(t)Ēnj (t) +∆=
j Ēnj−2(t) +N− 1

2(∆+
j Ēnj+1(t) +∆−

j Ēnj−1(t))
−N−n+1

2 (∆+
j (Enj+1(t)) +∆−

j (Enj−1(t)).(53)

Therefore Rn
j ∶= Ej − Ēnj satisfies the equation2

∂tR
n
j (t) = Hj(t)Rn

j (t) +∆=
jR

n
j−2(t) +N− 1

2(∆+
jR

n
j+1(t) +∆−

jR
n
j−1(t))

+N−n+1
2 (∆+

j (Enj+1(t)) +∆−
j (Enj−1(t))(54)

Let us define the mapping

Uj(t, s) ∶ (Ej(s))j=1,...,N ↦ Uj(t, s)((Ej(s))j=1,...,N) ∶= Ej(t).

In other words, the family (Uj(t, s))j=1,...,N solves the equation:3

∂tUj(t, s) = Hj(t)Uj(t, s) +∆=
jUj−2(t, s)

+N− 1
2(∆+

jUj+1(t, s) +∆−
jUj−1(t, s)),

Uj(s, s) = I.

Hence, the solution of (54) reads4

Rn
j (t) = Uj(t,0)((Rn

j (0))j=1,...,N)

+ N−n+1
2 ∫

t

0
Uj(t, s)((∆+

j (s)Enj+1(s)) +∆−
j (s)Enj−1(s))j=1,...,Nds(55)

with again the same convention on negative indices.5

By hypothesis, Rn
j (0) = 0 since Enj (0) = δn,0E0

j (0).6

Let us suppose now that7

(56) ∥∆+
j (Enj+1(s)) +∆−

j (Enj−1(s)∥1 ≤ Cn(s)(C ′
n(s)j2)j/2, ∣s∣ ≤ ∣t∣,

for two increasing functions Cn(s),C ′
n(s),C ′

n(s) ≥ 1, Then (51) implies that

∥Uj(t, s)((∆+
j (s)Enj+1(s)) +∆−

j (s)Enj−1(s))j=1,...,N)∥1 ≤ Cn(s)(C ′C ′
n(s)eC ∣t∣j2)j/2,

and thus8

∥Ej(t) − Ēnj (t)∥1 = ∥Rn
j (t)∥1

= ∥∫
t

0
Uj(t, s)((∆+

j (s)Enj+1(s)) +∆−
j (s)Enj−1(s))j=1,...,N)ds∥1

≤ N−n+1
2 Ln(t)(L′n(t)j2)j/2,

where9

(57) Ln(t) = tCn(t) and L′n(t) = C ′C ′
n(t)eC ∣t∣.
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It remains to prove an estimate like (56).1

We will obtain such an estimate by iterating (34). We first remark that, since eK
j+Tj/N2

is unitary and ∥Dj∥ ≤ j, the Gronwall Lemma gives that3

(58) ∥Uj(t, s)∥ ≤ ej∣t−s∣.

We will use4

m

∏
i=0

e(j+i)(ti−ti+1) ≤ e(j+m)∣tm+1−t0∣ for any (ti)i=0,...,m (see [26]),(59)

∥∆±∥, ∥∆=∥ ≤ j2,(60)

∫
t

0
dt1∫

t1

0
dt2 . . .∫

tn−1

0
dtn =

tn

n!
.(61)

Let us remind that we have

Ek0 (t) = δk,0, Ekj (0) = δk,0Ej(0)

together with the estimate ∥Ej(0)∥ ≤ (Aj2)j/2.5

(52) reads:6

(62)

⎧⎪⎪⎨⎪⎪⎩

E0
j (t) = Uj(t,0)E0

j (0) + ∫
t
s=0Uj(t, s)∆=

jE0
j−2(s)ds,

Ekj (t) = ∫
t

0 Uj(t, s)(∆=
jEkj−2(s) +∆+

j Ek−1
j+1 (s) +∆−

j Ek−1
j−1 (s))ds, k ≥ 1.

Let us note first that (52) for k = 0, namely7

(63) ∂tE0
j (t) =Hj(t)E0

j (t) +∆=
jE0

j−2(t)

is verbatim (21)

∂tEj = (Kj + 1

N
Tj)Ej +DjEj +D1

jEj+1 +D−1
j Ej−1 +D−2

j Ej−2,

after replacing Ej by N−
j
2E0
j and D±1

j by 0. On the other side, it was explained in8

Remark 3.2 in [26], that the proof of Theorem 2.1 in [26], Theorem 2.2 in the present9

paper, depends on D±
j only through the bounds their norms have to satisfy. These10

bounds are, after (49) and (27), ∥D1
j∥ ≤ j, ∥D−1

j ∥ ≤ j2

N , obvioulsy satisfied by D±1
j = 0.11

Therefore the conclusion of (the first part of) Theorem 2.2 holds true and we get12

(64) ∥E0
j (t)∥1 ≤ (C ′AeC ∣t∣j2)j/2.

Thus we get, by (58), (60) and the inequality jλ ≤ ejλ/e, λ > 0, that13

(65) ∥∫
t

0
Uj(t, s)(∆+

j E0
j+1(s) +∆−

j E0
j−1(s))ds∥1 ≤ 2∣t∣(C ′Ae4/ee(C+1)∣t∣j2)j/2,
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Moreover Ê1
j ∶= ∫

t
0 Uj(t, s)(∆=

jE1
j−2(s))ds is again solution of (63) so that

∥Ê1
j (t)∥1 ≤ (C ′AeC ∣t∣j2)j/2

so that, by (62) and (65), we get that, for j odd,1

(66) ∥E1
j (t)∥1 ≤ (1 + 2∣t∣)(C ′Ae4/ee(C+1)∣t∣j2)j/2.

For k > 1 we will estimate ∥Ekj (t)∥1 by iterating (62) M times, we will end up with the2

sum of 3M terms involving the values Ek−s−uj−2r+s−u for any (r,s,u) such that M = r + s + u3

with the two constraints k−s−u ≥ 0, j−2r+s−u ≥ 0. Actually s, r, u are the numbers4

of operators ∆+,∆=,∆− occurring respectively in the term under consideration.5

Using the first constraint we see that

j − 2r + s − u ≤ j − 2r + k ≤ j − 2(M − k) + k = j − 2M + 3k.

So that, taking M = [(j + 3k)/2], the second constraint reduces to j −2r+ s−u = 0 and6

the first one to s + u = k since Ek0 = δk,0.7

We easily (and very roughly) estimate, using respectively M = [(j + 3k)/2], (61),8

(59) and (60),9

∥Ekj (t)∥1 ≤ 3(j+3k)/2 ∣t∣(j+3k)/2

((j + 3k)/2)!e
3(j+k)∣t∣/2((j + k)2) j+3k2

so that, using (1 + k/j)j ≤ ek, jλ ≤ ejλ/e, λ > 0 and n! ≥ nne−n 3, we get10

∥Ekj (t)∥1 ≤ (2∣t∣e∣t∣+
5
3(3 + k))3k/2(3e6k/e∣t∣e3∣t∣j2)j/2, k > 1

and, for all k ≥ 0, using (65),11

(67) ∥Ekj (t)∥1 ≤ (2∣t∣e∣t∣+
5
3(3 + k))3k/2((3e

6k
e ∣t∣e3∣t∣ + ∣t∣C ′Ae4/ee(C+1)∣t∣)j2)j/2.

We conclude by (60): for some constants Ck(s),C ′
k(s), we have12

(68) ∥∆+
j (Ekj+1(s)) +∆−

j (Ekj−1(s))∥1 ≤ Ck(s)(C ′
k(s)j2)j/2.

Remark 4.3. In the estimate of ∥Ekj (t)∥1 the dangerous term is ∆+
j Ek−1

j+1 which increases13

the number of particles. However k is simultaneously decreasing so that we can stop the14

iteration after a finite number of steps thus avoiding the usual short time assumption15

necessary for a full iteration procedure.16

3although the argument is quite standard, let us recall it: logn! =
n

∑
j=2

log j ≥ ∫ n1 log(x)dx = [x logx − x]n
1
= n logn − n + 1.
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After restoring the dependence in ∥V ∥L∞
h̵ by the same argument as in [26], Section 3,1

namely a rescaling of the time and the kinetic part of the Hamiltonian, we find2

(69)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ck(s) = 4e(2 ∣s∣∥V ∥L∞
h̵ e

∣s∣∥V ∥L∞
h̵ k)3k/2

×(3e
6k+4
e

∣s∣∥V ∥L∞
h̵ e3

∣s∣∥V ∥L∞
h̵ +C ′AeC

∣s∣∥V ∥L∞
h̵ )1/2

C ′
k(s) = (3e

6k
e

∣s∣∥V ∥L∞
h̵ e3

∣s∣∥V ∥L∞
h̵ + ∣s∣∥V ∥L∞

h̵ C ′Ae4/ee(C+1)
∣s∣∥V ∥L∞

h̵ )e6/e

Therefore (56) is satisfied and Theorem 3.1 is proven.3

The values of the two constants Dn(t),D′
n(t) in (57) can be expressed out of (69)4

by taking, by Theorem 2.2, C = sup (B1,C1),C ′ = sup (B2,C2) where B1,C1,B2,C1,C25

are given in Theorem 2.2. in [26].6

Remark 4.4. We see that the properties (46). . . (49), together with (5), are actually7

the only ones being used in the proof of Theorem 3.1.8

4.3. Computability and proof of Theorem 3.5. The first main result of the present9

paper is Theorem 3.2 which asserts the approximability of FN
j (t), a state of the real10

N -body evolution, in terms of FN,n
j (t), up to an arbitrary accuracy. Of course the11

interest of the result is related to the computability of FN,n
j (t), at least in principle.12

The starting point is obviously the knowledge of the solution of the Hartree equation.13

The second ingredient is the semigroup Uj(t, s) defined by (32). We underline that14

to compute Uj(t, s) we need in principle to solve a j-body problem. But we will show15

now how this problem can be solved by an explicit perturbative expansion up to the16

desired order of accuracy.17

The N -independent part of the computation is the “j-kinetic linear mean-field flow”18

defined by the linear kinetic mean-field equation of order j:19

(70)
d

dt
A(t) = (Kj +∆j(t))A(t), A(0) ∈ L⊗j,

where ∆j(t) = lim
N→∞

Dj(t).20

(70) is solved by the two parameter semigroup U 0
j (t, s) solution of21

∂tU
0
j (t, s) = (Kj +∆j(t))U 0

j (t, s).(71)

U 0
j (s, s) = I.

Note that U 0
j exists since Kj generates a unitary flow and ∆j is bounded.22
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The reason of the terminology comes from the fact that, as shown by (42), ∆1 =1

Q(F, ⋅) +Q(⋅, F ) so that, for j = 1, (70) is the linearization of the mean-field equation2

(15) around its solution F (t): U(t, s) ∶= U 0
1 (t, s) solves (33).3

Note moreover that, for G1,G2 ∈ L,4

∆2(G1G2 +G2G1) = (∆1G
1)G2 +G1(∆1G

2) + (∆1G
2)G1 +G2(∆1G

1).(72)

and therefore5

U 0
2 (t, s)(G1G2 +G2G1) =(73)

(U(t, s)G1)(U(t, s)G2) + (U(t, s)G2)(U(t, s)G1).
More generally, if Pj ∶ L⊗j → L⊗j is any homogeneous polynomial invariant by permu-6

tations,7

(74) U 0
j (t, s)Pj(G1, . . . ,Gj) = Pj(U(t, s)G1, . . . , U(t, s)Gj).

That is: U 0
j drives each Gj along the linearized mean-field flow “factor by factor”.8

Denoting by L⊗j
sym the subspace of symmetric (by permutations) vectors, we just proved9

the following result.10

Lemma 4.5.

U 0
j (t, s)∣L⊗jsym = U(t, s)⊗j.

Note also that, since ∆1A(t) is a commutator, we have that ∂tTrA(t) = 0 when A(t)11

solves (70). Therefore U 0
j (t, s) preserves trace on L⊗j

sym.12

To be more concrete, let us present the explicit computation of the first orders.13

We have14

∂tU(t, s) = 1

ih̵
[−h̵2∆ + VF , U(t, s)] + 1

ih̵
[VU(t,s), F ]

where, in the last term, VU(t,s) acts on E1(s) as VU(t,s)E1(s).15

More generally,16

17

∂tU
0
j (t) =

1

ih̵
[−h̵2∆Rjd + V ⊗j

F , U 0
j (t)] + P (U o

j , F )
where18

(P (U o
j , F )Ej)(Zj) =

∑
i
∫ dx(V (xi − x) − V (x′i − x))(U 0

j (t, s)Ej(Z≠i
j , (x,x))F (xi, x′i),
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that is, denoting by ⋆i the convolution in the variable zi,

(P (U 0
j , F )Ej) =

j

∑
i=1

[V ⋆i (U 0
j (t, s)Ej), F ]i.

Finally1

E0
2(t)(Z2) = ∫

t

0
∫
R2d

dsdZ ′
2U2(t, s)(Z2, Z

′
2)V (x′1 − x′2)F (s)(z′1)F (s)(z′2)dsdZ ′

2

and2

E1
1(t) = ∫

t

0
U1(t, s)Q(F,F )ds

+(1 − 1
N )∫

t

0
∫

s

0
U1(t, s)Tr2[V U2(s, u)V F (u)⊗ F (u)]dsdu(75)

Lemma 4.6. E1
1 and E0

2 don’t vanish identically.3

Proof. By (28) and (34), E0
2(t) = 0 for all t would imply that

T1,2(F ⊗ F ) = Q(F,F )⊗ F − F ⊗Q(F,F ) = 0,

which is wrong. Moreover E1
1(t) = 0 would imply that ∆+

1E0
2 = Q(F,F ), incompatible4

with the fact of applying ∆+
1 to (28) for j = 2. �5

Proof of Theorem 3.5. Let us first note that U 0
j (t, s) is given by a convergent Dyson6

expansion and that, by the isometry of the flow generated by Kj and (49), we have7

by Gronwall’s Lemma that ∥U o
j (t, s)∥ ≤ ej∣t−s∣. Since ∥ 1

NTj +Dj − ∆j∥ ≤ 3ej∣t∣ j
2

N
∥V ∥L∞
h̵ ,8

Uj(t, s) is itself given by a convergent Dyson expansion.9

Let again ∆̃j = 1
NTj +Dj −∆j and Un

j (t, s) be defined by (39).10

We get easily that, for 3e2j∣t∣
∥V ∥L∞
h̵

j2

N
∥V ∥L∞
h̵ ≤ n

2 ,11

(76) ∥Uj(t, s) −Un
j (t, s)∥ ≤ 2

(3e2j∣t∣
∥V ∥L∞
h̵

j2

N
∥V ∥L∞
h̵ )n+1

(n + 1)! ∶= cn,j,tN−n−1.

Indeed, U(t, t′) appearing in the right hand side of (39) is a perturbation of the unitary12

flow generated by K1 +Q(F (t), ⋅). By Q(⋅, F (t)). Since ∥Q(⋅, F (t))∥ ≤ 2∥V ∥L∞
h̵ , U(t, t′)13

can be constructed by a convergent Dyson expansion and we get that ∥U(t, t′)∥ ≤14

e2∣t∣
∥V ∥L∞
h̵ and therefore ∥U(t, t′)⊗j∥ ≤ e2j∣t∣

∥V ∥L∞
h̵ . One gets (76) by estimating the re-15

mainder of the Dyson expansion (39) by16

(77)
∞

∑
k=n+1

(∥U(t,0)⊗j∥1∥∆̃j∥1)k
k!

≤ (∥U(t,0)⊗j∥1∥∆̃j∥1)n+1

(n + 1)!
∞

∑
k=0

(∥U(t,0)⊗j∥1∥∆̃j∥1)k
nk
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Let us define Ek,nj (t) as the solution of (34) where Uj(t, s) is replaced by Un
j (t, s) and1

with ∥Ekj (0)∥ ≤ δk,0(Aj2)j/2. One easily adapt the derivation of (67) in order to get the2

following result.3

Lemma 4.7. Let us rewrite the r.h.s. of (67) as dk,j,t(Aj2)j/2. Then4

∥Ekj (t) − Ek,nj (t)∥1 ≤ (j + k − 1)!cj+k−1
n,j,t dk,j,t(Aj2)j/2N−n−1

Proof. Iterating j + k times the first equality of (34), we get that the difference Ekj (t)−5

Ek,nj (t) is given by the sum of (k + j − 1)! expressions similar to the one for Ekj (t) with6

m Ujs replaced by Uj − Un
j , m = 1, . . . , j + k − 1. Since m ∈ [1, j + k − 1], each such7

expression is bounded by cj+k−1
n,j,α,tN

−n−1 times a similar expression where the Ujs are8

replaced by some Vjs, equals either to Uj or to Uj − Un
j renormalized. That is, in all9

cases, ∥Vj(t, s)∥ ≤ ej∣t−s∣. Since the derivation of (67) uses only (58)-(61), the Lemma10

is proven. �11

Defining Ēn,nj =
n

∑
k=0
N−k/2Ek,nj , Lemma 4.7 gives immediately, since obviously dk,j,t is12

increasing in k, that13

∥Ēnj − Ēn,nj ∥1 ≤ (n + 1)(j + n − 1)!cjn,j,t(max (1, cn,j,t))ndn,j,t(Aj2)j/2N−n−1.

Hence, defining Em,n
j = N−j/2Ēm,nj , we get, using (35) and under the hypothesis of14

Theorem 3.2,15

(78) ∥Ej(t) −En,n
j (t)∥1 ≤ Cn,j,tN−

j
2
−n− 1

2

with16

(79) Cn,j,t = L2n(t)(L′2n(t)j2)j/2 + (n + 1)(j + n − 1)!cjn,j,t(max (1, cn,j,t))ndn,j,t(Aj2)j/2.

For m ≤ j, n ∈ N we denote by FN,≤m
j (t), FN,n,≤m

j (t) and FN,>m
j (t) the operators of17

integral kernel FN,n,≤m
j (t)(Zj) and FN,n,>m

j (t)(Zj) defined respectively by18

(80) FN,≤m
j (t)(Zj) =

j

∑
k=j−m

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)Ej−k(Z
/{i1,⋯,ik}
j ),

19

(81) FN,n,≤m
j (t)(Zj) =

j

∑
k=j−m

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)E
n,n
j−k(Z

/{i1,⋯,ik}
j ),

and20

(82) FN,>m
j (t)(Zj) =

j−m−1

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)Ej−k(Z/{i1,⋯,ik}
j ),



ASYMPTOTIC EXPANSION OF THE MEAN-FIELD APPROXIMATION 25

We have that1

(83) FN
j (t) − FN,n,≤m

j (t) = FN,n,≤m
j (t) + (FN,≤m

j (t) − FN,n,≤m
j (t)).

By (23) and the same argument as in the proof of Theorem 3.2 we get that, for2

j ≤ CN− 1
2
−α and N ≥ (4e2C2e

C1t∥V ∥L∞
h̵ )

1
2α ,3

(84) ∥FN,>m
j (t)∥1 ≤ Cm( j√

N
)m+1 ≤ CmCm+1N−α(m+1) with Cm = 2 (e2C2e

C1t∥V ∥L∞
h̵ )

m+1
2

Indeed4

∥FN,>m
j (t)∥1 ≤

j

∑
k=m+1

( j

j − k)∥Ek(t)∥1 ≤
j

∑
k=m+1

(j
k
)
⎛
⎝
C2e

C1t∥V ∥L∞
h̵

N

⎞
⎠

k
2

≤
j

∑
k=m+1

( j√
N
e

√
C2e

C1t∥V ∥L∞
h̵ )

k

≤ Cm( j√
N

)m+1

for N ≥ (2e

√
C2e

C1t∥V ∥L∞
h̵ )

1
α .5

Moreover, by (78),

∥Ej(t) −En,n
j (t)∥1 ≤ Cn,m,tN−

j
2
−n− 1

2 , j ≤m,

and the same argument as in the proof of Theorem 3.2 we get that,

∥FN,≤m
j (t) − FN,n,≤m

j (t)∥ ≤ Cn,m,tN−n− 1
2

m

∑
k=0

(j
k
)N−k

2 ≤ Cn,m,teCN−n− 1
2

Taking now m = [n+1/2
α ] so that N−α(m+1) ≤ N−n− 1

2 , we get the result by (83) with6

(85) Nn,α,C,t = 6e2m∣t∣
∥V ∥L∞
h̵

m2

n
∥V ∥L∞
h̵ + (4e2C2e

C1t∥V ∥L∞
h̵ )

1
2α , Mn,α,C.t = Cn,m,teC +CMCM+1

evaluated at m = [n+1/2
α ]. �7

5. The Kac and “soft spheres” models8

In this section we consider the two following classes of mean-field models (see [26]9

for details).10

● Kac model. In this model, the N -particle system evolves according to a stochastic11

process. To each particle i, we associate a velocity vi ∈ R3. The vector VN = {v1,⋯, vN}12

changes by means of two-body collisions at random times, with random scattering13
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angle. The probability density FN(VN , t) evolves according to the forward Kolmogorov1

equation2

(86) ∂tF
N = 1

N
∑
i<j
∫ dωB(ω; vi − vj){FN(V i,jN ) − FN(VN)} ,

where V i,jN = {v1,⋯, vi−1, v′i, vi+1,⋯, vj−1, v′j, vj+1,⋯, vN} and the pair v′i, v
′
j gives the out-3

going velocities after a collision with scattering (unit) vector ω and incoming velocities4

vi, vj.
B(ω;vi−vj)

∣vi−vj ∣
is the differential cross-section of the two-body process. The resulting5

mean-field kinetic equation is the homogeneous Boltzmann equation6

(87) ∂tF (v) = ∫ dv1∫ dωB(ω; v − v1){F (v′)F (v′1) − F (v)F (v1)} .

● ‘Soft spheres’ model. A slightly more realistic variant, taking into account the po-7

sitions of particles XN = {x1,⋯, xN} ∈ R3N and relative transport, was introduced by8

Cercignani [9] and further investigated in [20]. The probability density FN(XN , VN , t)9

evolves according to the equation10

∂tF
N +

N

∑
i=1

vi ⋅ ∇xiF
N = 1

N
∑
i<j

h (∣xi − xj ∣)B ( xi − xj∣xi − xj ∣
; vi − vj)

×{FN(XN , V
i,j
N ) − FN(XN , VN)} .(88)

Here h ∶ R+ → R+ is a positive function with compact support. Now a pair of particles11

collides at a random distance with rate modulated by h. The associated mean-field12

kinetic equation is the Povzner equation13

∂tF (x, v) + v ⋅ ∇xF (x, v) = ∫ dv1∫ dx1 h(∣x − x1∣)B ( x − x1

∣x − x1∣
; v − v1)

×{F (x, v′)F (x1, v
′
1) − F (x, v)F (x1, v1)},

which can be seen as an h−mollification of the inhomogeneous Boltzmann equation14

(formally obtained when h converges to a Dirac mass at the origin). Both classes have15

been treated in [26] and Theorem 2.2 applies to them, in the following sense.16

The underlying space L is now L1(Rd, dv) (resp. L1(R2d, dxdv)) for the Kac model

(resp. soft spheres) both endowed with the L1 norms ∥⋅∥1. For FN ∈ L⊗N , FN
j ∈ L⊗j is

defined by

FN
j (Zj) = ∫

Ω
FN(z1, . . . , zj, zj+1, . . . , zN)dzj+1 . . . dzN

for Zn = (z1, . . . , zn), n = 1, . . . ,N with zi = vi ∈ Rd,Ω = R(N−j)d (resp. zi = (xi, vi) ∈17

R2d,Ω = R2(N−j)d) for the Kac (resp. soft spheres) model.18
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In both cases Ej(t) is defined by (18), inverted by (20), and it was proven in [26]1

that Theorem 2.2 holds true verbatim in both cases.2

Stating now the dynamics driven by (86) and (88) under the form (3) with KN = 03

(resp. KN = − ∑
i=1,...,N

vi∂xi) for the Kac (resp. soft spheres) model and V N given by4

the right hand sides of (86),(88) respectively, one sees immediately that the proofs5

contained in Sections 4.1,4.2 remain valid after an elementary redefinition of the oper-6

ators Dj,D−1
j ,D

−2
j in (42). . . (45) consisting in removing the “hats” in the right hand7

sides of (42). . . (45). The convention (46) remains verbatim the same, together with8

the estimates9

(89) ∥Dj∥, ∥D1
j∥ ≤ j and ∥D−1

j ∥, ∥D−2
j ∥, ∥D−1

1 (E0)∥, ∥D−2
2 (E0)∥ ≤

j2

N
.

Therefore, by Remark 4.4, the statements contained in Theorem 3.1 and consequences10

hold true, in both cases, verbatim. Moreover defining FN,n
j by (38) in both cases,11

Theorem 3.2 reads now as follows12

Theorem 5.1. [Kac case] Let FN(t) the solution of the N body system (86) (resp.13

88) with initial datum FN(0) = F⊗N , 0 < F ∈ L1(Rd), ∫
Rd

f(v)dv = 1 (resp, 0 < F ∈14

L1(R2d), ∫
R2d

f(x, v)dxdv = 1), and F (t) the solution of the homogeneous Boltzmann15

equation (87) (resp. the Povzner equation(89)) with initial datum F .16

Then, in both cases, for all n ≥ 1 and N ≥ 4(e
√
L′2n(t)j)2,17

∥FN
j (t) − FN,n

j (t)∥1 ≤ N−n− 1
2

2tC2n(t)eA
2n
t j√

N
.

The statements of Corollary 3.4 and Theorem 3.5 (with the hypothesis of Theorem18

5.1), and the Remarks 3.3 and 3.6 remain verbatim true.19

Appendix A. The asbtract model20

A.1. The model. We will show in this section that the main results of [26] and of21

Section 1 of the present paper remain true in the “abstract‘” mean-field formalism for22

a dynamics of N particles that we will describe now. The present formalism contains23

the abstract formalism developed in [26], without requiring a space of states endowed24

with a multiplicative structure.25

States of the particle system and evolution equations. Let L be a vector space on the26

complex numbers. We suppose the family of (algebraic) tensor products {L⊗n, n =27

1, . . . ,N} equipped with a family of norms ∥⋅∥n satisfying assumption (A) below. the28
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N -body dynamics will be driven on L⊗N by a one- and two- body interaction satis-1

fying assumption (B) and the mean-field limit equation will be supposed to satisfy2

assumption (C).3

Assumptions (A) − (C) below will be followed by their incarnations in the K(ac),4

S(oft spheres) and Q(uantum) models.5

By convention we denote L⊗0 ∶= C, ∥z∥0 = ∣z∣ and we denote by L⊗̂n the completion6

of L⊗n with respect to the norm ∥⋅∥n.7

For the K, S and Q models, L is L1(Rd, dv), L1(R2d, dxdv) and L1(L2(Rd), the8

space of trace class operators on L2(Rd), with their associated norms.9

(A) There exists a family of subsets L⊗̂n
+ of L⊗̂n, n = 1, . . . ,N , of positive elements F10

denoted by F > 0 stable by addition, multiplication by positive reals and tensor11

product and there exists a linear function Tr ∶ L → C, called trace. For every12

1 ≤ k,n ≤ N and 1 ≤ i ≤ j ≤ n ≤ N , let Trkn and σni,j be the two mapping defined13

by4
14

(90)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Trkn ∶ L⊗n → L⊗n−1

n⊗
ı=1
vi ↦ Tr(vk)

n⊗
ı=1
i≠k

vi,

σni,j ∶ L⊗n → L⊗n

n⊗
ı=1
vi ↦

n⊗
ı=1
v′i, v′k = vk, i ≠ k ≠ j ; v′i = vj, v′j = vi.

We will suppose that TrkN and σni,j, i, j, k ≤ n ≤ N , satisfy, for any F ∈ L⊗n,15

(91)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

TrkN(F ), σni,j(F ) > 0, ∥Trkn(F )∥n−1 = ∥F ∥n when F > 0

∥σni,j(F )∥n = ∥F ∥n
∥Trkn(F )∥n−1 ≤ ∥F ∥n

In particular one has that ∥F ∥n = Trn . . .Tr1F when F > 0 and ∣Trn . . .Tr1F ∣ ≤16

∥F ∥n in general.17

Note that (91) allows to extend Trkn and σni,j to L⊗̂n by continuity. We will use18

the same notation for these extensions.19

4The fact that the second and fourth lines of (90) define a mapping on the whole tensor space L⊗n results easily from the definition of

tensors products through the so-called universal property [21]. Indeed, let ϕn be the natural embedding L×n → L⊗n, (v1, . . . , vn)↦ v1⊗⋅ ⋅ ⋅⊗vn,

and let h be any mapping L×n → L×n
′

, then the universal property of tensor products says that there is a unique map h̃ ∶ L⊗n → L⊗n
′

such that

h̃ ○ϕn = ϕn′ ○h. Taking n′ = n− 1, h(v1, . . . , vk, . . . , vn) = (trace(vk)v1, . . . , vk−1, vk+1, . . . , vn) for Trkn, and n′ = n, h(v1, . . . , vi, . . . , vj , . . . , vn) =
(v1, . . . , vj , . . . , vi, . . . , vn) for σni,j give the desired extensions.
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For the K, S and Q models, Trk is ∫Rd ⋅dvk, ∫R2d ⋅dxkdvk as indicated in Section1

5, and the partial traces defined in Section 2. The action of σni,j consists obviously2

in exchanging the variables vi and vj, (xi, vi) and (xj, vj) and (xi, x′i) and (xj, x′j),3

(in the integral kernel), respectively. Finally (91) is satisfied in the three cases.4

From now on and when no confusion is possible, we will identify L⊗n with its com-5

pletion L⊗̂ and we will denote TrkN = Trk (note also that Tr = Tr1
1 = Tr1), σNi,j = σi,j and6

Tr(= Trn) = TrnnTrn−1
n . . .Tr1

n. Moreover, with a slight abuse of notation, we will denote7

(92)

⎧⎪⎪⎨⎪⎪⎩

∥⋅∥1 = ∥⋅∥n, ∀n = 1, . . . ,N

∥⋅∥ the operator norm on any L(L⊗i,L⊗j), ∀i, j = 1, . . . ,N

(here L(L⊗i,L⊗j) is the set of bounded operators form L⊗i to L⊗j).8

We call symmetric any element of L⊗n invariant by the action of σni,j, i, j ≤ n.9

We call state of the N−particle system an element of10

(93) DN = {F ∈ L⊗n ∣ F > 0, ∥F ∥ = 1 and F is symmetric}.

For j = 0, . . . ,N , the j-particle marginal of FN is defined as the partial trace of order11

N − j of FN , that is12

(94) FN
j = TrNTrN−1⋯Trj+1FN , FN

N ∶= FN .

Note that FN
j ∈ L⊗j (FN

0 = 1 ∈ L⊗0 ∶= C) and FN
j > 0, ∥FN

j ∥j = ∥FN∥N since Tr is

positivity and norm preserving, and obviously FN
j is symmetric as FN . That is to say:

FN
j ∈ Dj.

(B) The evolution of a state FN in L⊗N is supposed to be given by the N−particle13

dynamics associated to a two-body interaction:14

(95)
d

dt
FN = (KN + V N)FN ,

where the operators on the right hand side are constructed as follows.15

(96) KN =
N

∑
i=1

I⊗(i−1)
L ⊗K ⊗ I⊗(N−i)

L

and16

(97) V N = 1

N
∑

1≤i<j≤N

Vi,j, Vi,j ∶= σN1,iσN2,jV ⊗ IL⊗(N−2)σN1,iσ
N
2,j

for a (possibly unbounded) operator K acting on L and a bounded two-body17

(potential) operator V acting on L⊗2.18



30 T. PAUL AND M. PULVIRENTI

We assume furthermore that K is the generator of a strongly continuous, iso-1

metric, positivity preserving semigroup (in L)2

(98) eKtF > 0 if F > 0 ; ∥etK∥ = 1 .

and KN + V N is the generator of a strongly continuous, isometric, positivity3

preserving semigroup (in L⊗N)4

(99) e(K
N+V N)tFN > 0 if FN > 0 ; ∥et(KN+V N)∥ = 1 .

Finally, for any F ∈ L, FN ∈ L⊗N and i, r > j, we assume5

(100) Tr(KF ) = 0 and Trj,N(Vi,rFN) = 0 .

This last property is necessary to deduce the forthcoming hierarchy.6

For the K, S and Q models, the ingredients in (95) are given in Sections 5 and7

2, where (98)-(100) are shown to be satisfied.8

Note the symmetry property of the equation (95) induced by the definition of V N :9

if the initial condition FN
0 for (95) is symmetric, then FN(t) is still symmetric.10

Hierarchies. The family of j-marginals, j = 1, . . . ,N , are solutions of the BBGKY11

hierarchy of equations12

(101) ∂tF
N
j = (Kj + Tj

N
)FN

j + (N − j)
N

Cj+1F
N
j+1

where:13

(102) Kj =
j

∑
i=1

I⊗(i−1)
L ⊗K ⊗ I⊗(j−i)

L ,

14

(103) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vir

and15

(104) Cj+1F
N
j+1 = Trj+1 ⎛

⎝∑i≤j
Vi,j+1F

N
j+1

⎞
⎠
=

j

∑
i=1

Ci,j+1F
N
j+1,

16

(105) Ci,j+1 ∶ L⊗(j+1) → L⊗j, Ci,j+1F
N
j+1 = Trj+1 (Vi,j+1F

N
j+1) ,

Indeed, thanks to (100) we get easily by applying Trj,N on (95) that

d

dt
FN
j = (Kj + Tj

N
)FN

j + 1

N
Trj,N( ∑

1≤i≤j<k≤N

Vi,kF
N).

By symmetry of FN and Vi,k we get Trj,N(Vi,kFN) = Trj+1(Vi,jFj+1) for all k > j and17

(101) follows.18
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Note that, thanks to the assumption (91) and for all i ≤ j = 1, . . . ,N ,1

(106) ∥Ti∥ ≤ j2∥V ∥, and ∥Ci,j+1∥ ≤ j∥V ∥

(meant for (∥Ti∥L⊗i→L⊗i, ∥Ci,j+1∥L⊗(j+1)→L⊗j , ∥V ∥L⊗2→L⊗2 using (92)).2

We introduce the non-linear mapping Q(F,F ), Q ∶ L ×L→ L by the formula3

(107) Q(F,F ) = Tr2(V1,2(F ⊗ F ))

and the nonlinear mean-field equation on L4

(108) ∂tF =KF +Q(F,F ), F (0) ≥ 0, ∥F (0)∥1 = 1.

Eq. (108) is the Boltzmann, Povzner or Hartree equation according to the specifications5

established in the table above. In full generality we will assume6

(C) (108) has for all time a unique solution F (t) > 0 and ∥F (t)∥ = 1.7

For the K, S and Q models, (C) is true by standard perturbations methods.8

Correlation error. To introduce the correlation errors, we need to extend slightly the9

above structure.10

For any subset J ⊂ {1, . . . ,N} we first define11

(109) L⊗J
N ∶= N⊗

i=1
L⊗χJ(i),

where χJ is the characteristic function of J and L⊗0 = C.12

Then we introduce L⊗J , the subspace of L⊗J
N formed by vectors of the form

N⊗
i=1
vi

where vi = 1 ∈ C for i ∉ J and vi ∈ L for i ∈ J . Note that L⊗J is sent to L⊗∣J ∣ by the

mapping

Π ∶ N⊗
i=1
vi ∈ L⊗J ↦ ⊗

i∈J
vi ∈ L⊗∣J ∣.

We define a norm on L⊗J by13

∥⋅∥L⊗J = ∥Π(⋅)∥1.

For F ∈ L and K ⊂ J ⊂ {1, . . . ,N} we introduce the linear operator [F ]⊗KJ , defined14

through its action on factorized elements as15

[F ]⊗KJ ∶ L⊗J/K → L⊗J

N⊗
i=1
vi ↦

N⊗
i=1
ai,(110)
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where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

as = 1 ∈ C if s ∉ J
as = F if s ∈K
as = vs if s ∈ J/K

.1

Note that, for K,K ′ ⊂ J, K ∩K ′ = ∅, we have the composition2

(111) [F ]⊗KJ [F ]⊗K
′

J/K = [F ]⊗(K∪K ′)
J = [F ]⊗K

′
J [F ]⊗KJ/K ′

and more generally, for all F,G,3

(112) [F ]⊗KJ [G]⊗K
′

J/K = [G]⊗K
′

J [F ]⊗KJ/K ′.

For any subset J ⊂ {1, . . . ,N}, we define the correlation error by4

(113) EJ = ∑
K⊂J

(−1)∣K ∣[F ]⊗KJ FN
J/K

where F solves (108), the operator [F ]⊗KJ is defined by (110) and FN
L ∈ L⊗L is defined

through its decomposition on factorized states. Namely if

FN = ∑
`1,...,`N

c`1,...,`Nv`1 ⊗ ⋅ ⋅ ⋅ ⊗ v`N ,

then

FN
L = ∑

`1,...,`N

c`1,...,`Na`1 ⊗ ⋅ ⋅ ⋅ ⊗ a`N ,

where

⎧⎪⎪⎨⎪⎪⎩

as = Tr(vs) ∈ C if s ∉ L
as = vs if s ∈ L

.5

The link between the definition of FN
L and the definition of the marginals FN

j given in6

(94) is the following:7

(114) FN
{1,...,`} = FN

` ⊗ (1)⊗(N−`) ∈ L⊗` ⊗ (L⊗0)⊗(N−`).

The formula inverse to (113) reads8

(115) FN
J = ∑

K⊂J

[F ]⊗KJ EJ/K .

Note that the contribution in the right hand side of (115) corresponding to K = J and9

K = ∅ are F⊗∣J ∣ and EJ respectively. To prove (115), we plug (113) in the r.h.s. of10
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(115) and we use (111):1

∑
K⊂J

[F ]⊗KJ EJ/K = ∑
K⊂J

[F ]⊗KJ [ ∑
K ′⊂J/K

(−1)∣K ′∣[F ]⊗K
′

J/KF
N
(J/K)/K ′]

= ∑
K∪K ′⊂J

∑
K⊂J

K ′∩K=∅

(−1)∣K ′∣[F ]⊗KJ [F ]⊗K
′

J/KF
N
J/(K∪K ′)

= ∑
L⊂J

( ∑
K ′⊂L

(−1)∣K ′∣)[F ]⊗LJ FN
J/L = FN

J

since ∑
K ′⊂L

(−1)∣K ′∣ =
∣L∣

∑
k′=0

(∣L∣k′)(−1)∣K ′ = 0∣L∣ = 0 if L ≠ ∅, and = 1 if L = ∅ (since2

∑
K ′⊂∅

(−1)∣K ′∣ = (−1)0 = 1).3

One notices that since FN
j is the marginal of some FN which decomposes on elements4

of the form v1 ⊗ ⋯ ⊗ vN , FN
j decomposes on elements of the form (

N

∏
k=j+1

Trvk)v1 ⊗5

⋅ ⋅ ⋅ ⊗ vj. Since one knows that FN
j is symmetric, it is enough to choose one bijection6

iJ ∶ {1, . . . , j}→ J, ∣J ∣ = j, and consider the mapping7

ΦiJ ∶ L⊗∣J ∣
ΦiJ→ L⊗J

⊗
j∈J
vj ∈ L⊗∣J ∣ ↦ N⊗

i=1
ai ∈ L⊗J(116)

FN
∣J ∣ ↦ FN

J(117)

where as = 1 if i ∉ J and aiJ(j) = vj.8

ΦiJ is obviously one-to-one since iJ is so, and, though (116) depends on the embedding9

chosen, (117) does not: ΦiJ restricted to the space L⊗∣J ∣
S of symmetric-by-permutation10

elements of L⊗∣J ∣, depends only on J and not on iJ . We will call ΦJ this restriction,11

(118) ΦJ = ΦiJ ∣L⊗∣J ∣S
.

The same argument is also valid for EJ which enjoys the same symmetry property12

than FN
J and we define13

(119) E∣J ∣ = Φ−1
J EJ .

ΦJ is obviously isometric and we have that14

(120) ∥EJ∥L⊗J = ∥E{1,...,∣J ∣}∥L⊗{1,...,∣J ∣} = ∥E∣J ∣∥1.
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Therefore, considering the one-to-one correspondence ΦJ , it is enough to compute/estimate1

the quantities Ej, j = 1, . . . ,N . Ej and FN
j are linked by2

(121)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ej = ∑
K⊂J

(−1)∣K ∣[F ]⊗KJ ΦJ/KF
N
j−∣K ∣

FN
j = ∑

K⊂J
[F ]⊗KJ ΦJ/KEj−∣K ∣ .

For the K, S and Q models, the corrsponding expression are given in Sections 53

and 2.4

A.2. Main results similar to [26]. The kinetic errors Ej, j = 1, . . . ,N, satisfy the5

system of equations6

∂tEj = (Kj + 1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D−1

j Ej−1 +D−2
j Ej−2,(122)

where the operators Dj,D1
j ,D

−1
j ,D

−2
j , j = 1, . . . ,N , are defined in Appendix B below,7

equations (131)-(132), together with the proof of (122). Moreover, since (133) holds8

true, we know by Remark 3.2 in [26], that the proof of Theorem 2.1 (and therefore9

Corollary 2.2) in [26] remain valid in our present setting.10

We get the following result.11

Proposition A.1. The statements of Theorem 2.2 hold true in the abstract setting12

defined in Section A.1.13

A.3. Asymptotic expansion. It is easy to see that the proofs of the main results14

expressed in Section 3 are adaptable in an elementary way to the present abstract15

paradigm. Indeed they use only the three properties stated in Remark 4.4, valid in the16

present setting as pointed out at the very end of Appendix B, formula (133), together17

with (98)-(99).18

Therefore, the statements contained in Theorem 3.1 and Corollary 3.4 hold true,19

verbatim, under the hypothesis of Theorem 2.2, and with the definition of correlation20

errors given by the first line of (121) and replacing ∥V ∥L∞
h̵ by ∥V ∥ in (69).21
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Moreover defining now FN,n
j by truncating the second line of (121) at order n, that

is

FN,n
j = ∑

K⊂J

[F ]⊗KJ ΦJ/KE
n
j−∣K ∣

where En
j is defined by (37), Theorem 3.2 reads as follows.1

Theorem A.2. [abstract] Let FN(t) the solution of the N body system (95) with initial2

datum FN(0) = F⊗N , 0 < F ∈ L, ∥F ∥1 = 1, and F (t) the solution of the mean-field3

equation (108) with initial datum F .4

Then, for all n ≥ 0 and N ≥ 4(eA2n
t j)2,5

∥FN
j (t) − FN,n

j (t)∥1 ≤ N−n− 1
2

2tC2n(t)eA
2n
t j√

N
.

The statements of Corollary 3.4 and Theorem 3.5 (with the hypothesis of Theorem6

A.2), and the Remarks 3.3 and 3.6 remain verbatim true.7

Appendix B. Derivation of the correlation hierarchy (122)8

From the definition of Ej (cf. (113)) we find9

∂tEJ = ∑
K⊂J

(−1)∣K ∣ (∂t([F ]⊗KJ )FN
J/K

+ [F ]⊗KJ ∂tFN
J/K

)

Moreover, by (110)10

(123) ∂t ([F ]⊗KJ ) = ∑
k0∈K

[F ]⊗K/{k0}
J [∂tF ]⊗{k0}

J/(K/{k0})
.

Applying ΦJ defined in (118) to the BBGKY hierarchy (101), one finds easily that FN
J11

satisfies, denoting α(j,N) ∶= N−j
N ,12

(124) ∂tF
N
J =KJFN

J + 1

N
∑
i<r∈J

Ti,rF
N
J + α(j,N)∑

i∈J

Ci,j+1F
N
J∪{j+1}

(for j + 1 ∉ J).13

By the mean-field equation (108) we deduce that14

∂tEJ = ∑
K⊂J

(−1)∣K ∣ ∑
k0∈K

[F ]⊗K/{k0}
J (KF +Q(F,F ))⊗{k0}

J/(K/{k0}
FN
J/K

+ ∑
K⊂J

(−1)∣K ∣α(j − ∣K ∣,N) ∑
i∈J/K

[F ]⊗KJ Ci,j+1F
N
(J/K)∪{j+1}

+ 1

2N
∑
K⊂J

(−1)∣K ∣[F ]⊗KJ ( ∑
i≠r∈J/K

Ti,r)FN
J/K

+ ∑
K⊂J

(−1)∣K ∣[F ]⊗KJ (KJ/KFN
J/K) .(125)
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We denote by Ti, i = 1,2,3,4, the four terms contained in the four lines of the r.h.s. of

(125), respectively. The computation of the Tis is purely algebraic and will use only

the four following properties

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
K⊂L

(−1)∣K ∣ = δ∣L∣,∅
∑
K⊂L

∣K ∣(−1)∣K ∣ = −δ∣L∣,1
[F ]⊗KJ [F ]⊗K

′
J/K = [F ]⊗K

′
J [F ]⊗K

′
J/K ′ = [F ]⊗(K∪K ′)

J , K,K ′ ⊂ J, K ∩K ′ = ∅
Ci,j+1[F ]⊗K(J/K)∪{j+1} = [F ]⊗K(J/K)Ci,j+1, K ⊂ J, j + 1 ∉ J.

In order not to make the paper too heavy, we will compute extensively two terms and1

leave to the reader the straightforward (but tedious) computation of the other terms.2

Using the definition (113), we get3

T1 ∶= ∑
K⊂J

(−1)∣K ∣ ∑
k0∈K

[F ]⊗K/{k0}
J (KF +Q(F,F ))⊗{k0}

J/(K/{k0})
FN
J/K

= − ∑
k0∈J

(KF +Q(F,F ))⊗{k0}
J ∑

K⊂J/{k0}

(−1)∣K ∣[F ]⊗KJ/{k0}F
N
(J/{k0})/K

= −∑
i∈J

(KF +Q(F,F ))⊗{i}
J EJ/{i} .(126)

To compute T2 we make use of the inverse definition (115):4

T2 ∶= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ Ci,j+1F
N
(J/K)∪{j+1}

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

[F ]⊗K
′

(J/K)∪{j+1}E((J/K)∪{j+1})/K ′ .(127)

Distinguishing among the belonging or not to K ′ of i and j + 1 in the r.h.s. of (127),5

we decompose6

(128) T2 = T i,j+1∈K ′
2 + T i,j+1∉K ′

2 + T i∈K
′,j+1∉K ′

2 + T i∉K
′,j+1∈K ′

2
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We have1

T i,j+1∈K ′
2 = ∑

K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

i,j+1∈K ′

[F ]⊗K
′

(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . .Ci,j+1 ∑
K ′′⊂(J/K)/{i}

[F ]⊗K
′′∪{i,j+1}

(J/K)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . .Ci,j+1 ∑
K ′′⊂(J/{i})/K

[F ]⊗K
′′∪{i,j+1}

(J/K)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣∑
i∈J

[F ]⊗KJ . . .

. . . ∑
K ′′⊂(J/{i})/K

[F ]⊗K
′′

(J/K)Ci,j+1[F ]⊗{i,j+1}

((J/K)/K ′′)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣[F ]⊗KJ ∑
K ′′⊂(J/{i})/K

[F ]⊗K
′′

(J/K) . . .

. . .Ci,j+1[F ]⊗{i,j+1}

((J/K)/K ′′)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
i∈J

∑
L⊂J/{i}

(∑
K⊂L

α(j − ∣K ∣,N)(−1)∣K ∣)[F ]⊗LJ . . .

. . .Ci,j+1[F ]⊗{i,j+1}

((J/L)∪{j+1}
EJ/(L∪{i})

2

= α(j,N)∑
i∈J

Ci,j+1[F ]⊗{i,j+1}

J∪{j+1}
EJ/{i}

− 1

N
∑
i≠l∈J

[F ]⊗{l}
J Ci,j+1[F ]⊗{i,j+1}

(J/{l})∪{j+1}
EJ/({i,l})

= α(j,N)∑
i∈J

[Q(F,F )]⊗{i}
J EJ/{i}

− 1

N
∑
i≠l∈J

Ci,j+1[F ]⊗{l}

J∪{j+1}
[F ]⊗{i,j+1}

(J/{l})∪{j+1}
EJ/({i,l})

= α(j,N)∑
i∈J

[Q(F,F )]⊗{i}
J EJ/{i} −

1

N
∑
i≠l∈J

Ci,j+1[F ]⊗{i,l,j+1}

J∪{j+1}
EJ/({i,l})
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since ∑
K⊂L

(−1)∣K ∣ = δL,∅. Note that there is a crucial compensation:1

T1 + T i,j+1∈K ′
2 = − j

N
∑
i∈J

[Q(F,F )]⊗{i}
J EJ/{i}

− 1

N
∑
i≠l∈J

[Q(F,F )]⊗{i}
J [F ]⊗{l}

J/{i}
EJ/{i,l}.(129)

The computations of T i,j+1∉K ′
2 , T i∈K

′, j+1∉K ′
2 . T i∉K

′,j+1∈K ′
2 go the same way and we omit2

it here.3

We consider a similar dichotomy for the term4

T3 ∶= 1

2N
∑
K⊂J

(−1)∣K ∣[F ]⊗KJ ( ∑
i≠r∈J/K

Ti,r)FN
J/K

= 1

2N
∑
K⊂J

(−1)∣K ∣[F ]⊗KJ ( ∑
i≠r∈J/K

Ti,r) ∑
K ′⊂J/K

[F ]⊗K
′

J/KEJ/(K∪K ′) .

according, this time, to the cases i, r ∈ K ′, i, r ∉ K ′, i ∈ K ′, r ∉ K ′ and i ∉ K ′, r ∈ K ′.5

The computation of the different terms uses the same “tricks” than for T2 and we omit6

them.7

Finally, we obtain easily that8

T4 ∶= ∑
K⊂J

(−1)∣K ∣[F ]⊗KJ (KJ/KFN
J/K) =KJEJ .(130)

Summing up all the contributions T1,1 = 1, . . . ,4, we get (122) after specializing to the9

case J = {1, . . . , j}, using (119) and setting10
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Dj ∶ L⊗j → L⊗j, j = 1, . . . ,N,

Ej ↦
N − j
N

∑
i∈J

Ci,j+1 ([F ]⊗{i}

J∪{j+1}
Φ(J∪{j+1})/{i}Ej + [F ]⊗{j+1}

J∪{j+1}
Ej) ,

− 1

N
∑
i≠l∈J

Ci,j+1([F ]⊗{l}

J∪{j+1}
Φ(J/{l})∪{j+1}Ej)

D1
j ∶ L⊗(j+1) → L⊗j, j = 1, . . . ,N − 1,

Ej+1 ↦
N − j
N

Cj+1Ej+1 ,

D−1
j ∶ L⊗(j−1) → L⊗j j = 2, . . . ,N,

Ej−1 ↦
⎛
⎝
− j
N
∑
i∈J

[Q(F,F )]⊗{i}
J + 1

2N
∑
i,r∈J

Ti,r[F ]⊗{i}
J

⎞
⎠

ΦJ/{i}Ej−1 ,

− 1

N
∑
i≠l∈J

[F ]⊗{l}
J Ci,j+1[F ]⊗{j+1}

(J/{l})∪{j+1}
ΦJ/{l}Ej−1

− 1

N
∑
i≠l∈J

[F ]⊗{l}
J Ci,j+1[F ]⊗{i}

(J/{l})∪{j+1}
Φ(J/{i,l})∪{j+1}Ej−1

D−2
j ∶ L⊗(j−2) → L⊗j, j = 3, . . . ,N,

Ej−2 ↦
1

2N
∑
i,s∈J

Ti,s[F ]⊗{i}
J [F ]⊗{s}

J/{i}
ΦJ/{i,s}Ej−2

− 1

N
∑
i≠l∈J

[Q(F,F )]⊗{i}
J [F ]⊗{l}

J/{i}
ΦJ/{i,l}Ej−2.(131)

where, by convention,1

(132)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D1
N ∶=D−2

1 ∶= 0

D−1
1 (E0) ∶= − 1

NQ(F,F ) ,
D−2

2 (E0) ∶= 1
N (T1,2(F ⊗ F ) −Q(F,F )⊗ F − F ⊗Q(F,F )) .

Note that one has the following estimates:2

(133) ∥Dj∥, ∥D1
j∥ ≤ j and ∥D−1

j ∥, ∥D−2
j ∥, ∥D−1

1 (E0)∥, ∥D−2
2 (E0)∥ ≤

j2

N
.
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