Cherednik algebras and Calogero-Moser cells - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Cherednik algebras and Calogero-Moser cells

Raphaël Rouquier
  • Fonction : Auteur
  • PersonId : 937349

Résumé

Using the representation theory of Cherednik algebras at $t=0$ and a Galois covering of the Calogero-Moser space, we define the notions of left, right and two-sided Calogero-Moser cells for any finite complex reflection group. To each Caloger-Moser two-sided cell is associated a Calogero-Moser family, while to each Calogero-Moser left cell is associated a Calogero-Moser cellular representation. We study properties of these objects and we conjecture that, whenever the reflection group is real (i.e. is a Coxeter group), these notions coincide with the one of Kazhdan-Lusztig left, right and two-sided cells, Kazhdan-Lusztig families and Kazhdan-Lusztig cellular representations.
Fichier principal
Vignette du fichier
cm-asterique.pdf (1.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01579418 , version 1 (31-08-2017)
hal-01579418 , version 2 (04-09-2017)
hal-01579418 , version 3 (16-03-2022)

Identifiants

Citer

Cédric Bonnafé, Raphaël Rouquier. Cherednik algebras and Calogero-Moser cells. 2022. ⟨hal-01579418v3⟩
198 Consultations
197 Téléchargements

Altmetric

Partager

More