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INTRODUCTION

0.1. Reconstruction of Lie-theoretic structures from Weyl groups and extension
to complex reflection groups

A number of Lie-theoretic questions have their answer in terms of the associ-
ated Weyl group. Our work is part of a program to reconstruct combinatorial and
categorical structures arising in Lie-theoretic representation theory from rational
Cherednik algebras. Such algebras are associated by Etingof and Ginzburg to more
general complex reflection groups, and an aspect of the program is to generalize
those combinatorial and categorical structures to complex reflection groups, that
will not arise from Lie theory in general.

To be more precise, consider a complex semisimple Lie algebra g and let W be
its Weyl group. Consider also a reductive algebraic group G over Z, with g the Lie
algebra of G(C). Consider the following:

(i) (Parabolic) Blocks of (deformed) category 0O for g, blocks of categories of Harish-
Chandra bimodules.
(ii) The set of unipotent characters of G(F,), their generic degrees, Lusztig’s Fourier
transform matrices.
(iii) The square part of decomposition matrices of unipotent blocks of G(FF,;) over a
tield of characteristic prime to g.
(iv) The Hecke algebra of W.
(v) Lattices in the Hecke algebra arising from the Kazhdan-Lusztig basis, Lusztig’s
asymptotic algebra J.
(vi) Kazhdan-Lusztig cells of W and left cell representations, families of characters
of W.
(vii) Lusztig’s modular categories associated to two-sided cells.

It is known or conjectured that the structures above depend only on W, viewed
as a reflection group. One can hope that (possibly super or derived) versions of
those structures still make sense for W a complex reflection group.

Consider the case where W is a real reflection group. A solution to (i) is provided
by Soergel’s bimodules [Soe]. A solution to (ii) was found [BroMa, Lus3, Mal1].
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The combinatorial theory in (v,vi) extends (partly conjecturally) to that setting. Cat-
egories as in (vii) were constructed by Lusztig when W is a dihedral group [Lus3].

The structures above might make sense for arbitrary ("unequal") parameters, and
this is already an open problem for W a Weyl group. A partly conjectural theory
for (v,vi) has been developed by Lusztig [Lus4], who is developing an interpretation
via character sheaves on disconnected groups [Lus5].

Hecke algebras are a starting point: they have a topological definition that makes
sense for complex reflection groups [BrMaRo], providing a solution to (iv) (cf also
[Ari, ArKo, BrMaRo, Chal, Cha2, Cha3, Mar2, Mar3, Mar4, MaPf, Tsu]). The
Hecke algebras are deformations of ZW over the space of class functions on W
supported on reflections.

For certain complex reflection groups ("spetsial”, see [Mal4]), a combinatorial set
(a "spets") has been associated by Broué, Malle and Michel, that plays the role of
unipotent characters, providing an answer to (ii) [Mal2, BMM1, BMM2]. Generic
degrees are associated, building on Fourier transforms generalizing Lusztig’s con-
structions for Weyl groups. There are generalized induction and restriction func-
tors, and a d-Harish-Chandra theory.

When W is a cyclic group and for equal parameters, a solution to (vii) has been
constructed in [BoRo]. It is a derived version of a modular category. It gives rise
to the Fourier transform defined by Malle [Mal2]. This has been extended by La-
cabanne to G(d, 1, n) [Lac3, Lac4] and to some twisted groups [Lacl] using “super”
versions of modular categories [Lac2], following suggestions of Etingof.

In this book, we provide a conjectural extension of (vi) to complex reflection
groups, using the geometry of Calogero-Moser spaces.

0.2. Etingof-Ginzburg’s rational Cherednik algebras and Calogero-Moser spaces

Consider a non-trivial finite group W acting on a finite-dimensional complex vec-
tor space V and let V™8 be the complement of the ramification locus of the quotient
map V — V/W. Assume W is a reflection group, i.e., W is generated by its set of
reflections Ref(W) (equivalently: V/W is smooth; equivalently: V/W is an affine
space). The quotient variety (V x V*)/AW by the diagonal action of W is singular.
It is a ramified covering of V/W x V*/W. These varieties carry a C*-action coming
from the symplectic action on V x V*=T*V induced by the scalar action on V.

Etingof and Ginzburg have constructed a flat deformation Y : & — £ = € x
V/W x V*/W of this covering with a C*-action [EtGi]. Here, 6 is a vector space
with basis the quotient of Ref(W) by the conjugation action of W. The variety Z is
the Calogero-Moser space. The original covering corresponds to the point 0 € 6.
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Etingof and Ginzburg define Z as the spectrum of the center of the rational
Cherednik algebra H associated with W at ¢ = 0. It is a remarkable feature of
their work that those important but complicated Calogero-Moser spaces have an
explicit description based on non-commutative algebra. We will now explain their
constructions.

The rational Cherednik algebra H associated to W is a flat deformation defined
by generators and relations of the graded algebra C[V x V*] x W over the space
of parameters (c,t) € ¢ =%xAl Its specialization at (¢ = 0,¢ = 1) is the crossed
product of the Weyl algebra of V by W. The Cherednik algebra has a triangular
decomposition H=C[V]®C[€]W &C[V*]. Equivalently, it satisfies a PBW Theorem.
The algebra H has a faithful representation by Dunkl operators on C[% x V™¢]. The
Euler element admits a deformation that acts by derivation as multiplication by d T
on the degree d part of H.

Consider the algebra H obtained by specializing H at =0 and let Z be its center.
It contains P = C[€6]®C[V]" ® C[V*]" as a subalgebra. The Calogero-Moser variety
is defined as Z = SpecZ and the inclusion P C Z defines the covering Y.

Our main object of study is the representation theory of H as a P-algebra and its
interaction with the ramification of T above ¢ x0x0, ¢ x0x V*/W and ¢ x V/W x 0.

0.3. Families

Fix a parameter ¢ € 6. We consider H, the specialization of H at ¢ and the
restricted rational Cherednik algebra H,., the specialization of H at (¢ x 0 x 0) €
CxV/WxV*/W.

Given a simple CW-module E, we have a Verma H.-module A (E) =H, ®c[yw E,
where V* acts by 0 on E. We have also a restricted version A.(E) = H, ®y_A.(E)
which has a unique simple quotient L (E). The L (E)’s for E € Irr(W) give all simple
H_,-modules [Gorl].

The partition into blocks of those modules gives a partition of Irr(W) into Calogero-
Moser families. They are in bijection with T™!(c x 0 x 0)=Z¢" [Gor1].

We show that, in a given Calogero-Moser family, the matrix of multiplicities
[A.(E): L.(F)] has rank 1, a property conjectured by Ulrich Thiel [Thi1].

In each Calogero-Moser family there is a unique irreducible representation of W
with minimal b-invariant (the invariant by is the minimal d such that E occurs in
S4V)).

Families satisfy a semi-continuity property with respect to specialization of the
parameter. We show that families are minimal subsets that are unions of families
for a generic parameter and unions of blocks of Hecke algebras for certain special-
izations (see Theorem 7.8.5). In particular, the subvariety of ¢ where families are
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not generic is contained in the union of hyperplanes c¢; — ¢ =0 where E and F are
in distinct generic families.

0.4. Cellular characters

Let K be the function field of ¢ x V/W x 0 c 2. The simple K*"H-modules are
determined by the action of the center and this provides a bijection from Irr(K*"H)
to the set of irreducible components of Y™'(¢ x V/W x 0).

Let 3 be the defining prime ideal of an irreducible component of Y~!(c x V//W x0).
Let E € Ir(W). We define mult}} as the multiplicity of the simple K*H-module
corresponding to 3 in KA (E).

We put y™ =37,y mult} E: this is the cellular representation of W associated
with 3.

If r11ult§1\E/I #0, then E is contained in the family corresponding to the unique C*-
tixed point of Spec(Z/;3). If that fixed point is smooth in Z ., then there is a unique
E in the corresponding family [Gor1] and
(0.4.1) yM=F.

3

In each cellular character, there is a unique irreducible representation of W with
minimal b-invariant.

We show that cellular characters are sums of characters of projective modules of
Hecke algebras for certain specializations (see Corollary 8.4.3).

0.5. Galois closure and ramification

The covering T, of degree |W|, is not Galois (unless W =(Z/2)"). Let p : #Z — &
denote a Galois closure (with 2 a normal variety) and let G be its Galois group. At
0 € ¢, a Galois closure of the covering (V x V*)/AW — V/W x V*/W is given by
(V x V*)/AZ(W). This leads to a realization of G as a group of permutations of the
set W.

This can be reformulated in terms of representations of H: the semisimple C(# )-
algebra C(#? )H is not split and C(2) is a splitting field. The simple C(2 )H-modules
are in bijection with W. Our work can be viewed as the study of the partition of
these modules into blocks corresponding to a given prime ideal of C[Z].

We show that G is the Galois group of the minimal polynomial of the Euler ele-
ment. This element plays an important role in the study of ramification, but is not
enough to separate cells in general.
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0.6. Calogero-Moser cells

Let X be an irreducible closed subvariety of Z. We define the X-cells of W as the
orbits of the inertia group of X in G. The partition into X-cells corresponds to the
partition of the simple C(2)H-modules into blocks for the defining prime ideal of
X.

Given a parameter ¢ € 6, we define the two-sided c-cells (resp. left c-cells, resp.
right c-cells) as the X-cells defined for X contained in p~'(c x 0 x 0) (resp. in p~'(c x
V/W x0), resp. in p~!(c x 0 x V*/W)).

The set of two-sided c-cells is in bijection with the set of families, i.e. with T7'(¢ x
0x0). Given T a two-sided cell, we have

(0.6.1) Ir|= "> (dimEY,
EeZr
where 7 is the family associated with T
The orbits of left cells under the decomposition group for X are in bijection with
the irreducible components of T7!(c x V//W x0). This allows to associate to each left
cell C a cellular character [ C ]. We have

(0.6.2) IC|=dim[C].

We analyze in detail the case where W is cyclic (and dim V = 1): this is the only
case where we have a complete description of all objects studied in this book.

0.7. Gaudin operators and topology

Our discussion so far has been in the algebraic setting. The study of ramification
can be done in the topological setting.

Let H™8 = H®cyw C[V™8]". Fix (c,v,v*) € € x V x V* and consider L(c, v, v*) =
C®¢ix vree H*8®¢(y.C where the morphism C[€6 x V"] — C corresponds to the point
(¢, v) and the morphism C[V*] — C corresponds to the point v*.

The triangular decomposition of H provides an isomorphism CW — L(c, v, v*¥).

Using Dunkl operators, Etingof and Ginzburg constructed an isomorphism of
algebras (C[V'™8]®@ C[V*]) x W = H'™8. The image of V c C[V*] in H"® is a commu-
tative Lie subalgebra that acts on L(c, v, v*) by left multiplication. This provides a
commutative Lie subalgebra gau, , ,. of Endc(CW) ("Gaudin operators").

Taking v generic, the generalized eigenspaces of gau, ,, are the left cell represen-
tations of W.

When v* is also generic, the generalized eigenspaces of gau, , ,. are one-dimensional
and can be parametrized by W. Consider now a continuous path in 6 x V™8 x V*
starting at (0, v, v*) and ending at (c, v,0), avoiding the ramification locus except at



16 C. BONNAFE & R. ROUQUIER

the end. The parametrization by W of the eigenvalues can be extended by conti-
nuity along the path. This gives a family of paths in V* parametrized by W. Two
elements of W are in the same left cell if and only if the corresponding paths have
the same endpoints.

0.8. Coxeter groups

We assume here that W is a finite Coxeter group (i.e. a real reflection group) and
that c takes real values. Forty years ago, Kazhdan-Lusztig [KaLu] and Lusztig [Lus1]
used their basis of the Hecke algebra to define notions of families, cellular represen-
tations, and cells. Our work aims to generalize these notions to complex reflection
groups using Cherednik algebras instead of Hecke algebras. We conjecture that our
notions coincide with their notions for Coxeter groups.

The conjecture on families was first stated by Gordon-Martino [GoMa] and is
known to hold in many cases [GoMa, Bell, Mart2, BoTh].

The conjecture on cellular representations is known to hold in type A and in type
B for some generic values of ¢ (thanks to (0.4.1)) and in type L(m) for any parame-
ter [Bon6].

We prove here that the conjectures on cells hold in type B,. They also hold in type
I,(m) when c is constant [BoGer] and in type A [BrGoWh)].

We prove in the Calogero-Moser setting some properties known in the Kazhdan-
Lusztig setting:

(1) The cardinality of cells given by (0.6.1) and (0.6.2).
(2) If wo=—Idy € W and T (resp. C) is a two-sided (resp. left) cell, then I'w, (resp.
Cuw,) is a two-sided (resp. left) cell and

Frw,=Fr- € and [Cwy]=[C]-e.

(3) Unicity of a representation with minimal b-invariant.

In Lusztig’s theory, for ¢ constant, there is a unique irreducible representation with
minimal b-invariant in a family, the special representation. It occurs in every left
cell representation in the family. This last fact does not hold for ¢ non-constant but
(3) is known to hold in the Kazhdan-Lusztig setting [Bon4] modulo a conjecture of
Lusztig [Lus4]. It is an instance of the Calogero-Moser theory shedding some light
on the Kazhdan-Lusztig and Lusztig theory.

We also provide a detailed study of type B,: the Galois group is a Weyl group
of type D, and we show that the Calogero-Moser cells coincide with the Kazhdan-
Lusztig cells. Our approach for B, is based on a detailed study of Z and of the
ramification of the covering, without constructing explicitly the variety 2.
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0.9. Description of the chapters

We start in Chapter 1 with general notations about algebras, modules and grad-
ings. We review in Chapter 2 the basic theory of complex reflection groups: in-
variant theory, hyperplane complement, rationality of representations, Hilbert se-
ries and fake degrees. We close that chapter with the particular case of real reflec-
tion groups endowed with the choice of a real chamber, i.e., finite Coxeter groups.
Throughout the book, we devote special sections to the case of Coxeter groups
when particular features arise in their case.

Chapters 3 and 4 are devoted to the basic structure theory of rational Cherednik
algebras, following Etingof and Ginzburg [EtGi]. The definition of generic Chered-
nik algebras is given in Chapter 3, followed by the fundamental PBW Decomposi-
tion Theorem and the faithful polynomial representation via Dunkl operators. We
discuss the spherical algebra and some of its basic properties, in particular the Dou-
ble Endomorphism Theorem. We also introduce the Euler element and gradings,
filtrations, and automorphismes.

Chapter 4 is devoted to the Cherednik algebra at £ =0. An important result is the
Satake isomorphism between the center of the Cherednik algebra and the spherical
subalgebra. We discuss localizations and cases of Morita equivalence between the
Cherednik algebra and its spherical subalgebra. We provide some complements:
filtrations, symmetrizing form, Poisson structure and Hilbert series.

Our original work starts in Part II: this part introduces and studies families of
characters and cellular characters. There are the representation theoretic shadows
of the Calogero-Moser cells that will be constructed later. An important aspect is
that this part does not involve a Galois closure of the covering Y.

Chapter 5 introduces a certain category ¢ of (graded) representations of ratio-
nal Cherednik algebras. It is a highest category in the generalized sense of Ap-
pendix §F. Of particular importance are Verma modules and the action of the Eu-
ler element on them. When ¢ =1, we recover the category ¢ of [GGOR]. When
t =0, we explain representation-theoretic interpretations of the smoothness of the
Calogero-Moser space [EtGi]. We introduce a generalization of Gaudin operators
(cf [MuTaVal, MuTaVa3] for the symmetric group case), as endomorphisms of a
family of representations of H. The spectral scheme of Gaudin operators identifies
with a pullback of the covering Y.

Chapter 6 is devoted to Hecke algebras. We recall in §6.1 the definition of Hecke
algebras of complex reflection groups and some of their basic (partly conjectural)
properties. We introduce a "cyclotomic" version, where the Hecke parameters are
powers of a fixed indeterminate. We explain in §6.3 the construction of the Knizhnik-
Zamolodchikov functor [GGOR] realizing the category of representations of the
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Hecke algebra as a quotient of a (non-graded) category ¢ for the Cherednik alge-
bra at £ = 1. Thanks to the Double Endomorphism Theorem, the semisimplicity of
the Hecke algebra is equivalent to that of the category ¢. We present in §6.4 Malle’s
splitting result [Mal3] for irreducible representations of Hecke algebras and we con-
sider central characters. We discuss in §6.5 the notion of Hecke families. We finish
in §6.6 with a brief exposition of the theory of Kazhdan-Lusztig cells of W and of
families of characters of W and c-cellular characters.

Chapter 7 is devoted to the representation theory of restricted Cherednik algebras
and to Calogero-Moser families. We recall in §7.1 and §7.2 some basic results of
Gordon [Gorl] on representations of restricted Cherednik algebras and Calogero-
Moser families. Graded representations give rise to a highest weight category, as
proven by Bellamy and Thiel [BeTh1]. We show in §7.4 the existence of a unique
representation with minimal b-invariant in each family and generalize results of
[Gorl] on graded dimensions. We discuss in §7.6 and §7.7 the relation between the
geometry of the Calogero-Moser space at T7'(0) and the Calogero-Moser families,
with a focus on smoothness [EtGi, GiKa, Gorl, Bel2, BST]. The final section §7.8
relates Calogero-Moser families with blocks of category ¢ at t =1 and with blocks
of Hecke algebras.

We give in Chapter 8 the definition of Calogero-Moser (left) cellular characters.
Our first definition is in terms of representations of the specialization of H at the
prime ideal of C[#?] defining the subvariety V/W x0 of # = V/W x V*/W: to
each irreducible representation of this specialization we associate a character of W.
We provide a second equivalent definition based on the representation theory of
Gaudin algebras, which is more convenient for explicit computations. We prove
that Calogero-Moser cellular characters are sums of characters of projective mod-
ules of the suitably specialized Hecke algebra.

We analyze in Chapter 9 the C*-action: its fixed points are in bijection with fami-
lies. We relate attracting sets and cellular characters. We prove that there is a unique
cellular character in a family corresponding to a smooth point of a Calogero-Moser
space in Y7(0) and that it is irreducible.

We build in Part III the foundations for defining general Calogero-Moser cells:
the particular cases of left, right and two-sided cells will be studied in Part IV.

We introduce in Chapter 10 some basic objects of our study, namely a Galois clo-
sure of the covering YT and its Galois group G. At parameter 0, the corresponding
data is easily described, and its embedding in the family depends on a choice. We
explain this in §10.1.B, and show that this allows an identification of the generic
fiber of T with W. We show in §10.1.D that the extension C(%)/C(Z) is generated
by the Euler element. The semisimple algebra C(Z? JH is not split and we provide in
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§10.2 a decomposition of the C(#)-algebra C(#)H as a product of matrix algebras
over C(2) indexed by W. In other parts of §10, we discuss gradings and automor-
phisms, and construct a central element of order 2 of G when all reflections of W
have order 2 and —Id, € W. The last section §10.7 is a geometrical translation of the
previous constructions.

We introduce general Calogero-Moser cells in Chapter 11. They are defined in
§11.1 as orbits of inertia groups on W and shown in §11.2 to coincide with blocks
of the Cherednik algebra. We study next the ramification locus and smoothness.
We give two more equivalent definitions of Calogero-Moser cells: via irreducible
components of the base change by T of the Galois cover (§11.5) and via lifting of
paths (§11.6).

Part IV is the heart of the book. It discusses Calogero-Moser cells associated with
the ramification above 0x 0, V//W x 0 and 0 x V*/W, and relations with representa-
tions of Cherednik algebras, as well as (conjectural) relations with Hecke algebras.

In Chapter 12, we go back to the Galois cover /% and study two-sided cells.
We construct a bijection between the set of two-sided cells and the set of families.

We continue in Chapter 13 with the study of left (and right) cells. We analyze
in §13.1 the choices involved in the definition of left cells using Verma modules.
We study the relevant decomposition groups, and we reinterpret left cells as blocks
of a suitable specialization of the Cherednik algebra. We finish in §13.3 with basic
properties relating cellular characters and left cells and we give an alternative def-
inition of cellular characters as the socle of the restriction of a projective module.
We also show that a cellular character involves a unique irreducible representation
with minimal b-invariant. Section 13.4 shows, following a suggestion of Etingof,
that cells can be interpreted in terms of spectra of Gaudin operators. This provides
a topological approach to cells and cellular characters.

Chapter 14 brings decomposition matrices in the study of cells. We show in §14.4
that the decomposition matrix of baby Verma modules in a block has rank 1, as
conjectured by Thiel [Thil].

The next two chapters are devoted to conjectures. Chapter 15 discusses the mo-
tivation of this book, namely the expected relation between Calogero-Moser cells
and Kazhdan-Lusztig cells when W is a Coxeter group. We start in §15.1 with Mar-
tino’s conjecture that Calogero-Moser families are unions of Hecke families. §15.2
and §15.3 state and discuss our main conjectures. We providence some evidence
and describe some cases where the conjectures hold.

Chapter 16 gives a conjecture on the cohomology ring and the C*-equivariant
cohomology ring of Calogero-Moser spaces, extending the description of Etingof-
Ginzburg in the smooth case. We also conjecture that irreducible components of
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the fixed points of finite order automorphisms on the Calogero-Moser space are
Calogero-Moser spaces for reflection subquotients. This conjecture has been ex-
tended to symplectic leaves in [Bon7].

Part V is based on the study of particular cases. Chapter 17 presents the theory
for the parameter ¢ =0.

Chapter 18 is devoted to the case where V has dimension 1. We give a descrip-
tion of the objects introduced earlier, in particular the Galois closure R. We show
that generic decomposition groups can be very complicated for some values of the
parameters. We also compute the cohomology of the Calogero-Moser space, even
when it is singular, confirming the conjecture on cohomology.

Chapter 19 analyzes the case of W a Coxeter group of type B,. We determine in
§19.3 the ring of diagonal invariants and the minimal polynomial of the Euler ele-
ment. We continue in §19.4 with the determination of the corresponding deformed
objects. The Calogero-Moser families are then easily found. We move next to the
determination of the Galois group G. Section §19.7 is the more complicated study of
ramification and the determination of the Calogero-Moser cells. We finish in §19.8
with a discussion of fixed points of the action of groups of roots of unity, confirming
the conjecture on fixed points.

Chapter 20 illustrates the topological approach (via Gaudin algebras) of the com-
putation of cells in the particular case of finite dihedral groups. No proof is given,
but we provide pictures that give evidence for our main conjectures.

We have gathered in six appendices some general algebraic considerations, few
of which are original.

Appendix A is a brief exposition of filtered modules and filtered algebras. We an-
alyze in particular properties of an algebra with a filtration that are consequences
of the corresponding properties for the associated graded algebra. We discuss sym-
metrizing forms in §A.4 and we finish with Weyl algebras in §A.5.

Appendix B gathers some basic facts on ramification theory for commutative
rings around decomposition and inertia groups. We recollect some properties of
Galois groups, discriminants and integral closures. We close the chapter with a
topological version of ramification theory and its connection with commutative ring
theory.

Appendix C is a discussion of some aspects of the theory of graded rings. We
consider general rings in §C.1. We next discuss in §C.2 gradings in the setting of in-
tegral extensions of commutative rings. We finally consider gradings and invariant
rings in §C.3.
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We present in Appendix D some results on blocks and base change for algebras
finite and free over a base. We discuss in particular decomposition maps, central
characters and idempotents, and the locus where the block decomposition changes.

Appendix E deals with finite group actions on rings (commutative or not), and
compares the cross-product algebra and the invariant ring. We consider in particu-
lar the module categories and the centers.

Appendix F provides a generalization of the theory of highest weight categories
over commutative rings [CPS1, CPS2, BeTh1]. We discuss in particular base change
(§F.1.E), Grothendieck groups (§F.1.F and §F.1.G), decomposition maps (§F.1.H) and
blocks (§F.1.I). A particular class of highest weight categories arises from graded
algebras with a triangular decomposition (§F.2), generalizing [GGOR] to non-inner
gradings.

Before the index of notations, we have included in "Prime ideals and geometry"

some diagrams summarizing the commutative algebra and geometry studied in
this book.

We would like to thank G. Bellamy, P. Etingof, I. Gordon, G. Malle, M. Martino
and U. Thiel for their help and their suggestions.

Commentary. — This book contains an earlier version of our work [BoRo1]. The
structure of the text has changed and the presentation of classical results on Chered-
nik algebras is now mostly self-contained. There are a number of new results
(see for instance Chapters 5, 7 and 8) based on appropriate highest weight cat-
egory considerations (Appendix F is new), and a new topological approach (see
Sections 5.5, 11.6 and 13.4 on Gaudin algebras in particular).






PART 1

REFLECTION GROUPS AND
CHEREDNIK ALGEBRAS






CHAPTER 1

NOTATIONS

1.1. Integers
WeputN=Z.,.

1.2. Modules

Let A be a ring. Given L a subset of A, we denote by < L > the two-sided ideal
of A generated by L. Given M an A-module, we denote by Rad(M) the intersec-
tion of the maximal proper A-submodules of M. We denote by A-Mod the cate-
gory of A-modules and by A-mod the category of finitely generated A-modules. We
put Gy(A) = Ky(A-mod), where Ky(%) denotes the Grothendieck group of an exact
category ¢. We denote by A-proj the category of finitely generated projective A-
modules. Given .¢/ an abelian category, we denote by Proj(.</) its full subcategory
of projective objects.

Given M € A-mod, we denote by [M], (or simply [M]) its class in Gy(A).

We denote by Irr(A) the set of isomorphism classes of simple A-modules. Assume
Ais a finite-dimensional algebra over a field k. We have an isomorphism ZIrr(A) -
Go(A), M — [M]. If A is semisimple, we have a bilinear form (—,—), on Gy(A) given
by ([M],[N]) = dimHom,(M,N). When A is split semisimple, Irr(A) provides an
orthonormal basis.

Let W be a finite group and k a field. We denote by It (W) (or simply by Irr(W))
the set of irreducible characters of W over k. When |W| € k*, there is a bijection
Irr (W) = Irr(kW), y — E,. The group Hom(W,k*) of linear characters of W with
values in k is denoted by W”« (or W") . We have an embedding W" c Irr(W), and
equality holds if and only if W is abelian and k contains all e-th roots of unity,
where e is the exponent of W.
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1.3. Gradings

1.3.A. Let k be aring and X a set. We denote by kX =k the free k-module with
basis X. We sometimes denote elements of k* as formal sums: > _, a,x, where
a, €k

xeX

1.3.B. LetT be a commutative monoid. We denote by kI" (or k[I']) the monoid alge-
bra of I over k. Its basis of elements of I is denoted by {z7},r.

A T-graded k-module is a k-module L with a decomposition L = P, L, (that is
the same as a comodule over the coalgebra kI'). Given 7, € I, we denote by L(y,)
the I'-graded k-module given by (L(y)), = L,,,,. We denote by k-free' the additive
category of I'-graded k-modules L such that L, is a free k-module of finite rank for
all y €T. Given L ek-free', we put

dimi(L)= Z ranky(L,)t" € Z".
rer
We have defined an isomorphism of abelian groups dim, : Ky(k-free') — Z''. This
construction provides a bijection from the set of isomorphism classes of objects of
k-free' to N'. Given P =3 . p, 17 with p, €N, we define the I-graded k-module k”
by (k”), =k”r. We have dim, (k") = P.

We say that a subset E of a I-graded module L is homogeneous if every element of

E is a sum of elements in E N L, for various elements y €T.

1.3.C. A graded k-module L is a Z-graded k-module. We put L, =&p,.,L;. Assume
L € k-free”. If L; = 0 for i < 0 (for example, if L is N-graded), then dimZ(L) is an
element of the ring of Laurent power series Z((t)): this is the Hilbert series of L.
Similarly, if L; =0 for i >0, then dimZ(L) € Z((t™)).

When L has finite rank over k, we define the weight sequence of L as the unique
sequence of integers r; <--- < r,, such that dirn%(L) =t tm,

A bigraded k-module L is a (Z x Z)-graded k-module. We put t= Y and u= ¢,
so that dimZ**(L) = Zi,j dimy(L; ;)t'u’ for L € k-free”*”. When L is (N x N)-graded,
we have dim, (L) € Z[[t, u]].

When A is a graded ring and M is a finitely generated graded A-module, we
denote by [M ¥ (or simply [M ) its class in the Grothendieck group of the category
A-modagr of finitely generated graded A-modules. Note that Ky(A-modgr) is a Z[t*']-
module, with t{M 8" =[M (—1)]8".

1.3.D. Assume k is a commutative ring. There is a tensor product of I'-graded k-
modules given by (L& L’), =D, =y L, ®Ly,. When the fibers of the multiplication
map I'xT — T are finite, the multiplication in T provides Z' with a ring structure,
the tensor product preserves k-free', and dim, (L ®, L') = dim,(L)dim, (L’).
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A T-graded k-algebra is a k-algebra A with a structure of I'-graded k-modules such
that A,-A, CA,, forally, y'€T.






CHAPTER 2

REFLECTION GROUPS

Throughout this book, we consider a fixed characteristic 0 field k,

a finite-dimensional k-vector space V of dimension n and a finite

subgroup W of GI(V'). We will write ® for ®. We denote by
Ref(W)={s e W | dim Im(s—Id,)=1}

the set of reflections of W. We assume that W is generated by
Ref(W).

2.1. Determinant, roots, coroots

We denote by ¢ the determinant representation of W

e: W — k>
w +— dety(w).

We have a perfect pairing between V and its dual V*
():VxV*—k
Given s € Ref(W), we choose a; € V* and a! € V such that
Ker(s—Idy)=Kera, and Im(s—Idy)=ka’
or equivalently
Ker(s—Idy.)=Kera! and Im(s—Idy.)=ka;.

Note that, since k has characteristic 0 and W is finite, all elements of Ref(W) are
diagonalizable, hence

(2.1.1) (a!,a,) #0.
Given x € V*and y € V we have

)aS
212) ()= y—(1—e(s) %) g

(a),a;)
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and
(al, x)

(2.1.3) s(x)=x—(1—£(s)_1)(a\s/’as)

2.2. Invariants

We denote by k[V] = S(V*) (respectively k[V*] = S(V)) the symmetric algebra of
V* (respectively V). We identify it with the algebra of polynomial functions on
V (respectively V*). The action of W on V induces an action by algebra automor-
phisms on k[ V] and k[ V*] and we will consider the graded subalgebras of invariants
k[V]" and k[V*]". The coinvariant algebras k[ V]°") and k[V*]°") are the graded
finite-dimensional k-algebras

KVI©WM=KV]/<KV]Y> and KV M =KV*/<kV*]'>.

Shephard-Todd-Chevalley’s Theorem asserts that the property of W to be generated
by reflections is equivalent to structural properties of k| V]". We provide here a ver-
sion augmented with quantitative properties (see for example [Bro2, Theorem 4.1]).
We state a version with k[V], while the same statements hold with V replaced by
V.

Let us define the sequence d, <---< d,, of degrees of W as the weight sequence of
<k[V]¥>/<KkV]¥ >? (cf. §1.3.C): it has length n thanks to the following classical
theorem.

Theorem 2.2.1 (Shephard-Todd, Chevalley). — (a) The algebra k[V]V is a polyno-
mial algebra generated by homogeneous elements of degrees d,, ..., d,. We have

(Wi=d,-d, and |Ref(W)=> (d;—1).
i=1

(b) The (K[V]Y[W])-module k[ V] is free of rank 1.
(c) The kW-module K[V ]°°W) is free of rank 1. In particular dim k[ V]<°W) =|W|.

Remark 2.2.2. — Note that when k = C, there is a skew-linear isomorphism be-
tween the representations V and V* of W, hence the sequence of degrees for the
action of W on V is the same as the one for the action of W on V*. In general, note
that the representation V of W can be defined over a finite extension of QQ, which
can be embedded in C: so, the equality of degrees for the actions on V and V* holds
for any k.

This equality can also be deduced from Molien’s formula [Bro2, Lemma 3.28]. m
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Let N = |Ref(W)|. Since dimZ(k{ V' ]°")) = [ ]1_, T, we deduce that dim, k{ V] =

1-t
1. A generator is given by the image of [ | ,@: this provides an isomorphism
h K VIR Sk

The composition

seRef(W

mult can

KViyek V] —KVI—KVI]/&V]"KV]y)

factors through an isomorphism g : K[V]S™ @ k[V]" -5 K[V]/(K[V]VK[V].y). We
denote by py the composition

v K VIS KV VYKV ]oy) 2o VI @ K V] 22 v,

~

We refer to §A .4 for basic facts on symmetric algebras.
Proposition 2.2.3. — py is a symmetrizing form for the k[ V1" -algebra k[ V].
Proof. — We need to show that the morphism of graded k[V]"-modules
pn K[V — Homygyw (K V], K V]™), @ (b — py(ab))

is an isomorphism. By the graded Nakayama lemma, it is enough to do so after ap-
plying —®,;wk. We have py ®yywk= py, where py : k[ V] — k] Ve 7, kis the
projection onto the homogeneous component of degree N. This is a symr%etrizing
form for k[ V]« [Bro2, Theorem 4.25], hence py is an isomorphism. O

Note that the same statements hold for V replaced by V*.

2.3. Hyperplanes

Notation. We fix an embedding of the group of roots of unity of k
in Q/Z. When the class of % is in the image of this embedding, we
denote by ¢, the corresponding element of k.

We denote by .¢/ the set of reflecting hyperplanes of W':
./ ={Ker(s—Idy) | s € Ref(W)}.

There is a surjective W-equivariant map Ref(W) — .¢/, s — Ker(s —Idy). Given X a
subset of V, we denote by Wy the pointwise stabilizer of X:

Wy={weW |V xeX, w(x)=x}

Given H € .¢/, denote by ay € V* a linear form such that H = Ker(ay) and let
a}, € V such that V = H @ ka}, and ka}, is stable under W,;. We denote by ey the
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order of the cyclic subgroup Wy of W. We denote by s the generator of Wy with
determinant , . This is a reflection with hyperplane H. We have

Ref(W)z{s{} |He.o/ and 1< j<ey—1}.

The following lemma is clear.

Lemma 2.3.1. — s}, and slf;, are conjugate in W if and only if H and H' are in the same
W-orbit and j=j’.

Given U a W-orbit of hyperplanes of ./, we denote by e; the common value of
the ey for H € U. Lemma 2.3.1 provides a bijection from Ref(W)/W to the set U of
pairs (U, j) where Ue .o/ /W and 1 < j < ez—1.

We denote by U° the set of pairs (U, j) withU €./ /W and 0< j < ¢5—1.

Let V™8 ={v € V | Stab,(v) =1}. Define the discriminant 6 =[ [, a7 €k[VIV.
The following result shows that points outside reflecting hyperplanes have trivial
stabilizers [Bro2, Theorem 4.7].

Theorem 2.3.2 (Steinberg). — Given X C V, the group Wy is generated by its reflections.
As a consequence, V™6 =V \ UHerf H and k[V™8]=k[V][67'].

We say that W is indecomposable if it acts irreducibly on V/V™.

There is a unique decomposition V=V" &V, &---& V, as kW-modules where the
V;’s are irreducible. Define W; to be the pointwise stabilizer in W of (B, ,; V;. We
have W = W, x---x W, and W is an indecomposable reflection group on V (and
irreducible on V}).

2.4. Irreducible characters

The rationality property of the reflection representation of W is classical.

Proposition 2.4.1. — Let k' be a subfield of k containing the traces of the elements of W
acting on V.. Then there exists a k' W-submodule V' of V such that V =ke,, V".

Proof. — Assume first V is irreducible. Let V" be a simple k' W-module such that
k®, V" ~ V™" for some integer m > 1. Let s € Ref(W). Since s has only one non-
trivial eigenvalue on V, it also has only one non-trivial eigenvalue on V”. Let
L be the eigenspace of s acting on V” for the non-trivial eigenvalue. This is an
m-dimensional k’-subspace of V”, stable under the action of the division algebra
Endy 1 (V”). Since that division algebra has dimension m? over k' and has a module
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L that has dimension m over k/, we deduce that m = 1. The proposition follows by
taking for V'’ the image of V” by an isomorphism k®,, V" SV

Assume now V is arbitrary. Let V = V" & @5:1 V; be a decomposition of the
kW-module V, where V; is irreducible and non-trivial for 1<i <. Let W; be the
subgroup of W of elements acting trivially on P,,; V;. The group W; is a reflection
group on V;. The discussion above shows there is a k' W;-submodule V; of V; such
that V; =key V/. Let V" be a k'-submodule of VW such that VW =k, V”. Let V' =

V”@@;Zl V/. Wehave W = Hi.:l W; and V =k, V' this proves the proposition. [

The following rationality property of all representations of complex reflection
groups is proven using the classification of those groups [Ben, Besil].

Theorem 2.4.2 (Benard, Bessis). — Let k' be a subfield of k containing the traces of the
elements of W acting on V. Then the algebra K'W is split semisimple. In particular, kW is
split semisimple.

2.5. Hilbert series

2.5.A. Invariants. — The algebra k[V x V*] = k|V]® k[ V*] admits a standard bi-
grading, by giving to the elements of V* C k[ V] the bidegree (0,1) and to those of
V c k[V*] the bidegree (1,0). We have

VA YA *1) 1
(2.5.1) dim ““(k[V x V*])= 0w
Using the notation of Theorem 2.2.1(a) and Remark 2.2.2, we find that
- 1
A *1WxWy _
(2.5.2) dim, " “(k[V x V"] )—l I(l—tdi)(l—udi)'

i=1

On the other hand, the bigraded Hilbert series of the diagonal invariant algebra
K[V x V*]2W is given by a formula a la Molien

1 1
2.5.3 dimZ*2(k[V x V*]A")= ,
( ) iy (K[ V< V) |W| wezwdet(l—wt) det(1— w—'u)

whose proof is obtained word by word from the proof of the usual Molien formula.
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2.5.B. Fake degrees. — We identify K,(kW-modgr) with Gy(kW)[t,t"']: given M =
Dz M; a finite dimensional Z-graded kW-module, we make the identification
[M]lg(rw :Z [ M i T
i€Z
The class [ M ]y is the evaluation at t=1 of [M [{,,. When M is a bigraded kW-
module, we identify similarly [ M IZ* with an element of Ky(kW)[t,u,t™!,u"].
Let (f} (1)), er(w) denote the unique family of elements of N[t] such that

(2.5.4) [ V*]ooW) 22 — Z j}t) x.

y €lrr(W

Definition 2.5.5. — The polynomial f,(t) is called the fake degree of y. Its t-valuation is
denoted by b, and is called the b-invariant of y.

The fake degree of y satisfies

(2.5.6) L, ()= x ().

Note that

2.5.7) (VI EE= > f(w) 7,
x €lrr(W)

(here, y* denotes the dual character of y, thatis, y*(w)= y(w™)). Note also that, if
1,, denotes the trivial character of W, then

[K[V* M E% =1, mod tGy(kW)[t]
and [K[VI°M ]2 =1, mod uGykW)[u].

We deduce the following lemma.

Lemma 2.5.8. — The elements [k[V ]V ZXZ and [ k[ V*]eoW ZXZ are not zero divisors in
Ky(kW)[t,u, t7',u'].

Remark 2.5.9. — Note that

(VI hy = (VI gy = [kW gy = > 2(Dy
y €lrr(W)

is a zero divisor in Ky(kW) (assoonas W #1). B

We can now give another formula for the Hilbert series dim**(k[V x V*]A").
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1
H?_lu_td,-)(l_ud,.)X;W)fx(t) £, (u).

Proof. — Let . be a W-stable graded complement to <k[V]!" > in k[V]. Since k[ V]
is a free k[ V]"-module, we have isomorphisms of graded k[ W]-modules

KV]~kV]Ye®# and  KV]°M 2.

Proposition 2.5.10. — dimZ*(k[V x V*]")=

Similarly, if ¢’ is a W-stable graded complement of < k[V*]KV > in k[ V*], then we
have isomorphisms of graded k[ W ]-modules
KV ]~kV*Ye®x' and KV~

In other words, we have isomorphisms of graded k[ W]-modules

KV]~K VIV ok VW)  and  KV*]~KkV*]V k[ V*]©W)
We deduce an isomorphism of bigraded k-vector spaces

VI VD" = (K V]Y @ K[ V") @ (] VI @ k[ VM)W,
By (2.5.4) and (2.5.7), we have

dimZ VI K VI = ST p 0, (29t 1w

X YeElr(W)
So the formula follows from the fact that (yy*, 1y) = (¥, Y)w- O

To conclude this section, we gather in a same formula Molien’s Formula (2.5.3)
and Proposition 2.5.10:
1 1
|W| WZM:/ det(1—wt) det(1 — w—1u)

1

) H?:l(l—tdi)(l—ud,-)Xegw)fx(t) £, ).

dimzxz(k[V x VA) =

2.6. Coxeter groups

Let us recall the following classical equivalences:

Proposition 2.6.1. — The following assertions are equivalent:

(1) There exists a subset S of Ref(W') such that (W, S) is a Coxeter system.

(2) V ~V*as kW-modules.

(3) There exists a W-invariant non-degenerate symmetric bilinear form V x V — k.

(4) There exists a subfield kg of k and a W -stable kg-vector subspace Vi, of V such that
V =k®y, W, and kg embeds as a subfield of R.
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Whenever one (or all the) assertion(s) of Proposition 2.6.1 is (are) satisfied, we say
that W is a Coxeter group. In this case, the text will be followed by a gray line on the
left, as below.

Assumption, choice. From now on, and until the end of §2.6, we
assume that W is a Coxeter group. We fix a subfield kg of k that
embeds as a subfield of R and a W-stable kg-vector subspace Vi, of
V such that V =ke®,, V.. We also fix a connected component Cg of
{v eR®, W, |Staby, (v)=1}. We denote by S the set of s € Ref(W)
such that Cg Nkergg, v _(s —1) has real codimension 1 in Cg. So,
(W, S) is a Coxeter system. This notation will be used all along this
book, provided that W is a Coxeter group.

The following is a particular case of Theorem 2.4.2.

Theorem 2.6.2. — The kg-algebra kg W is split. In particular, the characters of W are real
valued, that is, y = y* for all characters y of W.

Recall also the following.

Lemma 2.6.3. — If s € Ref(W), then s has order 2 and &(s)=—1.

Corollary 2.6.4. — The map Ref(W)— .</, s — Ker(s—Idy) is bijective and W -equivariant.
In particular, |.o/| = |Ref(W)| =" (d; —1) and |.</ /W|=|Ref(W)/W]|.

Let { : W — N denote the length function with respect to S: given w € W, the
integer {(w) is minimal such that w is a product of /(w) elements of S. When w =
§8,-+-5; with s; € Sand [ =¢(w), we say that w = 5,5, -+ is a reduced decomposition
of w. We denote by w, the longest element of W: we have {(w,)=|Ref(W)|=|.</|.

Remark 2.6.5. — If —1dy, € W, then w, = —Idy. Conversely, if w, is central and
VW =0, then wy=—Id,. ®m



CHAPTER 3

GENERIC CHEREDNIK ALGEBRAS

Let €6 be the k-vector space of maps c : Ref(W) — k, s — ¢, that are constant on
conjugacy classes: this is the space of parameters, which we identify with the space of
maps Ref(W)/W — k.

Given s € Ref(W) (or s € Ref(W)/ W), we denote by C; the linear form on 6 given
by evaluation at s. The algebra k[6] of polynomial functions on % is the algebra of
polynomials on the set of indeterminates (C);crefnw:

k[(ﬁ] = k[(Cs)seRef(W)/W]-

We denote by % the k-vector space kx 6 and we introduce T : 6 —k, (t,c)— t. We
have T € %" and

k[%] = k[ T, (Cs)seRef(W)/W]-

3.1. Structure

3.1.A. Symplectic action. — We consider here the action of W on V & V*. Lemma
E.1.2 and Proposition E.2.2 give the following result.

Proposition 3.1.1. — We have Z(k[V x V*]x W) = K[V x V*]W =k[(V x V*)/W] and
there is an isomorphism

ZKV x Vi Ix W)= e(k[V x V*]x W)e, z— ze.
The action by left multiplication gives an isomorphism

K[V x V] W = Endyy v wiom (K[ V x V] 3 W)e )™

3.1.B. Definition. — The generic rational Cherednik algebra (or simply the generic
Cherednik algebra) is the INKA J-algebra H defined as the quotient of K[é]® (Tk(V )
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V*)x W) by the following relations (here, T,(V ® V*) is the tensor algebra of V & V*):

[x,x']=[y,y']1=0,
(3.1.2) (y,a;)-(a’, x)

)

[y, x]1=T(y,x)+ > (e(s)=1) G,

seRef(W)

forx, x’eV*and y, y’e V.

Remark 3.1.3. — Thanks to (2.1.2), the second relation is equivalent to

(3.1.4) [, x1=T(y,x)+ > Cdsy)=y.x)s

seRef(W)
and to
[y, x]=T(y,x)+ Z C(y,s ' (x)—x) s.
seRef(W)

This avoids the use of a; and ;. m

3.1.C. PBW Decomposition. — Given the relations (3.1.2), the following asser-
tions are clear:

e There is a unique morphism of k-algebras k[ V] — H sending y € V* to the class
of ye T (Ve V¥)x W in H.

e There is a unique morphism of k-algebras k[ V*] — H sending x € V to the class
of xeT (Ve V*)x W in H.

e There is a unique morphism of k-algebras kW — H sending w € W to the class
of weT (Ve V*)x W in H.

e The k[¢]-linear map K[¢]ok[V]®kW & k[V*] — H induced by the three mor-
phisms defined above and the multiplication map is surjective.

The last statement is strengthened by the following fundamental result [EtGi, The-
orem 1.3], for which we will provide a proof in Theorem 3.1.11.

Theorem 3.1.5 (Etingof-Ginzburg). — The multiplication map k[ €9k V]okW k[ V*] —
H is an isomorphism of k[ € ]-modules.
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3.1.D. Specialization. — Given (t,c) € ¢, we denote by Em the maximal ideal of
k[¢] given by Em ={f ek[6¢]]| f(t,c)=0}: this is the ideal generated by T — ¢ and
(Cs — €5)serefiw)yw- We put

ﬁt,c = (k[%]/at,c)®k[%] ﬁ = ﬁ/at,cﬁ-

The k-algebra H, . is the quotient of Ty(V @ V*) x W by the ideal generated by the
following relations:

[x,x']=[y,y’'1=0,
(3.1.6) (y,a,)- (@, x)
(v, a)

[y, xl=t(y, x)+ D> (e(s)=1)c

seRef(W)

)

forx,x’eV*and y, y’e V.

Example 3.1.7. — We have Hyy=k[V x V*|x W and H; o= 2(V)x W (see §A.5). B

More generally, given Ca prime ideal of k[€], we put H(¢)=H/CH.

3.1.E. Filtration. — We endow the k|6 J-algebra H with the filtration defined as
follows:
e HS'=0
H<? is the k| ¢]-subalgebra generated by V* and W
o ASI= <0V + <.
Hs!=(H<) fori>2.
Specializing at (¢, c) € €, we have an induced filtration of H, .

The canonical maps K€]®ok[V]x W — (grH) and V — (grH)! induce a surjective
morphism of algebras p k[G]1®k[V x V¥]x W - grH.

3.1.E Localization at V™8, — Recall that
Ve =v\ U H={veV|Stabs(v)=1} and k[V™]=KkV]o"].
Hed

We put A8 = H[§~'], the non-commutative localization of H obtained by adding a
two-sided inverse to the image of 5. Note that the filtration of H induces a filtration
of H™, with (H™¢)<'=H<[67"].

Note that multiplication induces an isomorphism of k-vector spaces k[V'™8] ®
K[V*]—5 9(V™8) = 9(V)[67'] (cf. Appendix §A.5).

Lemma 3.1.8. — We have the following properties.
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(a) There is a Morita equivalence between k[ V™8 x V*]x W and k[V™8 x V*]V given by
the bimodule k| V'8 x V*].

(b) There is a Morita equivalence between P(V™8)x W and @(V™&)W = (V™8 /W) given
by the bimodule 2(V ).

(c) The action of 2(V™8)x W on k[ V™8] is faithful.

Proof. — (a) follows from Corollary E.2.1.

(b) becomes (a) after taking associated graded, hence (b) follows from Lemmas A.3.4
and E.1.2.

(c) It follows from (b) that every two-sided ideal of (V") x W is generated by
its intersection with 2(V™&)". Since 2(V™8) acts faithfully on k[ V™8] (cf. §A.5), we
deduce that the kernel of the action of 2(V™8)x W vanishes. O

3.1.G. Polynomial representation and Dunkl operators. — Given y € V, we de-
fine D), a k[¢]-linear endomorphism of K[€]®k[ V'] by

Dy:Tay_ Z E(S)Csb’»as)a;l&

seRef(W)
where 0, is the partial derivative along y. Note that D, e k[€]® Z(V™8)x W C
K[G]1®2(VeE)x W.

Remark 3.1.9. — The Dunkl operators are traditionally defined (cf for example [EtGi,
p-280]) as
D;=T0J,— Z e(s)Cy(y, ag)a (s —1).
seRef(W)
The operator D, is constructed in [EtGi, p.281 and 284] and DJﬁ =6.'D,6, where
6¢ = Iscperw)@5*- The operator D, behaves better than Dy at ¢ = 0. On the other

hand, the operator Dy’ preserves k[¢]®k[V] while D, does not.

Proposition 3.1.10. — There is a unique structure of H-module on k[€] @ k| V™8] where
K[€]® k[ V™8] acts by multiplication, W acts through its natural action on V and y € V
acts by D,

Proof. — The following argument is due to Etingof. Let y € V and x € V*. We have

;) ) (a), x)
[a, s, x]=(e(s)” —1)——s5,
s (aY,a;)

hence
a,) - {ay, x)

Dy x] =Ty x) + 3 e(s)= 1 v o

: -1 _
Given w € W, we have wD, w™" = Dy,
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Consider y’€ V. We have

[[Dy»Dy’]»x] = [[Dy» x]»Dy’]_[[Dy’» x]»Dy]

and
(y’ as) ) (a\s/» x)
(D, x],D,] =Z(e(s)—1)csw[s,z>y/]
=S ets)-1p Ll o X)
(@, a,)? :

=[[D,, x], D,].

We deduce that [[D,,D,.], x] = 0 for all x € V*. On the other hand, [D,,D,/] acts
by zero on 1 € kK[€]® k[ V™8], hence [D,,D,,] acts by zero on kK[€]®k[V™8]. The
proposition follows. O

Proposition 3.1.10 provides a morphism of K[ J-algebras ©: H-K€]® 2, (V8.
We denote by ©™%: Hg — K[€]® 2 (V™8) its extension to H™s.

Theorem 3.1.11. — We have the following statements:

(a) The morphism @ is injective, hence the polynomial representation of H is faithful.

(b) The multiplication map is an isomorphism k[ ¢]®k[V]® k[V*]@ kW — H.

(c) We have an isomorphism of algebras p k[G]1®k[V x V¥]x W — grH.

(d) The morphism ©™8 is an isomorphism H*8 — k[6€]® D (V™8)x W.

(e) Given € a prime ideal of K[€], the morphism k[€]/¢) ®u O is injective. If TEC,
then the polynomial representation of H(C) is faithful and Z(H(€)) =k[€]/C.

Proof. — Let 1) be the composition

n: Kok V™ oKV e kW 2 fres 25 g (V™e8) x W,
Note that gr ) is an isomorphism, since it is equal to the graded map associated to
the multiplication isomorphism

K[G]ok| V] @k[V*|@kW —-K[€]® 2 (V™) x W.

We deduce that n is an isomorphism (Lemma A.3.1). Since the multiplication map
is surjective, it follows that it is an isomorphism and ©™8 is an isomorphism as well.
We deduce also that p is injective, hence it is an isomorphism.

Since k[ T']® k[ V™8] is a faithful representation of 2 (V™8)x W (Lemma 3.1.8), we
deduce that the polynomial representation induces an injective map

K[6]® 2 (V™) x W — k[€]®End, (k[ V"))
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There is a commutative diagram

~ mu ~ 1. rep. ~
Kok V]ok[V*]@kW B %@ End (K[ V™E])
canl Tpol‘ rep.
KG1e KV E] @K V@KW —— = H* — K[ 6]® Z7(V"E) x W

~

3

It follows that the multiplication
K¢]eklV]ekiV]ekWw — H

is an isomorphism and the polynomial representation of H is faithful.
Consider now € a prime ideal of % and let A=Kk[%]/¢. There is a commutative
diagram

mult ~ pol. rep.

H(?) A®End, (k[ V™¢])

can l Tpol. rep.

AQK V™ ]| k[ V*| @ kW ———— H™¢(¢) —————> A®yqz(K[€]1® 7 (V™) x W

mult ore

AQK[V]®k[V*| kW

We deduce as above that (k[€]/€) ®y 7 O is injective. Assume now T¢C. Then the
polynomial representation of A® (k[ €]® 2 (V™)) W is faithful, hence the poly-
nomial representation of H(¢) is faithful as well. Since Z(2(V'8)) = k, we deduce
that Z(A®yz (K[61® 2(V™8)) x W)= A, hence Z(H(¢))=k[€]/¢. O

Corollary 3.1.12. — Given f ek[V]and y € V, we have

. N1=T8,()- S es)Cipa) D=L

s€Ref(W) $

S.

Proof. — The result follows from Theorem 3.1.11. Note that the corollary can also
be proven directly by induction on the degree of f. O

3.1.H. Hyperplanes and parameters. — Let ¢ be the k-vector space of maps k :

U°—Kk, (U, j)— kg j such that for all U € .o/ /W, we have ijol kis,j =0. Let (Kys j)w, jyewe

be the canonical basis of k. We put Ky ; = K5 ;, where U is the W-orbit of H.
There is an isomorphism of k-vector spaces

eyg—1

~ i(i—1
(g*_) %*’ CSHi — Z gleg )KH,j'
j=0
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The surjectivity is a consequence of the invertibility of the Vandermonde determi-
nant. We denote the dual of that isomorphism by k : # — %. We will often identify
6 and & via the isomorphism k. Note that the canonical bases of ¢ and # pro-
vide them with Q-forms (and Z-forms). Unless all reflections of W have order 2, the
isomorphism « is not compatible with the Q-forms.

Note that
eg—1
Z e(w)C,w=ey Z ey, i Ky, j
weWy ]:0
where e, =¢,;' >y, €(w) w and
eg—1
(3.1.13) Z 8(5) CS = Z QHKHVO = Z Z eHKH’,-.
seRef(W) He.d Hed i=1

Via k, we can view H as a k| ¢ J-algebra and the second relation in (3.1.2) becomes

eg—1

(3114) [y,X] = T(y, X) + Z Z eH(KH,i_KH,H-l) v
Hed i=0 (ay, au)

for x e V*and y € V, where Ky ., = Ky .

Given y € V, we have

COMMENT - Our convention for the definition of Cherednik algebras differs from
that of [GGOR, §3.1]: we have added a coefficient £(s)—1 in front of the term C;.
On the other hand, our convention is the same as [EtGi, §1.15], with ¢, = ¢, (When
W is a Coxeter group). Note that the kj; ;’s from [GGOR] are related to the Ky ;’s
above by the relation k; ; = Ky g— Ky,;. W

Remark 3.1.15. — The endomorphism K ; — K ; — %z;%:ol Ky,; of k¥ induces an
injection s * — k¥. The dual map sec : k¥ — & provides a section to the inclusion
of A in kY. It is defined over Q. m
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3.2. Gradings

The algebra H admits a natural (Nx N)-grading, thanks to which we can associate,
to each morphism of monoids NxN — Z (or Nx N — N), a Z-grading (or an N-
grading) of H.

We endow the extended tensor algebra kK[¢]® (Tk(V ® V*)x W) with an (N x N)-
grading by giving the elements of V the bidegree (1,0), the elements of V* the bide-
gree (0,1), the elements of & the bidegree (1,1) and those of W the bidegree (0,0).
The relations (3.1.2) are homogeneous. Hence, H inherits an (N x N)-grading whose
homogeneous component of bidegree (i, j) will be denoted by HYN[i, j]. We have

A= P H™Vi,j] and HYM0,0]=kW.
(i,j)ENXN

Note that all homogeneous components have finite dimension over k.

If ¢ : NxN — Z is a morphism of monoids, then H inherits a Z-grading whose
homogeneous component of degree i will be denoted by H*[i]:
H’lil= € H"a,b].
p(a,b)=i
In this grading, the elements of V have degree ¢(1,0), the elements of V* have
degree (0, 1), the elements of 6" have degree ¢(1,1) and those of W have degree 0.

Example 3.2.1 (Z-grading). — The morphism of monoids NxN — Z, (i, j)— j—i
induces a Z-grading on H for which the elements of V have degree —1, the elements
of V* have degree 1 and the elements of 6" and W have degree 0. We denote by
H”[i] the homogeneous component of degree i. We have
0 =P H4i].
i€Z

By specialization at (¢, c¢) € €, the algebra H,  inherits a Z-grading whose homoge-
neous component of degree i will be denoted by ﬁfc[i ].

Assume W is irreducible. Let w, be a generator of Z(W)= W NZ(GL(V)) and let
zy be its order. We have w, = {"'1dy for some root of unity { of order zy of k.
When k is a subfield of C, we take w, = e?™/*w1d,.. Note that z,, = gcd(d,,...,d,,)
(a consequence of Theorem 2.2.1). Given h € HZ%[i], we have w,h w'={"h. So, the
(Z/zwZ)-grading on H deduced from the Z-grading is given by an inner automor-
phism of H.

Consider again a general W and let (W = Wy x---x W,V =V"Vo V& ---0V,)
be the decomposition into indecomposable components (cf §2.3). Let w; be the
elements of W; N Z(GL(V;)) defined as above. We put w, = w; x---x w, € Z(W) and
Zw=2,2,=|Z(W).m
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Example 3.2.2 (N-grading). — The morphism of monoids NxN — N, (i, j)— i+ j
induces an N-grading on H for which the elements of V and V* have degree 1, the
elements of ¢ have degree 2 and the elements of W have degree 0. We denote by
H"[i] the homogeneous component of degree i. We have
H=(PH"[i] and H"[0]=kW.
ieN

Note that dimy H[i] < oo for all i. This grading is not inherited after specialization
at (t,¢c) €6, except when (t, c) = (0,0): we retrieve the usual N-grading on ITIO,0 =
k[V x V*]x W (see Example 3.1.7). m

3.3. Euler element

Let (xy,..., x,) be a k-basis of V* and let (y,, ..., y,) be its dual basis. We define the
generic Euler element of H

eu= —nT+Zn:yix,-+ Z C,s eH.

i=1 seRef(W)
Note that
n n eg—1
eu= Zx,-y,-+ Z £(s)Css = inyi+z ZeH Ky, i€m,j-
i=1 seRef( W) i=1 Hed j=0

It is easy to check that eu does not depend on the choice of the basis (x,..., x,) of
V*. Note that

(3.3.1) euc HVN[1,1].
We have .
O(eu) = TZ YiXi
i=1

Thanks to Theorem 3.1.11, we deduce the following result [GGOR, §3.1(4)].

Proposition 3.3.2. — Given x€ V*, y € V and w € W, we have

[eu, x]=Tx, [eu, y]=—Ty and [eu, w]=0.

In [GGOR], the Euler element plays a fundamental role in the study of the cate-
gory O associated with H; .. We will see in this book the role it plays in the theory
of Calogero-Moser cells.

Proposition 3.3.3. — Given h € H%[i], we have [€u, h]=iTh.
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3.4. Spherical algebra

Notation. Throughout this book, we denote by e the primitive cen-
tral idempotent of kW defined by

1
e=WZw.

The k[6]-algebra eHe will be called the generic spherical algebra.

By specializing at (¢, ¢), and since eHe is a direct summand of the k| ¢]-module

~

H, we get
(3.4.1) eH, e =(K[€]/C, ) ®q eHe.

Since e has degree 0, the filtration of H induces a filtration of the generic spherical
algebra given by (eHe)<' = e(H</)e. It follows from Theorem 3.1.11 and Proposi-
tion 3.1.1 that

(3.4.2) greHe) = egr(H)e ~k[€]@k[V x V*]AW,

Theorem 3.4.3 (Etingof-Ginzburg). — Let € be a prime ideal of k[€].

(a) The algebra eH(€)e is a finitely generated k-algebra without zero divisors.

(b) H(C)e is a finitely generated right eH(&)e-module.

(c) Left multiplication of H(E) on the projective module H(C)e induces an isomorphism
H(€) — End,, gz, o (F(E)e)°PP.

(d) There is an isomorphism of algebras Z(H(€)) — Z(eH(C)e), z — ze.

(€) The (H(€) ®z¢ H(C)PP)-module H(E) has finite projective dimension. If k[€1/€ is
regular, then H(C) has finite global dimension.

Proof. — The assertion (a) follows from Lemmas A.3.2 and A.2.1. The assertion (b)
follows from Lemma A.3.2.

Let a : H(E) — End(eﬁ@e)opp(ﬁ(a)e)(’pp be the morphism of the theorem. Lemma
A.3.3 provides an injective morphism

ﬂ . gI‘ End(eﬁ('é)e)opp (ﬁ(&)e)Opp — Endgr(eﬁ(a)e)opp(gr ﬁ(a)e)()pp.
The composition
~ ~_ gra ~ o~ B ~ ~
grH(C) = gr End, )10 (H(€)e)*P? — Endgr(eﬁ(@)e)opp(grH(@)e)"pp

is given by the left multiplication action. Via the isomorphism p (Theorem 3.1.11),
it corresponds to the morphism given by left multiplication

7 KEI®KIV x V1% W — Endygjeeqvvepemyerm K E1® (K[ V x V*]x W)e)PP.
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Since the codimension of the complement of (V x (V*\ (V*)8))U((V \ V™) x V*) in
V x V*is 2> 2, it follows from Proposition E.2.2 that y is an isomorphism. So, gra is
an isomorphism, hence « is an isomorphism by Lemma A.3.1.

The assertion (d) follows from (c) by Lemma E.1.5.

The first part of assertion (e) follows from Lemma A.2.3 and the second part is an
immediate consequence. 0

Remark 3.4.4. — It can actually be shown [EtGi, Theorem 1.5] that if K[%€]/€ is
Gorenstein (respectively Cohen-Macaulay), then so is the algebra eH(€)e as well
as the right eH(¢)e-module H(@)e. m

3.5. Some automorphisms of H

Let Autk_alg(ﬁ) denote the group of automorphisms of the k-algebra H.

3.5.A. Bigrading. — The bigrading on H can be seen as an action of the algebraic
group k* x k* on H. Indeed, if (&, &) e k* x k*, we define the automorphism bigr; -,
of H by the following formula:

V (i, j))eNxN, V h e H™"[i, j], bigr; - (h)=&'¢" h.
Then
(3.5.1) bigr: k™ x k* —>Autk_alg(ﬁ)
is a morphism of groups. Concretely,

VyeV, bigr .(y)=¢y,

V x € V¥, bigr; - (x)=¢"x,

Y Ce%, bigr: -(C)=EEC,
V weW, bigr; -(w)=w.

After specialization, for all £ € k* and all (z,c) € %, the action of (£,1) induces an
isomorphism of k-algebras

~

(3.5.2) H,, —H: .
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3.5.B. Linear characters. — Let y : W — k* be a linear character. It provides an
automorphism of ¢ by multiplication: given ¢ € 6, we define y - ¢ as the map
Ref(W) —k, s — 7(s)c,. This induces an automorphism 74 : k[¢] — k[€], f — (¢ —
f(r™"-¢c)) sending C; on 7(s)"'C,. It extends to an automorphism y; of k[¢] by
setting y(T)=T.

On the other hand, y induces also an automorphism of the group algebra kW
given by W 3 w — y(w)w. Hence, y induces an automorphism of the K[6 J-algebra
K[é]® (Tk(V ® V*)x W) acting trivially on V and V*: it will be denoted by yy. Of
course,

0y e =rrrse
Since the relations (3.1.2) are stable by the action of y, it follows that y1 induces an
automorphism 7, of the k-algebra H. The map

wh — AUtk—alg(ﬁ)
ro o= £
is an injective morphism of groups. Given (¢, c)€ 6 and y € W*, then 7, induces an

isomorphism of k-algebras

(3.5.4) H, —H,,,.

(3.5.3)

3.5.C. Normalizer. — Let ./ denote the normalizer of W in GI(V'). Then:

e .V acts naturally on V and V¥,
e .4 acts on W by conjugation;
e The action of .4/ on W stabilizes Ref(W) and so .4 acts on ¢: if g € A and
c €6, then 8c:Ref(W) —k, s — cgo144.
e The action of & on ¥ induces an action of A& on ¢* (and so on k[¥]) such
that, if g€ 4" and s € Ref(W), then 8C,=C

e _V acts trivially on T. -
Consequently, 4" acts on the k[%]-algebra K[¢]® (Tk(V ® V*) X W) and it is easily
checked, thanks to the relations (3.1.2), that this action induces an action on H: if
g €./ and h € H, we denote by 8h the image of h under the action of g. By special-
ization at (¢, c) € €, an element g € .4 induces an isomorphism of k-algebras

~

(3.5.5) H, . —H, .

Example 3.5.6. — If £ € k*, then we can see £ as an automorphism of V' (by scalar
multiplication) normalizing (and even centralizing) W. We then recover the auto-
morphism of H inducing the Z-grading (up to a sign): if h € H, then h =bigr; ._,(h). ®



49

3.5.D. Compatibilities. — The automorphisms induced by k* x k* and those in-
duced by W”" commute. On the other hand, the group .4 acts on the group W" and
on the k-algebra H. This induces an action of W” x .4 on H preserving the bigrad-
ing, that is, commuting with the action of k* xk*. Given y € W" and g € ./, we
will denote by y x g the corresponding element of W" x.4". We have a morphism of
groups
K*xK*x (WAx AN) — Auty,(H)
(&< r>g) — (h—bigr; . o7,(£h)).

Given 7= (&,&,yxg)ek* xkK* x (W"x /) and h € H, we set
"h :bigrgygx(V*(gh)).

The following lemma is immediate.

Lemma 3.5.7. — Let 1 =(£,&,y xg)ek* xk* x (W"x._A). Then:

(a) 7T stabilizes the subalgebras K[%], K[V], K[V*] and kW.
(b) 7 preserves the bigrading.

(c) "eu=<cl’en.

(d) "e=eifand only if y=1.

3.6. Special features of Coxeter groups

Assumption. In this section 3.6, we assume that W is a Coxeter
group, and we use the notation of §2.6.

By Proposition 2.6.1, there exists a non-degenerate symmetric bilinear W-invariant
form f : VxV — k. We denote by ¢ : V — V* the isomorphism induced by f: given
v,y €V,wehave

(y,0(yN=PB,y)
The W-invariance of p implies that o is an isomorphism of kW-modules and the
symmetry of f implies that

(3.6.1) (y,x)=(o7"(x),0(y))

forall x € V*and y € V. We denote by o : Ty (Ve V*) — T, (Ve V*) the automorphism
of algebras induced by the automorphism of the vector space V & V* defined by
(¥,x) = (—o7Y(x),0(y)). It is W-invariant, hence extends to an automorphism of
Ti(V @ V*) x W, with trivial action on W. By extension of scalars, we get another
automorphism, still denoted by o1, of K€ ]®(T (Ve V¥ )xW). Itis easy to check that
o induces an automorphism o of H. We have proven the following proposition.
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Proposition 3.6.2. — There exists a unique automorphism o of H such that

op(y)=0(y) ifyev,

oi(x)=—0"x) ifxeV¥,
oi(w)=w ifweWw,
oH(C)=C ifce%"

Proposition 3.6.3. — The following hold:

(a) oy stabilizes the subalgebras K[¢] and kW and exchanges the subalgebras k[ V'] and
k[V*].

(b) If h e ANN[], j], then oi(h) e AVN[j, i].

(c) If h € HY[i] (respectively h € H%[i]), then o(h) € HN[i] (respectively og(h) €
HZ[—i]).

(d) o commutes with the action of W" on H.

(e) If (t,c) € 6, then oy induces an automorphism of H, , still denoted by oy (or Oq,,
if necessary).

(f) oglea)=—nT —eu.

b

d

VeV* — Ve V*
y&x — ay+bol(x)eco(y)+dx

Remark 3.6.4 (Action of GL,(k)). — Let p = (CCZ ) € GL,(k). The k-linear map

is an automorphism of the kW-module V & V*. It extends to an automorphism of
the k-algebra T, (V ® V*)x W by letting it act trivially on W and to an automorphism
pr of [G]® (T (V @ V*)x W) by p1(C)=det(p)C for C 6"

It is easy to check that p; induces an automorphism pg of H. Moreover, (pp’)g =
piopy for all p, p’ € GLy(k). So, we obtain an action of GL,(k) on H. This action
preserves the N-grading HY.

Finally, note that, for p = ((1) _01), we have py = of and, if p = (g g,), then
P = bigr; .. Hence we have extended the action of k* x k* x (W" x /) to an action

of GL,(k)x (W"x /). m



CHAPTER 4

CHEREDNIK ALGEBRAS AT =0

Notation. We put H = H/TH. The k-algebra H is called the
Cherednik algebra at t =0.

4.1. Generalities

We gather here those properties that are immediate consequences of results dis-
cussed in Chapter 3. We also introduce some notation.

Let us rewrite the defining relations (3.1.2). The algebra H is the k[¢]-algebra
quotient of k[ 6]® (Tk(V ®V*)x W) by the ideal generated by the following relations:

[x,x']=[y,y'1=0,
(411) (y»as)'<a\s/’x)

[y, xl= D> (e(s)=1) G,

seRef(W)

)

forx,x’eV*and y, y’e V.
The PBW-decomposition (Theorem 3.1.5) takes the following form.

Theorem 4.1.2 (Etingof-Ginzburg). — The multiplication map gives an isomorphism of
k[ 6 ]-modules

K[6¢]k[V]®ekW & k[V*]— H.

Given ¢ € 6, we denote by ¢, the maximal ideal of k[6] defined by ¢, = {f €
k[6]| f(c)=0}: it is the ideal generated by (C; — ¢,)seretw)w- We set

H,=(k[6]/¢.)®qs H=H/¢ . H=H,_.
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The k-algebra H, is the quotient of the k-algebra Ty (V & V*) x W by the ideal gener-
ated by the following relations:

[x,x']=[y,y']=0,

(4.13) »
y.xl= D (els)=1) LD CNEY)

s€Ref(W) ( \s/’ aS)

’

forx,x’eV*and y, y’e V.

Since T is bi-homogeneous, the k-algebra H inherits all the gradings, filtrations
of the algebra H: we will use the obvious notation HYN[i, j], HN[i], HZ[i] and H<!
for the constructions obtained by quotient from H. We will denote by eu the image
of eu in H. This is the generic Euler element of H. Note that
(4.1.4) euc H[1,1]c H*[0]

The ideal generated by T is also stable by the action of k* x k* x (W" x .4"), so H
inherits an action of k* xk* x (W"x_4"). The action of T e k* xk*x (W"x.A4)on h e H
is still denoted by *h. The following lemma is immediate from Lemma 3.5.7.

Lemma 4.1.5. — Let T=(£,&,y xg)ek* xk* x (W"xA). Then

(a) 7T stabilizes the subalgebras k[6], kK[ V], k[V*] and kW.
(b) 7 stabilizes the bigrading.
(c) "feu=<E&¢E eu.

Theorem 3.4.3 implies the following result on the spherical algebra.

Theorem 4.1.6 (Etingof-Ginzburg). — Let € be a prime ideal of k[6] and let H(C) =
H/CH. Then

(@) The algebra eH(C)e is a finitely generated k-algebra without zero divisors.
(b) Left multiplication of H(E) on the projective module H(€)e induces an isomorphism
H(Q:) AN End(eH(@e)opp (H(Q:)Q)OPP.

Let H*8 =k[ €] ®yz H™8. Theorem 3.1.11 becomes the following result.

Theorem 4.1.7 (Etingof-Ginzburg). — There exists a unique isomorphism of k[ € ]-algebras
O:H® S KE]I(K[V™Ex V¥ ]x W)

such that
O(w)=w forwew,

o)=y— >, )G )

seRef(W) S
Ox)=x for x e V*.

s foryeV,
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Given € a prime ideal of K[€], the restriction of (k[€]/C) ®y«) O to (k[€]/C)®y4 H is
injective.

4.2. Center

Notation. Throughout this book, we denote by Z = Z(H) the center
of H. Given ¢ € 6, we set Z, = Z/C .Z. Let P denote the k[6]-
algebra obtained by tensor product of algebras P =k[€]ok[V]" ®
K[ V*I". We identify P with a k[¢]-submodule of H via Theorem
4.1.2.

4.2.A. A subalgebra of Z. — The first fundamental result about the center Z of H
is the next one [EtGi, Proposition 4.15] (we follow [Gorl, Proposition 3.6] for the
proof).

Lemma 4.2.1. — P is a subalgebra of Z stable under the action of k* xk* x (W" x /). In
particular, it is (N x N)-graded.

Proof. — The subalgebra k[V]" is central in H by Corollary 3.1.12. Dually, k[V*]V
is central as well. The stability property is clear. O

Corollary 4.2.2. — The PBW-decomposition is an isomorphism of P-modules. In partic-
ular, we have isomorphisms of P-modules:

(a) HK[¥4]eklV]ekW @ k[ V*].

(b) He k[ 619 k[V]®Kk[V*].

(c) eHe ~Kk[€]®Kk[V x V*]AW,
Hence, H (respectively He, respectively eHe) is a free P-module of rank |W|* (respectively
|W |2, respectively |[W|).

The main theme of this book is the study the algebra H viewed as a P-algebra:
given p a prime ideal of P, we will be interested in the finite dimensional kp(p)-
algebra kp(p)®p H (splitting, simple modules, blocks, standard modules, decompo-
sition matrix...). Here, kp(p) is the fraction field of P/p, cf. Appendix B.

Remark 4.2.3. — Let (b;); <; <jw| be a k[V]"-basis of k[V] and let (b}); <; <w be a

k[ V*]"-basis of k[ V*]. Corollary 4.2.2 shows that (b; wb]*.‘)1 <ij<|w| is a P-basis of H
wew
and that (b, b;.‘e)1 <i,j<|w| is a P-basis of He. m )
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Set
P=KV]" ek V*]".
If c €6, then
P,~k[€6]/¢, @4 P=P/C.P.
We deduce from Corollary 4.2.2 the next result.

Corollary 4.2.4. — We have isomorphisms of P,-modules:

(a) H, ~k[V]kW @ k[ V*].

(b) Hee ~k[V]®k[V*].

(c) eH, e ~K[V x V*]AW,
In particular, H, (respectively H_ e, respectively eH e) is a free P,-module of rank |W|?
(respectively |W |?, respectively |W|).

4.2.B. Satake isomorphism. — It follows from Proposition 3.3.2 that
(4.2.5) euc”/.

Given ¢ € 6, we denote by eu, the image of eu in H,.

The next structural theorem is a cornerstone of the representation theory of H.

Theorem 4.2.6 (Etingof-Ginzburg). — The morphism of algebras Z — eHe, z — ze
is an isomorphism of (N x N)-graded algebras. In particular, eHe is commutative.

Proof. — Recall (Theorem 3.4.3) that the map =, : Z(H) — Z(eHe), z — ze is an
isomorphism of algebras. Theorem 4.1.7 shows that ©(eHe) = k[ 6 ]®(ek[ V™8 x V*])
and that O is injective, hence eHe is commutative. The theorem follows. O

Corollary 4.2.7. — Let € be a prime ideal of k[6]. Let Z(€)=Z/CZ and P(€)=P/CP.
We have:

(a) Z(€)=Z(H()).

(b) The map Z(€)— eH(C)e, z — ze is an isomorphism.

(c) Endye)(H(¢)e) = Z(€) and Endy¢)(H(C)e) = H(Q).

(d) HO)=Z(@)® eH(C)(1—e)®(1—e)H(C)e ® (1 —e)H(C)(1 —e). In particular, Z(€) is

a direct summand of the Z(&)-module H(C).
(e) Z(€)is a free P(€)-module of rank |W|.
(f) Ifk[6]/C is integrally closed, then Z(<) is an integrally closed domain.



55

Proof. — Assertion (b) follows from Theorem 4.2.6. We deduce now (c) from Theo-
rem 4.1.6 and (e) from Corollary 4.2.2. We deduce also that Z(€)(1—e)NnZ(€)=0. It
follows also that eH(€)e = Z(€)e, hence eH(¢)e C Z(€)+H(€)(1—e). The decomposi-
tion H(C) = eH(C)e ® eH(C)(1—e)® (1 —e)H(C)e & (1 —e)H(C)(1—e) implies (d).

The canonical map Z(H(¢)) — eH(C)e, z— ze is injective since H(¢) acts faithfully
on H(¢)e by (c). Since Z(¢) is a direct summand of H(¢) contained in Z(H(<)), the
assertion (a) follows from (b).

The fact that Z(¢) ~ eH(¢)e is an integrally closed domain follows from the fact
that gr(eH(€)e) ~ (k[€]/€) @ k[V x V*]*W is an integrally closed domain (Lemma
A2.2). O

Example 4.2.8. — Recall (Example 3.1.7) that H, = k[V x V*] x W. It follows from
Proposition 3.1.1 and Corollary 4.2.7 (a) that Z, =k[V x V]V ~K[(V x V*)/W]. &

4.2.C. Morphism to the center of k['¢]W. — Let pbw: k[6]®k[V]®kW ®k[V*]— H
denote the isomorphism given by the PBW-decomposition (see Theorem 4.1.2) and
let evy :k[€]®k[VI®kW @ Kk[V*] — k[6]W denote the k[6]-linear map defined by

evoo(a® few®g)=f(0)g(0)aw.

We set
Q" =evy opbw  :H— k[€]W.

This is a W-equivariant morphism of bigraded k[6¢]-modules but it is not a mor-
phism of algebras (except if W = 1). Nevertheless, we have the following result:

Proposition 4.2.9. — If z € Z and h € H, then O(z) € Z(k[€ W) and
o zh) =0 (z)8 (h).

Proof. — First, the fact that Q%(z) € Z(k[6]W) follows from the W-equivariance of

Q". Now, write pbw '(2)=3 .., a;® i@ w;®g; and pbw ' (h)=3,_, a;® [/ wi®g!.
We have
_ rplo ot 1 ’ pr ’ s
eh=) zajfjwigi=> ajf/zwg,
JjeJ JjeJ
hence

pbw ' (zh)= Zaia;. ®fif; oww®w ' g:gw.
i€l
jeJ

This proves that Q%(zh) = Q% (z)Q"(h). O
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Let 2 : Z — Z(k[6]W) denote the restriction of @ to Z. Since 0 respects the
bigrading and so respects the Z-grading, we have
(4.2.10) Nz)=

if z € Z is Z-homogeneous of non-zero Z-degree.
Corollary 4.2.11. — The map Q: Z — Z(k[‘6€ W) is a morphism of bigraded k[ ‘€ ]-algebras.

If ¢ is a prime ideal of k[¢] (resp. if ¢ € ¢), the map 2 induces a morphism of
Z-graded algebras n%:Z(¢)— (k[€]/¢) @ Z(kW) (resp. Q¢ : Z, — Z(kW)).

Remark 4.2.12. — By exchanging the roles of V and V*, one gets an isomorphism
pbw, : k[ € ]9k[V*|®kW &k[ V] — H coming from the PBW-decomposition and a map
evy, k[C]ok[V* ]ekW @Kk[V] — k[€]W obtained by evaluating at (0,0) € V* x V.
One obtains another morphism of bigraded k[6¢]-algebras

0 :Z—Z(k[E€]W).

It turns out that @ # 2*. Indeed, using the automorphism ¢, of the k[¢]-algebra
k[6]W given by w — e(w)w, then it follows from Section 3.3 that

Q(eu)= Z £(s)C,s = £, (% (eu)).

seRef(W)

We will see in Corollary 7.5.7 that

Nz)=¢,((2))
forallzeZ. m

4.3. Localization

Recall that
ves=V\ | | H={ve V| Staby(v)=1}.

He.d
Set P8 = k|6] k[ V™8]W x K[ V*]W and Z™8 = P*8®, Z , so that H*8 = P8 @, H =
7@, H. Given s € Ref(W), let ' =[], w(a;) € P. We have P™8 = P[67!] and
Z™8=Z[6""]. As a consequence,

(4.3.1) a, is invertible in H™®,

Corollary 4.3.2. — O restricts to an isomorphism of k[ 6 ]-algebras Z™# S k[ 6]ok[ V™8 x
VW, In particular, Z™8 is reqular.



57

Proof. — The first statement follows from the comparison between the centers of
H™8 and k[V™8 x V*] x W (Theorem 4.1.7). The second statement follows from the
fact that W acts freely on V'8 x V*, O

Given c €6, let Z*¢ = Z [6~"]. Corollary 4.3.2 shows that
(4.3.3) Z'8 ~ K[ V™8 x V¥V is a reqular ring.

4.4. Geometry
The spectra of the k-algebras P, Z, P, and Z, are algebraic k-varieties that will be
denoted by 2, Z, 2, and Z . respectively. Note that
BP=CxV/WxV*/W and P,=V/WxV*/W

and that Z,=(VxV*/AW.
It follows from Corollary 4.2.7(f) that
(4.4.1) the varieties % and % are irreducible and normal.

Note that this statement holds over any base field. The inclusions P ¢ Z and P, C Z,
induce morphisms of varieties

Y —R=6xV/WxV/W

and Y. %, —P,=V/WxV*/W.

The surjective maps P — P/€.P ~ P, and Z — Z_ induce closed immersions j, :
¥, — Zand i, : P, — P, p — (c,p). Moreover, the canonical injective map
k[6] — P induces the canonical projection 7w : # — €6 and, in the diagram

7 Je P
T, T
2
(4.4.2) V/W x VW == P,C P ==X V/Wx VW

{C}( - € :ARef(W)/W
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all the squares are cartesian. Note also that, by Corollary 4.2.7,

(4.4.3) the morphisms Y and Y, are finite and flat.
Moreover,
(4.44) 7 is smooth,

since V /W x V*/W smooth.

Example 4.4.5. — We have Z, = (Vx V*)/W and Y, : (V x V¥)/W =%, - P, =
V/W x V*/W is the canonical morphism. B

Let 2" denote the open subset Spec(Z™#) of Z. Corollary 4.3.2 shows that
(4.4.6) Z8~ € x (V™ x V*)/W is smooth.

Let Z;,, denote the singular locus of Z = Spec(Z) and 3, its defining ideal. Since
Z is integrally closed, it follows that

(4.4.7) % sing has codimension 2> 2 in Z.

Of course, 34,z Needs not be a prime ideal. Since Y : Z — & is finite and flat, we
deduce that

(4.4.8) Y(Z sing) is closed and of codimension 22 in 2.
The defining ideal of Y(Zing) iS 4/3sing N P-

Remark 4.4.9. — Note that the condition that 34,, N P ¢ p of Proposition 4.5.4 and
Corollary 4.5.5 is equivalent to the fact that Spec(P/p) is not contained in Y(Z gp,).

4.5. Morita equivalences
While Z and H are only related by a double endomorphism theorem, after re-
stricting to a smooth open subset of Z, they become Morita equivalent.

Let us first state a consequence of Corollary 4.2.7.

Lemma 4.5.1. — Let R be a commutative Z-algebra. The following assertions are equiva-
lent

— He ® R is a projective R-module

- He ®; R induces a Morita equivalence between H®, R and R.

Proposition 4.5.2. — Let U be a multiplicative subset of Z such that Z[U™] is reqular.
Then H[U ]e induces a Morita equivalence between the algebras H{U '] and Z[U'].
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Proof. — Let m be a maximal ideal of Z such that Z,, is regular. Let i be maximal
such that Tor/ (He, Z/m) # 0. Given any finite length Z-module L with support m,
we have Tor/(He, L) #0.

Let p=P Nm. We have Tor’(He, Z/pZ)~Tor?(He, Z ®p P /p) ~ Tor’ (He, P /p) since
Z is a free P-module (Corollary 4.2.7). Since He is a free P-module (Corollary 4.2.2),
it follows that Tor? (He,Z/pZ) = 0, hence Tor? (He,(Z/pZ),) = 0. We deduce that
i =0, hence (He),, is a free Z,,-module.

We have shown that H{U']e is a projective Z[U']-module. The Morita equiva-

lence follows from Lemma 4.5.1. O
Corollary 4.5.3. — The (H™8, Z"8)-bimodule H"*8e induces a Morita equivalence between
H"8 and Z'es.

Proof. — This follows from Proposition 4.5.2 and Corollary 4.3.2. OJ

Proposition 4.5.4. — Let p be a prime ideal of P that does not contain 3gn, N P.
The (H,, Z,)-bimodule H,e is both left and right projective and induces a Morita equiva-
lence between H, and Z,.

Proof. — By assumption, there exists p € 34, N P such that p ¢ p. So Z[1/p] =
P[1/pl®p Z C Z, = P,®p Z and Spec(Z[1/p]) is regular. It follows from Propo-
sition 4.5.2 that P[1/p]®p H and Q[1/p] are Morita equivalent via the bimodule
P[1/pl®pHe. The proposition follows by scalar extension. O

By reducing modulo p, one gets the following consequence.

Corollary 4.5.5. — Let p be a prime ideal of P that does not contain 3gng N P.
The (kp(p)H, kp(p)Z)-bimodule kp(p)He is both left and right projective and induces a
Morita equivalence between kp(p)H and kp(p)Z.

Example 4.5.6. — Taking Corollary 4.3.2 into account, the condition 34, NP ¢ p
is satisfied if Spec(P/p) meets the open subset 2™ = € x V'8/W x V*/W or, by
symmetry, the open subset ¢ x V/W x V*¢/W. &

Let K denote the fraction field of P and let KZ =K®, Z. Since Z is a domain and
is integral over P, it follows that

(4.5.7) KZ is the fraction field of Z.

In particular, KZ is a regular ring.
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Theorem 4.5.8. — The K-algebras KH and KZ are Morita equivalent, the Morita equiva-
lence being induced by KHe. More precisely,

Furthermore, KHe is a free (KZ)W -module of rank 1.

Proof. — Proposition 4.5.2 shows the Morita equivalence. Since k(V x V*) is a free
k(V x V¥)" W-module of rank 1 and since O(KHe) ~ k[6](V x V*), it follows from
Corollary 4.3.2 that KHe is a free KZW-module of rank 1. In particular, KHe is a

KZ-vector space of dimension |W|, whence the isomorphism of KH with a matrix
algebra. n

4.6. Complements

4.6.A. Poisson structure. — The PBW-decomposition induces an isomorphism of
k-vector spaces k| T]® H— H. Given h € H, let i denote the image of 1® h ek[T]®H
in H through this isomorphism. If z, z’ € Z, then [z,z'] =0, hence [Z,Z'] € TH. We
denote by {z,z’} the image of [Z,Z']/T € Hin H=H/TH. Itis easily checked that
{z,z'} € Z and that

(4.6.1) {——}.ZxZ—7Z
is a k[ 6 ]-linear Poisson bracket. Given c € €6, it induces a Poisson bracket

(4.6.2) {——-}:Z.xZ,— Z,.

4.6.B. H as a Rees algebra. — Let us define H= ﬁ@km (k[T]/(T— 1)), an algebra
over k[€]/(T —1) (we identify that ring with k[€]).
Given c € ¢, wesetH,=H, .

We define a k-algebra filtration of H
H'=0, H=K[V]x W, H' =H"V + H"¢* + H®
and HY = (HY)' for i > 2.
The canonical maps k[V]x W — (gr*H)’ and V & 6* — (gr*H)! induce a morphism

of N-graded algebras g : H— gr*H
The PBW decomposition (Theorem 3.1.5) shows the following result.

Proposition 4.6.3. — The morphism g is an isomorphism.

Note that this proposition shows that H is the Rees algebra of H for this filtration.
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4.6.C. Additional filtration. — Define a P-algebra filtration of H by
H'=0, H’=P[W], H' =H+ HV+HV* and HY =H'H¥"" for i > 2.

Note that H*N"1£H and H¥?*N = H.
Let V'’ be the kW-stable complement to V" in V. We have an injection of P-
modules P& (V"*® V')ok|W]— H<!. It extends to a morphism of graded P-algebras

F:Pek VMK V*°™)x W — gr'H
where P and W are in degree 0 and V* and V' are in degree 1.
Proposition 4.6.4. — The morphism f is an isomorphism of graded P-algebras.
Proof. — This follows from the PBW decomposition (Corollary 4.2.2). O

4.6.D. Symmetrizing form. — Recall (Proposition 2.2.3) that we have symmetriz-
ing forms py :k[V]—=k[V]" and p;, :k[V*]| - k[V*]V.

We define a P-linear map

T, . H=K[€]k[V]okW ®Kk[V*]— P
a®b®we®c— ad,pn(b)py(c).
Theorem 4.6.5 ((BGS, Theorem 4.4]). — The form 7, is symmetrizing for the P-algebra
H.
Proof. — We have an isomorphism
(grf'HN S PwW
kK[€]ok[VI®ekW ok[V*]2a®b® w® c — py(blawpy(c).
Via the isomorphism of Proposition 4.6.4, the P-linear form on gr¥H induced by 7,
is given by
PRk V']y@klV*]y)xW2a®((b®c)®w— ad,,py(b)py(c).

It follows from Lemma A 4.1 that this is a symmetrizing form.

Let L= V'@ V". We have SN*(V/) c S(V/) - S<N-1(V’) and S>N*(V’) c S(V/) -
S<N(V’) (and similarly with V**), hence

2N+1 <2N-1
LN cH .

It follows from Lemma A 4.2 that 7, is a trace. We deduce from Proposition A.4.3
that 7, is symmetrizing. O

Remark 4.6.6. — Note that while there is no canonical isomorphism k[ V]]C\‘,)(W) Sk,
there is a canonical choice of isomorphism k[V]IC\?(W) | V*]f\?(w) — k obtained by
requiring (a},a,) =1 for all s € Ref(W). This provides a canonical trace 7,. B
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We denote by cas, € Z the central Casimir element of H (cf. §A.4).

4.6.E. Hilbert series. — We compute here the bigraded Hilbert series of H, P, Z
and eHe. First of all, note that

1
AV —
dlmk (k[(g]) - (1 _tu)|Ref(W)/W| ’

so that it becomes easy to deduce the Hilbert series for H, using the PBW-decomposition:

s IXZ _ |W|
(4.6.7) dimy " (H) = (1—1)" (1—u) (1— ta)Relw)/wi’

On the other hand, using the notation of Theorem 2.2.1, we get, thanks to (2.5.2),

(4.6.8) dimZ*(P)= 1 .
(1 —tuyrerwywi | J(1— )1 —u)

i=1

Finally, note that the PBW-decomposition is a W-equivariant isomorphism of bi-
graded k[‘6]-modules, from which we deduce that He ~k[6]®k[V]® k[V*] as bi-
graded kW-modules. So

(4.6.9) the bigraded k-vector spaces Z and k|6 1®k[V x VAW are isomorphic.
We deduce that dimZ**(Z) = dim_*(k[€]) - dim_**(k[V x V*]A"). By (2.5.3) and
Proposition 2.5.10, we get

s ZXZ 1 !
(4.6.10) dim; **(Z) Z det(1— wt)

- |[W| (1 — tu)RefW)/W| P det(1— w-1u)
and
P ACKAC)
(4.6.11) dimZ%(7) = xEln(W)

n .
(1 — tu)Ref(W)/W/| l_[(l — 4 )1 —ud")
i=1

4.7. Special features of Coxeter groups

Assumption. In this section §4.7, we assume that W is a Coxeter
group, and we use the notation of §2.6.

In relation with the aspects studied in this chapter, one of the features of the
situation is that the algebra H admits another automorphism oy, induced by the
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isomorphism of W-modules ¢ : V — V*. It is the reduction modulo T of the au-
tomorphism o of H defined in §3.6. Propositions 3.6.2 and 3.6.3 now becomes the
following.

Proposition 4.7.1. — There exists a unique automorphism oy of H such that

ou(y)=0o(y) ifyevV,

ou(x)=—0"x) ifxeV¥,
ou(w)=w ifweWw,

Proposition 4.7.2. — We have the following statements:

(a) oy stabilizes the subalgebras kK[6] and kW and exchanges the subalgebras k[ V'] and
k[ V*].

(b) Given h e HY*N[i, j], we have oy(h) e HYVN[j, i].

(c) Given h € HN[i] (respectively h € H%[i]), we have ay(h) € HY[i] (respectively h €
H%[—i]).

(d) oy commutes with the action of W" on H.

(e) Given ¢ € 6, then oy induces an automorphism of H,, still denoted by oy (or oy, if
necessary).

(f) oy(eu)=—eu.

Similarly, there exists an action of GL,(k) on H, which is obtained by reduction
modulo T of the action on H defined in Remark 3.6.4.
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CHAPTER 5

REPRESENTATIONS

5.1. Highest weight categories

We define highest weight category structures on categories of (graded) repre-
sentations of H, following Appendix F.2. The existence of such structures for the
restricted Cherednik algebras (cf. §7) is due to Bellamy and Thiel [BeTh1].

We consider the Z-grading on A = H and take k = k[%]. We have three graded
k-subalgebras B_ = k[¢ x V*], B, =k[€¢ x V] and H =k[¢]W of A. Theorem 3.1.5
and Example F.2.3 show that the conditions (Ai)-(Aix) of Appendix F.2 are satisfied
with I ={k[%]® E}geirran)-

We put H =K% xV*]xW and H, =k[6 x V]xW. Given E a graded (k[ V*]x W)-
module, we define the Verma module

A(E)=Ind} (K%]e E)=Hey G| E).

Note that the functor A is exact, since H is a free H_-module, by the PBW decompo-
sition, which also gives a canonical isomorphism of H,-modules
(5.1.1) K[€ x V]® E— A(E)

where W acts diagonally and K[6 x V] acts by left multiplication on k[6 x V]®E.
We will view kW-modules as graded (k[ V*]x W)-modules concentrated in degree 0
by letting V act by 0.

Let R be a noetherian commutative k[€ J-algebra. Let O(R) be the category of
finitely generated Z-graded (R ®, H-modules that are locally nilpotent for the
action of V.

Theorem F.2.7 provides the following result.

Theorem 5.1.2. — The category O(R) is a highest weight category over R with set of stan-
dard modules {RA(E)(i)} permgew),icz and partial order RA(E)(i) < A(F)(j) if i < j.

We put A(co) = AK[V*]°M) =He &qyw k.
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Lemma 5.1.3. — We have [A(co)|= Y. ) fe(CAE)] in Ky(6KB1).

Proof. — The (k[V*]x W)-module M = k[V*]®°"™) has a finite filtration given by

M =i =(K[V*]©?W))< i and the associated graded module is isomorphic to @ gejrwy fe(t)E.
Consequently, we have a filtration of the H-module A(co) given by A(co)< = A((k[V*]coW))<1)
and the associated graded H-module gr A(co) is isomorphic to @ perrw) fe(CDA(E).

The result follows. U

Remark 5.1.4. — Note that, for the filtration introduced in the proof of Lemma
5.1.3, the module gr A(co) is isomorphic to A(kW), as an ungraded H-module. m

5.2. Euler action on Verma modules

The classical formula describing the action of the Euler element on Verma mod-
ules is given in the proposition below (cf [GGOR, §3.1(4)]).
Given (U, j)€U°, H €U and E €Irr(W), we put

my .= (Res; E,det!)y,,

G,j
d C ! > e(s)Tr(s, E) C
an E = e\s) 1r(s, 5o
dimy E seRef(W)
Lemma 5.2.1. — We have
mE |U|es
U,
CE: Z d']—E.KU'jE @ Z?OKU,]"
@ pewe Mk (©,])ev°
Proof. — We have
Cp= . Tr(ey €y, j, E)Kss ;-
(©, j)et° HEV dimy E

Now, given (U, j) € U°, the central element ), ; ey €5 ; of KW acts on E by the scalar
mf; [Ules

a5 - The lemma follows. O
k

Proposition 5.2.2. — Let E €Irr(W). The element eu acts on A(E); by multiplication by
Ti+ Cg.

Proof. — Recall (§3.3) that if (x,,..., x,,) denotes a k-basis of V* and if (y,,..., y,) de-

notes its dual basis, then
n
éiisz,-y,- + Z £(s)C;s.
i=1

s€Ref(W)

Let he(H,);, ve E and m=h® v e A(E);. We have

eu-m=heu®v+Tim=he®( Z e(s)Css-v)+ Tim.
seRef(W)
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Since . 1€(s)Cys acts on K[6E by multiplication by Cg, the result follows. [

s€Ref(W

Remark 5.2.3. — Assume W =W, x ---x W, is the decomposition into indecompos-
ables. Let E; eIrrf(W;) and E =E; ®-+-® E, € Irr(W). We have C; =Cp +-+-+C; . R

5.3. Case T =1

It follows from Proposition 3.3.2 that the Z-grading on H is inner (i.e. given by
the eigenspaces of [eu,—]). We put A(E)=H ey A(E)=A(E) @y (K[T]/ < T—1>).

Let R be a commutative noetherian k[ 6 ]-algebra. We assume that given any fam-
ily E}, E,, ..., E,_, E, = E, €Irr(kW) and given any family a,...,a, € Z with a; #a;,
and (Cg, — Cy,,, + a;— a;41)1x non invertible in R for 1 <i <n—1, then a, = a,. Note
that this assumption is automatically satisfied if R is a local ring.

Let O(R) be the category of finitely generated RH-modules that are locally nilpo-
tent for the action of V. Theorem F.2.10 shows that this is a highest weight category
[GGOR, §3].

Theorem 5.3.1. — O(R) is a highest weight category over R with set of standard objects
{RA(E))} erreaew)- The order is given by E > F if (Cy — Cp)1g € Zosy,

Let 7, be the set of height one prime ideals € of k[%] such that 0(k(¢)) is not
semisimple. Note that given m a maximal ideal of k[ 6], the category 0(k(m)) is not
semisimple if and only if there is € € .7, such that € cm.

We have the following classical semisimplicity result (an improvement of which
will be given in Corollary 6.3.3 below, using the KZ functor).

Theorem 5.3.2. — Theideals in F, are of the form ((Cy—Cr—r)1y) for some E, F € Irr(W)
such that Cy # Cr and some r € Z\ {0}. They correspond to affine hyperplanes in A (Q).
Assume R is a field and (Cy — Cp)1x¢Z— {0} for all E,F € Irt(kW). Then the category
O(R) is semisimple.
In particular, if R is a field and QN (Y5 ;e ZKss ;15) = {0}, then O(R) is semisimple.

Proof. — Under the assumption on C;’s, the order on Irr(W) is trivial, hence 0(R)
is semisimple. The second assertion follows from Lemma 5.2.1. O

Consider now the case where R is a field and extend the structure of k[ 6 ]-algebra
on R to a structure of k[€ J-algebra by setting T1; =1;. Consider amap lex: R = Z
such that lex(z 4+ n) =lex(z)+ n for all z € R and n € Z. Proposition E2.9 shows the
following.
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Proposition 5.3.3. — Assume R is a field. There is an equivalence of graded highest
weight categories
O(R)® = O(R), A(E)— A(E)(-1ex(Cp14))-

5.4. Case T =0

5.4.A. Given E a Z-graded (k[ V*]xW)-module, we put A(E) = A(E)®r k[ T]/ < T >:
itis a graded H-module. We define H* = H*/TH* =k[¢x V]xW and H-=H/TH =
k[€¢ x V*]x W. We have

A(E)=Ind;_(k[6¢]® E)=H®y (k[€]® E).

Assume E € Irr(W). We denote by wg : Z(kW) — k its associated central character
and we set
Qp =(Idy®wp)oN: Z — K[ €],
where 2 : Z — Z(k[€¢]W) is the morphism of algebras defined in §4.2.C. Note that
Q is a morphism of algebras.
Recall that Z° denotes the Z-homogeneous component of Z of degree 0.

Proposition 5.4.1. — Given E € Irt(W), an element b € Z° acts on A(E) by multiplica-
tion by Qp(b).

Proof. — Using the PBW-decomposition, we can write
b= Z a;fiw:gi
iel
where a; € k[€6], f; € k[V], w; € W and g; € k|V*]. Since b is homogeneous of
degree 0, we can choose the f;’s and g;’s to be homogeneous elements such that
deg,(f;)+deg,(g;)=0forallie .
Let heH and v € E. We have

b-(h®y v)=bh®y v="hb&y v,

SO
b-(h&y v)=) a;hf; @y (wig: v)

iel
Let I, denote the set of i € I such that deg,(f;) = deg,(g;)=0. Then g;v =01if i &€ I,,
and f;, g;€kifiel, so
b-(h®y v)=> hey (afwg: v).
i€l

Since )., a;figiw;=Q(b), the result follows. O

Note that Q(eu) = Cg, so the next proposition follows also from Proposition 5.2.2.
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Proposition 5.4.2. — The element eu acts by Qg(eu) = Cy on A(E).

Remark 5.4.3. — Let us assume in this remark that W is irreducible. Recall (Exam-
ple 3.2.1) that the (Z/z)y Z)-grading on H deduced from the Z-grading is induced by
conjugation by an element w, € Z(W). As a consequence, the category of Z-graded
H-modules decomposes as a direct sum, parametrized by [ € Z/zy,Z, of subcate-
gories with objects the graded modules M such that w, acts on M’ by '+l

Given R a noetherian commutative k[6]-algebra, this induces a corresponding
decomposition of the category 0(R) of finitely generated graded (H®4R)-modules
that are locally nilpotent for the action of V.

5.4.B. Let ¢ be a prime ideal of k[¢]. Recall that H(¢) is a finitely generated module
over its center Z(¢) (Lemma 4.2.1 and Corollary 4.2.2) and Z(¢) is a finitely gener-
ated k(¢)-algebra (Corollary 4.2.7 and Theorem 4.1.6). It follows that all simple H(<)-
modules are finite-dimensional over k(¢) and their annihilators in Z(¢) are maximal
ideals.

Proposition 5.4.4. — Let 3 a prime ideal of Z and let L be a simple (H®, Z,)-module.
Then

— L is a composition factor of He ® ; Z(3)
— the restriction of L to Z(3)W is isomorphic to a direct summand of Z(3)W.

Proof. — Letp=Pnj, aprime ideal of P. We have H®, K~ (He ® , K)®"! as (H®, K)-
modules (Theorem 4.5.8). Since L is a composition factor of H®» P(p), it follows from
Proposition D.3.1 that it is a composition factor of He ® p P(p). Since L is annihilated
by 3, we deduce that L is a composition factor of He ® ; Z(3).

Since He ® , Frac(Z) ~ Frac(Z)W as Frac(Z)W-modules (Theorem 4.5.8), it follows
from Proposition D.3.1 that He ® ; Z(3) and Z(3)W have the same class in Ky(Z(3)W),
hence the Z(3)W-module He ® ; Z(3) is free of rank 1. The proposition follows. [

The following theorem is [EtGi, Theorem 1.7].

Theorem 5.4.5. — Let 3 be a prime ideal of Z. The following assertions are equivalent

(1) Z is smooth at 3

(2) He ®, Z, is a progenerator for H® , Z,

(3) there is a unique simple (H®; Z,)-module

(4) He ®, Z(3) is a simple (H®, Z,)-module

(5) there is a simple (H®, Z,)-module with dimension > |W| over Z(3)
(6) the simple (H®, Z,)-modules are free Z(3)W -modules of rank 1.

Proof. — Recall that the Z(3)W-module He ® , Z(3) is free of rank 1 (proof of Propo-
sition 5.4.4). It follows now from Proposition 5.4.4 that (3)<(4)<(5)<(6).
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Assume (3). It follows from Proposition 5.4.4 that He ® ; Z(3) is a progenerator
for H®, Z(3), hence there is a surjective morphism of H®, Z(3)-modules f : (He ®,
Z(3))" »H®, Z(3) for some r > 0. The composition

He®, Z) <5 (He o, Z(3) - He, Z(3)

lifts to a morphism of H®, Z(3)-modules (He ®, Z,)" — H®;, Z, that is surjective
by Nakayama’s Lemma. It follows that He ® ; Z, is a progenerator for H®, Z,. So
(3)=(2).

Assume (2). It follows from Theorem 4.2.6 that Z, is Morita equivalent to H®, Z,.
Since H has finite projective dimension as a (H®4;H°P?)-module (Theorem 3.4.3), it
follows that H®, Z, has finite projective dimension as a (H®, Z,) ®y (H® Z,)°PP)-
module, hence Z, has finite projective dimension as a (Z, ®«)Z,;)-module. it follows
that Z is smooth at 3. So (2)=(1).

Assume (1). Since He ®; Ppn, is a free Ppn,-module (Corollary 4.2.4), it follows
that its depth is equal to the Krull dimension of Pp,. Since Z, is a finite flat Pp,-
module (Corollary 4.2.2), it follows that the Z;-module He ® ; Z, = (He ® p Ppr,,)®p,  Z,
has depth equal to the Krull dimension of Z, [Boul0, §1, Proposition 11]. As Z, is
regular, it follows that He ® ; Z, is a projective Z;-module [Bou10, §4, Proposition 3]
hence He ®; Z, induces a Morita equivalence between H®, Z; and Z, (Lemma 4.5.1).
We deduce that (1)=(4). O

5.5. Gaudin algebras

Gaudin operators have been introduced when W is a symmetric group via Schur-
Weyl duality in [MuTaVal, MuTaVa3].

5.5.A. W-covering of . — Let &' = Z"8 X gy, V™. We have a cartesian square

2! Can apreg

€ xVeex VW € x VW x V¥/W

There is an action of W on &’ given by w(z, v)=(z, w(v)) for z € ™ and v € Vs,
Let Z/ = k[g/] == ZIEg ®k[Vreg]W k[ Vreg]‘

Lemma 5.5.1. — The multiplication map gives an isomorphism Z'xW — H'™8. The image

of Z' by that map is Cyree(V*) =k[€ x V™8]@ O (k[ V*]).
There are isomorphisms

Cx VX VG x (VX VAW ) X gy V'E—— %

can O#xid
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Proof. — There is a commutative diagram

mult

718 @, yreeyur (K[ V78] % W) Hres

lw NL@

K[6 x (V'8 x V*)/ AW ]| @yqyweew (K[ V8] 1 W) K[6 x V™8 x V*]xx W

mult
Since the canonical map V™8 x V* — (V™ x V*)/AW X gy V™8 is an isomorphism, it
follows that the bottom horizontal map in the diagram is an isomorphism, hence the
top horizontal map is an isomorphism as well. The other assertions of the lemma
are clear. O

Recall that H™#e induces a Morita equivalence between H*¢ and Z™# (Corollary
4.5.3). Through the isomorphisms of Lemma 5.5.1, this corresponds to the Morita
equivalence between Z’ x W and Z'" = Z"8 given by Z’.

Let Hilb"/(V*) be the Hilbert scheme of 0-dimensional subschemes of length |W|
of V* and let F,,; c Hilb"(V*) x V* be the associated universal family. Consider the
inverse %' — % x V™8 x V* of the isomorphism of Lemma 5.5.1 and its composition
with the projection ¢ x V™8 x V* — V*. This defines a morphism f : " — V*. The
product map

canx f: % — (€ xVEx V*/W)x V*
is a closed immersion. Since the canonical map %' — € x V™8 x V*/W is finite
and flat of degree |W|, the universal property of Fy, shows that there is a unique
morphism 1 : 6 x V™8 x V*/W — Hilb"(V*) and a (unique) isomorphism

C x VIEx VI /W Xyyyywiyg Fw) — 27
over € x V8 x V*/W x V*

Let us describe the construction above at the level of points. Given m a (non-
necessarily closed) point of 6 x V™8 x V*/W, we put L(m) = k(m) ®yexvreexv+/w
H¢e — k(m) Bugxvresxv+w] Z - We have dimy,,) L(m)=|W/|.

The action of ©~'(k[V*]) by left multiplication on Z’ — H™8e induces an action on
L(m). It comes from a surjective morphism of algebras

k(1m) @ O~ (K[V*]) > k(1) @yepuvresvejw) Z -

The kernel of that morphism defines a point of Hilb"'!(V*). It corresponds to the
schematic support of the @ '(k[V*])-module L(m).

Let Z” be the spectral scheme of @'(V) acting on the family {L(m)},,. This is the
closed subscheme of ¢ x V™8 x V*/W x V* given by

Z"={(c,v,u,A) | dety,,, (O (y)—(y,A))=0Vy e V}.

We have obtained the following proposition.
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Proposition 5.5.2. — There is an isomorphism ¥ S (c,v,u,A)— (O%c, v, A), u).

Remark 5.5.3. — Note that the indecomposable direct summands of the (k(m) ®x
G)‘l(k[V*]))—module L(m) have no composition factors in common.

5.5.B. Gaudin operators. — We consider the (@_l(k[ V*])®K[ € x V'8]eK] V*])-module
L = H™8, where @7 '(k[V*]) @ k|6 x V™8] acts by left multiplication and k[V*] acts
by right multiplication. Note that L is a free (k[¢ x V™8] ® k[ V*])-module with ba-
sis W. The action of @ '(k[V*]) on that module provides a morphism of varieties
7 6 x V' x V* — Sym"(V*), where Sym"(V*) denotes the |W|-th symmetric
power of the variety V*.

Given a closed point (c, v, v*) € € x V™ x V*, we put Lic,v,v*)=k(c, v) k(g Vree]
H™8 @y k(v*), a @ (k[ V*])-module. We define similarly L(1) for any point /m of
6 x V™8 x V*. We denote by (e, ),cw the k(11)-basis of L(r2) obtained as the image
of W.

Given y € V, the action of ©'(y) on L(c, v, v*) is given by the operator

Dy”"’ — (y, w(v*))e, + Z e(s) S<y' S>

seRef(W) (v, a) o

Let u be the image of v* in V*/W. The (k[V*] x W)-module Indlﬁw*]xw k(v*) is iso-
morphic to the semisimplification of Indﬁg*}ﬁ,gkw(k( )® k) =k[V*] ®yv.w k(u). Con-
sequently, L(c, v, v*) is isomorphic to the graded module associated with a filtration
of L(c,v, u) (the filtration does not depend on v*). Similarly, given any m with
image m € € x V™ x V*/W, the (k(/1) ®, @~ (k[ V*])-module L(17) is isomorphic to
the graded module associated with a filtration of L(m) (in particular, L(172) depends
only on m). As a consequence, the morphism 7 is the composition

can

C XV x V5 ¢ x /8 x V*/W _) Hllb'wl(V*) Hilbert—Chow

Sym!"!(v*).

We now introduce the spectral scheme of ©!(V) acting on the family {L(c, v, v*)}. ;s
Let Z” be the closed subscheme of 6 x V™ x V*/W x V* given by

Q;” = {(C» v, ur}') | deti(c,v,v*)(e)_l(y)_ (y’}’» =0 vy = V}

where v* € V* has image u in V*/W. Forgetting A gives a morphism %" — € x
V™8 x V*/W and the fiber at (c, v, u) is the spectrum of @7}(V).

From Proposition 5.5.2, we deduce the following description of that variety.

Proposition 5.5.4. — There is an isomorphism F' S (¢, v, u,A)— (Oc, v, ), w).
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5.6. Automorphisms

The group k* xk*x(W"x.4) acts on H, hence it acts on the category of H-modules.
The action is given as follows. Let M be an H-module and let 7 e k* xk* x (W x 4.
We denote by “M the H-module whose underlying k-module is M and where the
action of h € H on an element of *M is given by the action of * 'k on the correspond-
ing element of M.

This defines a functor

7 : H-mod — H-mod
and this induces an action of k* x k* x (W" x /) on the category H-mod. Similarly,
we can define a functor
7:H -mod — H -mod

and an action of k* xk* x (W” x./) on the category H™-mod. There is a commutative

diagram
(5.6.1) fi--modgr — ¢ H-modgr
T T
H~-modgr H-modgr

The next proposition is now clear.

Proposition 5.6.2. — Given E €lrt(kW)and 7 =(,&,y xg)ek* xk* x (W' x A), we
have
"A(E)~ACBE®r™)
and
Qp(z)= T(ngrl(z))
forall ze Z.

Corollary 5.6.3. — Given E € Irt(kW), then Q : Z — k[6] is a bigraded morphism. In
particular, Kex(Qg) is a bi-homogeneous ideal of Z.






CHAPTER 6

HECKE ALGEBRAS

Notation. From now on, and until the end of this book, we fix a
number field F contained in k, which is Galois over Q and contains
all the traces of elements of W, and we denote by O the integral
closure of Z in F. We also fix an embedding F — C. By Proposition
2.4.1, there exists a W-stable F-vector subspace Vi of V such that
V =k®g V.. Let a — a denote the complex conjugation (it stabilizes
F since F is Galois over Q). Finally, we denote by w,, the group of
roots of unity of the field generated by the traces of elements of W.

The existence of such a field F is easy: we can take the field generated by the
traces of elements of W (it is Galois over Q as it is contained in a cyclotomic number
field). Note also that F contains all the roots of unity of the form {,,, where H € .¢/.

6.1. Definitions

6.1.A. Braid groups. — Set V. =C® V. Given H € .¢/, let H. =C® (HN V). We
define

VEE=Ve\ | He.

He.d
We fix a point ve € V5. Given v € V¢, we denote by ¥ its image in the quotient
variety Vz/W. The braid group associated with W, denoted By, is defined as

By =, (Ve o/ W, c).
The pure braid group associated with W, denoted by Py, is then defined as
Py =my (Vg% ve).

The covering V. ® — V.®/W being unramified (Steinberg’s Theorem 2.3.2), we ob-
tain an exact sequence

(6.1.1) 1— Py — By 25 W — 1.
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Given H € .¢/, we denote by oy a generator of the monodromy around the hyperplane
H, as defined in [BrMaRo, §2.A], and such that py(oy) = sy. This is an element
of By, well-defined up to conjugacy by an element of P,,. Recall [BrMaRo, Theo-
rem 2.17] that

(6.1.2) By is generated by (8048 ey gen, -

It can be proven [Bes2, BrMaRo] that By, is already generated by (0)yc., for a
suitable choice of the elements o;.

Assume W is irreducible. We denote by 7, the image in By, of the path in V™
defined by

n,: [0,1] — V.8
t —_— eZim‘/z U(C
Recall that z,, =|Z(W)|. Note that [BrMaRo, Lemma 2.22]
(6.1.3) n, €Z(By).

The image of 7, in W is the generator w, = e*™#w1d, of W NZ(GL(V)). We put
n=(n,)*w € Py NZ(By).

Consider now a general W with decomposition W = W] x --- x W, into indecom-
posables. We have a canonical isomorphism By, x -+ x By, — By. Let m; be the
element 7, for W;. We put n, = m,---n, € Z(By). Its image in W is w,. We put
n=(n,)*w € Py NZ(By).

6.1.B. Generic Hecke algebra. — Recall that U° is the set of pairs (U, j) with U €
o/ /W and 0< j < e;—1 (see §2.3).

Consider the affine variety 7 over ¢ with ring of functions 0[7]= ﬁ[(qﬁ}j)(u pewl-
Its fraction field is F(7). GivenUe ./ /W, HeUand 0< j<ey—1=¢;—1, we put
qu,; =qu,;-

The generic Hecke algebra associated with W, denoted by ., is the quotient of the
group algebra 0[7 1By, by the ideal generated by the elements

ey—1

(6.1.4) | [(on—22 dfih,

j=0
where H runs over .¢/. Given H € .¢/, let T;; denote the image of g in . By (6.1.2),
(6.1.5) S is generated by (bTy b ey pep,

where we still denote by b the image in 5 of an element b € By,. If H € .¢/, then

eg—1

(6.1.6) ]_[(TH g dih=0
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As a consequence,
(6.1.7) Ty is invertible in F.

The next lemma follows immediately from [BrMaRo, Proposition 2.18]:

Lemma 6.1.8. — The specialization qg ; — 1 gives an isomorphism of 0-algebras 0 ® g1
H— OW.

Let a — a denote the unique automorphism of the Z-algebra ¢0[7] which extends
the complex conjugation on ¢ and such that g;; ; =q;;.

The following Theorem was first conjectured in [BrMaRo, §4.C] and then proved
case-by-case [Ari], [ArKo], [BrMaRo], [Chal], [Cha2], [Cha3], [Mar2], [Mar3], [Mar4],
[MaPf] and [Tsul].

Theorem 6.1.9. — The Hecke algebra S is a free O[T -module of rank |W|.
Let us now state a basic conjecture [BMM]1, §2.A].

Comnjecture 6.1.9. — Assume W is irreducible. There exists a symmetrizing form ©,, :
S — O[T such that:

(a) After the specialization of Lemma 6.1.8 (i.e. qy; — 1), 7,, specializes to the canonical
symmetrizing form of OW (i.e. w — 0 ).
(b) If b € By, then

T (7)7,(b71) =7, (bR).

Remark 6.1.10. — e There is at most one form 7, satisfying (a) and (b) [BMM1,
Theorem 2.1].

o If W=W,x---x W, is the decomposition of W into irreducible components and
if conjecture 6.1.9 holds for the W;’s, then we obtain a symmetrizing form on J as
the tensor product of the forms on the Hecke algebras of the W;’s.

o If Conjecture 6.1.9 holds, then 7 ,(7t) # 0 since, by the property (a) and by (6.1.3),
7,.(m) specializes to 1 through q; ;— 1.1

Conjecture 6.1.9 holds for real reflection groups [BMM1, Theorem 2.1]. It also
holds for the following non-real complex reflection groups:

— The group G, by [MaMi], [MaWa], [BoChChKa] (three independent proofs);
— The groups Gs, Gy, G;, Gg by [BoChChKa];

— The group G,, by [MaMi];

— The group G,3 by [BoChCh];
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— The groups G,,, G,, by [MaMi].
A symmetrizing form satisfying property (a) of Conjecture 6.1.9 has been obtained
for the groups of the infinite series G(de, e, n) by [BreMa] and [MalMath].

6.1.C. Cyclotomic Hecke algebras. — We will not use here the classical definition
of cyclotomic Hecke algebras [BMM]1, §6.A], [Chl4, Definition 4.3.1], since we will
need to work over a sufficiently large ring allowing us to let the parameters vary as
much as possible.

Notation. Following [Bon1], [Bon2], [Bon3] or [Bon5], we will
use an exponential notation for the group algebra O[C], which will be
denoted by 0[q°]: 0[q°1=D,cc 09q", withq'q” =q"*". Since O
is integral and C is torsion-free, 0[q lis also integral and we denote
by F(q°) its fraction field. If a =Y. . a,q", we denote by deg(a)
(respectively val(a)) its degree (respectively its valuation), that is,
the element of RU{—0o0} (respectively RU{+o0}) defined by
deg(a)=max{r eR | a, # 0}
(respectively ~ val(a)=min{r eR | a, #0}).

We have deg(a) = —oo (respectively val(a) = +00) if and only if a = 0. The usual
properties of degree and valuation (with respect to the sum and the product) are of
course satisfied. Let us start with an easy remark:

Lemma 6.1.11. — The ring 0[q°] is integrally closed.

Proof. — This follows from the fact that 0[q°] = | J,.c 0[q"], where A runs over
the finitely generated subgroups of C, and that, if A has Z-rank e, then 0[q"] ~
o[t,..., t'] is integrally closed. O

Fix a family k = (ks ;) jjew- Of complex numbers (as usual, if H € Band 0< j < ey—
1, then we set ky ; = ks ;). The cyclotomic Hecke algebra (with parameter k) is the 0[q]-
algebra #Y(k) = 0[q°]1®49) #, where 0[q"]is viewed as an 0[7 ]-algebra through
the morphism
0. : 0171 — 0[q°]
qQs,; — g
Let Ty denote the image of Ty in A “(k); then

(6.1.12) A V(k) is generated by (§ Ty & e gen,
and, if H € .¢/, then

eg—1

(6.1.13) | [z~ qitiniy=o.
j=0
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Remark 6.1.14. — It follows from Lemma 6.1.8 that, after the specialization 0[q¢] —
0, q" — 1 (this is the augmentation morphism for the group C), we obtain 0 ® 4
HY(k)~O0OW.

Similarly, #(0)~ 0[q“]W. m

Remark 6.1.15. — Let (Ay)5e.s/w be a family of complex numbers and, if H €U, set
An =2y Let kjj ; =k j+ As and let k" = (k}; ;)o je- The map §Tyg ' —»qMgT,g™!
extends to an isomorphism of 0[q%]-algebras (k) = AY(K).

Hence, if we take Ay =—(kis o+ ks + -+ + kis oy—1)/ €5, then S6V(k) >~ #(k’), with
k' e A (C).

This shows that, in the study of cyclotomic Hecke algebras, it is enough to con-
sider the case of parameters in the subspace & of CV". m

Remark 6.1.16. — The group algebra 0[q*] of any characteristic 0 field K is inte-
grally closed. m

6.2. Coxeter groups

We assume in §6.2 that W is a Coxeter group (cf. §2.6 for the notation). We
assume F CR and u¢ € G, and we will in fact denote vz by vg.

6.2.A. Braid groups. — For s, t €S, let m;, denote the order of st in W. For s€ S
and H =Ker(s —1dy), let o, = 0, be the loop in V:*/W that is the image of the path
[0, 1] N Vcreg
. — +
P e,m(UR S(UR))+ Ug + s(vg)
2 2
from vg to s(vg). With this notation, By, admits the following presentation [Bri]:

Generators:  (0);cs,
(6.2.1) By : qRelations: Vs,t€S, 0,0,0,:--=0,0,0;-.

mg, times mg, times

Given w = s§;5,-+-5; a reduced decomposition of w, we set o, = 0, 0,,---0: itis a
classical fact that o, does not depend on the choice of the reduced decomposition.
We have

(6.2.2) n=0?.

6.2.B. Hecke algebras. —
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Generic case. — Given s € §, we put q,; = qy ;. It follows from (6.2.1) that the
generic Hecke algebra . admits the following presentation, where T; denotes the
image of o in -
Generators:  (T;)cs,
Relations: Vses, (T,— qio)(Ts + qil) =0,

Vs, teS, T,T,T,--=T,TT, .

mg, times mg, times

(6.2.3) S

Given w = §;5,---$; a reduced decomposition of w, we set T, = T, T, ---T. This is
the image of o, in J, hence T, does not depend on the choice of the reduced
decomposition. Moreover,
(6.2.4) # =P o(711,,.

wew

Note that T,T, =T, if {(ww’)={(w)+£(w’). Note also that the basis (T, ), Of
#€ depends on the choice of S, that is, of Cg.

Cyclotomic case. — We take k = (ki Jse.orjw, jefo1) € # (C). Remark 6.1.15 shows that
assuming ki + ks ; = 0 does not restrict the class of algebras we are interested in.
Recall that for H € .o/, we set ¢, = —ky o+ ky, = —2kyo = 2ky,. We write k;, =
kg o- The cyclotomic Hecke algebra s#%°(k) is the 0[q®]-algebra with the following
presentation:

Generators:  (T;);es,
Relations:  V seS, (T,—q*%)(T, +q25)=0,

(6.2.5) HY(k)
VsteS LTI =TT .
—— N —
mg, times mg, times
6.3. KZ functor
In this section §6.3, we assume that k=C.
6.3.A. KZ functor and properties. — Consider a pair € C m consisting of a prime

ideal and a maximal ideal of C[%6] and let R be the completion of C[€¢]/¢ at m/C.
There is a highest weight category structure on 0(R) (Theorem 5.3.1).

Let exp : 6 — 7 be the analytic map given by ¢y ; = e?™n-i/lbwl_ Tt endows the
C[¢]-algebra R with a structure of C[7 ]-algebra.

Let us recall the construction of the KZ functor KZ : 6(R) — (R#)-mod and its
main properties as in [GGOR, §5.3]. Our change of Dunkl operators corresponds
to a twist of the monodromy representation of [GGOR] by the one-dimensional

representation of By, given by oy — q';,’“fg'.
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Let M € O(R) and let M™8 = RH™8® ;M . The isomorphism 0™ (Theorem 3.1.11(d))
makes M™ into a (R ® (V") x W)-module and the Morita equivalence of Lemma
3.1.8(b) produces a (R ® 2(V™/W))-module M™8. It has regular singularities and
taking horizontal sections, we obtain an (R By, )-module dR(M™8);_, finitely gener-
ated as an R-module. The action of RBy, on dR(M™®);_ factors through an action of
R the resulting (R¢)-module is KZ(M).

The KZ functor satisfies a “Double Endomorphism Theorem” [GGOR, Theorems
5.14 and 5.16].

Theorem 6 3.1. — The functor KZ : O(R) — (R#)-mod is exact and its restriction to
Proj(O(R)) is fully faithful. It induces an isomorphism

Z(O(R)) — Z(R )

and an equivalence
O(R)/{M|M"™8& =0} = (RA)-mod.

6.3.B. Semi-simplicity. — Let ¢ € 6(C) and g =exp(c). Let C, = C with the C[¥¢]-
algebra structure given by C — c. Similarly, let C, = C with the C[7]-algebra struc-
ture given by g = exp(c).

Theorem 6.3.1 shows that the semisimplicity of 0(C,) is equivalent to that of
C,#€. From Theorem 5.3.2, we deduce the following [Rou, Proposition 5.4]. Note
that this result is equivalent to a result of Chlouveraki on Schur elements obtained
independently [Chl4, Theorem 4.2.5].

o |

Corollary 6.3.2. — If the subgroup of C* generated by {qy; ;" }v, jaw 1S torsion-free, then
C, A is semisimple.

Proof. — Let k = k(c) and let T be the subgroup of C generated by the k; ;s for
(U, j) € U°. By assumption, Ij/(ZN1) is torsion free. As a consequence, there is a
subgroup I" of I such that I, =I" x (ZNI). Let p : I, — I" be the projection, let
k' = p(k) and let ¢’ = k~'(k’). Theorem 5.3.2 shows that 0(C,,) is semisimple, hence
C, is semisimple, since Ceyyon I~ Coxp) H . 0

Corollary 6.3.2 provides an improvement of Theorem 5.3.2 using that the semisim-
plicity of C,.» implies that of 6(C,) [Rou, Proposition 5.4].

Corollary 6.3.3. — The prime ideals in F, correspond to affine hyperplanes of A of the
form 3 s iap v, j K j = L for some a € Z% with ged({ay ;) =1and r,b€Z,r>2, b >
and ged(r, b)=1.

If @\ Z)N (D55, e Zkis ;) =0, then 6(C,) is semisimple.
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Note that the affine hyperplane of # coming from a prime ideal ¢ in .#, has a
unique equation of the form Y ;o e s, Ko, j = lr’—;’ as in the corollary.

We define a map Z, — Z¥ by setting m(€); ; = a¢ ;. The elements of Z¥ can be
viewed as functions on (C*)¥". The previous results have the following corollary.

Corollary 6.3.4. — The algebra C, € is semisimple if and only if m(€)(q) # e?™kw!™" be/re
forall € Z,.

Note that the set {(m(€), |, [ be/Te (mod Z))}eez, is finite, so that Corollary 6.3.4
provides a finite set of conditions. Given € € .7, let ¥y € F[¢] be the minimal poly-
nomial of e2/7kw!™be/re,

6.4. Representations

The following result is due to Malle [Mal3, Theorem 5.2], the difficulty being the
statement on splitting.

Theorem 6.4.1 (Malle). — The F(7 )-algebra F(T)€ is split semisimple.

Since the algebra FW is also split semisimple (by Benard-Bessis Theorem 2.4.2),
it follows from Tits Deformation Theorem [GePf, Theorem 7.4.6] that we have a
bijective map
Irf(W) — Irr(F(T)HA)
E — Egen
defined by the following property: the character of E is the specialization of the
character of E8°" through q;;; — 1.

Let %" : Z(F(7)#) — F(7) denote the central character associated with the
representation E: given a € Z(F(7)#), we define 0% "(a) as the element of F(7) by
which a acts on E5*". This is a morphism of F(7)-algebras. Since 0[7] is integrally
closed, %" restricts to a morphism of 0[7]-algebras %" : Z(#) — 0[F]. We

denote by wy : Z(OW) — 0 the usual central character (specialization of % at

q=1).
The image of 7, € Z(By,) in S belongs to the center of this algebra. Hence, one
can evaluate w%" at 7, and we recover the formula of [BrMi, Proposition 4.16].

Proposition 6.4.2. — Assume W is irreducible. Given E € Irt(W), we have
| "5, 10es
0¥ (7,) = wp(w,) q; mF

©, e
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Proof. — Let € be the maximal ideal ideal of C[€] corresponding to the point ¢
and let R the completion of C[€],. The element w,e? ™ acts on objects M of
O(R) and defines an element of Z(0(R))*. Its action on KZ(M) is given by 7,. We
deduce from Proposition 5.2.2 that 7, acts on KZ(A(E)) by wg(w,)e* /2w and the
proposition follows from Lemma 5.2.1. O

The following result is a consequence of Corollary 6.3.2.

Corollary 6.4.3. — The F(q®)-algebra F(q%)#%(k) is split semisimple.

By Tits Deformation Theorem, we get a sequence of bijective maps

Irr(W) — Ir(F(qC)#Y(k)) — Ir(F(Z)A)
cyc

X — Xk — 2

such that y.”* =07 o y&n.
Finally, let w®} : Z(5£%(k)) — 0[q°] denote the central character associated with

2k
2" Tt follows from Proposition 6.4.2 that when W is irreducible, we have
(6.4.4) w;yi (7) = q*w!C 0,

6.5. Hecke families
6.5.A. Definition. — Let 09¢[q"], denote the ring
0%[q°1=0[q“N((1—a"T"), 0\ (o)

Given b a central idempotent (not necessarily primitive) of 0%[q°]#%°(k), we de-
note by Irr, (W, b) the set of irreducible representations E of W such that E° €
Irr(F(q©)#%(k)b).

Definition 6.5.1. — A Hecke k-family is a subset of Irr(W) of the form Irr (W, b),
where b is a primitive central idempotent of OV [qC] A Y(k).

The Hecke k-families form a partition of Irr(W).

Lemma 6.5.2 (Broué-Kim). — If E and E’ are in the same Hecke k-family, then Cg(k)=
Cp/(k).
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Proof. — We could apply the argument contained in [BrKi, Proposition 2.9(2)].
However, our framework is slightly different and we propose a different proof,
based on the particular form of w} (%) (see 6.4.4).

Remark 5.2.3 shows that it is enough to prove the lemma for W irreducible. So
we assume now that W is irreducible.

Let & ={r,1,,..., 1}, with r; # r; if i # j, denote the image of the map Irr(W)— C,
E — |, |Cg(k). Given 1 < j < m, we set

F(j)={E €Irx(W) | |ty |Cp(k) =13}

Given E € Itt(W), let ep; denote the associated primitive central idempotent of
F(q%)#9(k). We set
b] = Z eEyk.

Ee7(j)
To show the lemma, it is sufficient to check that b; € 0V[q°]#V(k). In 0V[q°] 2 V(k),
we have
n=q"b,+q*b,+---+q"b,,.

Hence,
q*b, + q%*b, + - + b, = =
q(m_l)rl bl + q(M—l)rz b2 4+ e+ q(m—l)rm bm = gm-1

The determinant of this system is a Vandermonde determinant, equal to

[l @-av,

1<i<j<m

which is invertible in 0%°[q®] by construction. Since 1, «,..., £ € #AY(k), the
result follows. O

6.5.B. Reflections of order 2. — In this section §6.5.B, we assume that all the re-
flections of W have order 2. We explain results and constructions due to Maria
Chlouveraki, whom we thank for her explanations.

Let 0[7] — 0[7], f — [T denote the unique involutive automorphism of -
algebra exchanging q;, and qy;; for all Ue.«//W. Let 0[7]|By, — 0|7 1By, a — a'
denote also the unique semilinear (for the involution f — f' of 0[Z]) automor-
phism such that ' = ¢(py (B))p for all § € By,. The relations (6.1.4) are stable under
this automorphism. So it induces a semilinear automorphism # — 5, h — h' of
the generic Hecke algebra.



87

This automorphism, after the specialization q;; — 1, becomes the unique 0-
linear automorphism of 0 W which sends w € W to e(w)w. In other words, it is
the automorphism induced by the linear character ¢.

Similarly, since ki o+kis, =0, if we still denote by 0[q%] — 0[q%], f — fT the unique
automorphism of ¢-algebra such that (q")" = q", then the specialization qy; ; — q’ei
induces an 0[q¢]-semilinear automorphism of the algebra ¢, still denoted by
h— ht. If y € Irr(W), let (y&")" (respectively (y;'*)') denote the composition of
25" (respectively x,”°) with the automorphism +: it is a new irreducible character
of F(7)# (respectively F(q%)#%°(k)). Since it is determined by its specialization
through qy; ; — 1 (respectively q" — 1), we have

(6.5.3) (&) = (y ey and )=o)

As the automorphism f — f' of 0[q%] extends to the ring 0¥°[q®], the next lemma
follows immediately.

Lemma 6.5.4. — Assume that all the reflections of W have order 2. If F is a Hecke k-
family, then F ¢ is a Hecke k-family.

6.5.C. About the coefficient ring. — It might seem strange to work with such a
large coefficient ring (far from being Noetherian for instance). A first argument for
this choice is that this ring is still integral and integrally closed.

Moreover, this choice allows to work with a fixed ring, whatever the value of the
parameter k is: as we let k vary in a real vector space of parameters, this choice
becomes more natural. Also, as it has been seen in Corollary 6.4.3, the fact that it is
possible to extract n-th roots of all “powers” of q implies immediately the splitness
of all the cyclotomic Hecke algebras over the same fixed ring.

This ring is of the form O[I'], where T is a totally ordered abelian group: this
allows to define for instance, thanks to the notion of degree and valuation, the a
and A-invariants associated with irreducible characters of W (even though we will
not used them in this book). Finally, as we will see in §6.6, it is also the general
framework for Kazhdan-Lusztig theory, which we aim to generalize to complex
reflection groups.

It is nevertheless necessary to compare the notion of Hecke families we have
introduced in §6.5 with the classical definitions. In order to do so, let B be a com-
mutative integral 0[7 ]-algebra, with fraction field F;. Let Ly denote the subgroup
of B* generated by {15qy; ;}, j)eue, @ quotient of ZY . We assume that L has no tor-
sion, that O[Lp] embeds in B, and that F[Lz]N B = 0[Lg]. As in Corollary 6.4.3, the
Fj-algebra Fy# is split semisimple and we get a bijective map Irr(W)—— Irr(Fy. ).
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Example 6.5.5. — Let A be a torsion-free abelian group. As in Lemma 6.1.11, note
that O[A] is integrally closed. Let g : U° — A be a map. It extends to a morphism
of groups Z% — A and to a morphism between group algebras 0[7] — O[A]. The
algebra B = O[A] satisfies the previous assumption. B

Let BY¢ = B[(1—v) ! o] (we write additively the abelian group Lg). Asin §6.5.A,

velp
we have a notion of Hecke B-family.

Proposition 6.5.6. — The Hecke B-families coincide with the Hecke O[Lgl-families.

Proof. — Let A= L. Wehave BY°NF,,; = O[A]%°. We deduce that, if b is a primitive
central idempotent of F,, € such that b € BY°, then b € O[A]Y . O

The previous proposition reduces the study of Hecke families to the case where
B =0[A] and A is a torsion-free quotient of ZV".

Let .4 = m(Z,), a finite subset ZY (cf. end of §6.3.B). Consider now a torsion-free
abelian group A and a map g : U° — A as in Example 6.5.5. Let A’ be a torsion-free
abelian group and let f : A — A’ be a surjective morphism of groups.

Proposition 6.5.7. — If q(.#)NKer f C {0}, then the Hecke O[A]-families coincide with
the Hecke O[A']-families.

Proof. — The morphism f induces a surjective morphism between group algebras
O[A] — O[A’] which extends to a surjective morphism of algebras between localiza-
tions f : O[A(1 — )7L, o] = OINTY. Let h € FIA{(We 0 m(€) Yeer, mieyera] (cf.
end of §6.3.B). If h € O[A]Y¢, then h € f~YO[N]¥°).

It follows from Corollary 6.3.4 that the idempotents of Z(F(A)) are in the alge-
bra F[A][{Ue(m(€)) " }eez, m(@)gkerq| 7€ - Consequently, any idempotent of Z(O[A]Y )
is contained in O[A][(1-v) L, ... f]%" . Proposition D.1.2 shows that the central idem-
potents of O[All(1—v). L, ... f]%" are in bijection with those of O[A]%*# and the
result follows. 0

Given A and g as above, there exists a morphism of groups f : A — Z such that
Ker f ng(#) c {0}. So Proposition 6.5.7 reduces the study of Hecke O[A]-families
(and so of Hecke B-families, by the above arguments) to the case of Hecke 0[¢*']-
families, for a choice of integers ny;; € Z defining a morphism of groups Z* —
t%, gs,;— t"™vi. This is the usual framework for Hecke families.
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6.6. Kazhdan-Lusztig cells

The constructions and results of §6.6 are due to Kazhdan-Lusztig [KaLu] (equal
parameter case) and Lusztig [Lus1] (general case).

Assumption. From now on, and until the end of §6.6, we
assume that W is a Coxeter group and we fix a family k =
(ks jJoe.oryw,jeo1y € H (R). We denote by c : Ref(W) — R, the map
defined by c,, = —2ky for all H € /. It is constant on conjugacy
classes and recall that we write k; =—c,/2 for s € Ref(W).

Giving the map ¢ : Ref(W) — R constant on conjugacy classes of reflections is
equivalent to giving the family k € #(R).

6.6.A. Kazhdan-Lusztig basis. — The involution a — a of 0[q®] extends to an
0[q®]-semilinear involution of the algebra s#%°(k) by setting

T,=T,..
If X is a subset of R, we set 0[q*]=,x 0 q". We also set

AV (k)0 = D 01d™] T,,.

wew

Theorem 6.6.1 (Kazhdan-Lusztig). — For w € W, there exists a unique C,, € #(k)
such that

C,=C,,
C, =T, mod#Yk),.

The family (C,,) yew is an O[q®]-basis of AY(k).

Note that C,, depends only on k (i.e., on c). For example, if s €S, then
T,—q*s if k;>0,
Ci=1T, sik,=0,
T,+q?k  if k, <O.

Similarly, as well as T,,, C,, depends on the choice of S. The basis (C,,),cw is called
the Kazhdan-Lusztig basis of (k).
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6.6.B. Definition. — For x, y € W, we will write x & y if there exists h € #V(k)
such that C, appears with a non-zero coefficient in the decomposition of #C, in the
Kazhdan-Lusztig basis. Let <{ denote the transitive closure of this relation; it is a
pre-order and we denote by ~"¢ the associated equivalence relation.

We define similarly & by multiplying on the right by h as well as <¢ and ~5"¢.
Let <¢, be the transitive relation generated by <¢ and <¢, and let ~};° denote the

associated equivalence relation.

Definition 6.6.2. — We call Kazhdan-Lusztig left c-cells of W the equivalence classes
for the relation ~1"°. We define similarly Kazhdan-Lusztig right c-cells and Kazhdan-
Lusztig two-sided c-cells using ~3"° and ~;° respectively. If 2 € {L, R, LR}, we denote
by XCells; (W) the corresponding set of Kazhdan-Lusztig c-cells in W.

If 2€ {L,R,LR} and if T is an equivalence class for the relation wfl‘c (that is, a
Kazhdan-Lusztig c-cell of the type associated with ?), we set

AHYK)wer= P 0lq°1C, and Ak = P 0lq7] C,,

w<ther w< T
as well as
2 cyc cyc
Mi=H v (IC)Q;(L,CF/% v (k)<§q’”r‘

By construction, S#V(k)we; and A#Y(k) x.c are ideals (left ideals if ? = L, right
ideals if 2 = R or two-sided ideals if 2 = LR) and M} is a left (respectively right)
FV(k)module if 2 = L (respectively 2 = R), or an (A#“(k), #(k))-bimodule if
?=LR. Note that

(6.6.3) //lr? is a free 0[q"]-module with basis the image of (C,,)wer-

Definition 6.6.4. — If C is a Kazhdan-Lusztig left c-cell of W, we denote by [ C 15" the
class of k®gqr) AL in the Grothendieck group Ko(kW) = ZIre(W) (here, the tensor prod-
uct k®gqr) — is viewed through the specialization q" — 1). We will call c-cellular KL~
character of W every character of the form [ C 15", where C is a left Kazhdan-Lusztig c-cell.

If T is a Kazhdan-Lusztig two-sided c-cell of W, we denote by Irrf (W) the set of ir-
reducible characters of W appearing in kK ® giqe; MLF, viewed as a left KW -module. We
will call Kazhdan-Lusztig c-family every subset of Irr(W) of the form Irrf (W) where T
is a Kazhdan-Lusztig two-sided c-cell. We will say that Irry (W) is the Kazhdan-Lusztig
c-family associated with T, or that T is the Kazhdan-Lusztig two-sided c-cell covering
Irrp (W)
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Since kW is semisimple and since k®(qz) %" is a quotient of two-sided ideals
of kW, the Kazhdan-Lusztig c-families form a partition of Irr(IW)

(6.6.5) Tre(W) = U Trr<{(w)
TeKCells¢ (W)

and, since kW is split,

(6.6.6) IT| = Z 7 (17
2l (W)

Moreover, if C is a Kazhdan-Lusztig left c-cell of W, we set
[C ]Isz Z multlé%x y

x €lrr(W)
where multlé%x €N. Then:
Lemma 6.6.7. — With the previous notation, we have:
(a) If C €M CellsS (W), then Z multy", y(1)=|C|.

y €lrr(W)

(b) If y €lrr(W), then Z multlé%x = y(1).

CeKICellsé (W)

Proof. — The equality (a) simply says that the dimension of [ C I} is equal to |C|
by (6.6.3). The equality (b) translates the fact that, since W is a disjoint union of
Kazhdan-Lusztig left c-cells, we have [kW .y =] cexcelss (w) [ € I O

6.6.C. Properties of cells. — The algebra # (k) is endowed with an 0[q®]-linear
involutive anti-automorphism which sends T, on T,,.: it will be denoted by h — h*.
It is immediate that

(6.6.8) C: =Cy,

which implies that, if x and y are two elements of W, then
(6.6.9) x <$ yifand only if x7 <5,y
and so

(6.6.10) x ~ 0y if and only if x7N ~RRC T

In other words, the map *'Cells] (W) — XCellsi(W), T — I'! is well-defined and
bijective.
The next property is less obvious [Lus4, Corollary 11.7]

(6.6.11) x <; y ifand only if wyy <; wox if and only if y wy <; x wy.
It follows that

(6.6.12) x ~y y ifand only if wyx ~; wyy if and only if xwy~; y wy.
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Moreover, if C € ¥'Cells; (W), then [Lus4, Proposition 21.5]

(6.6.13) [weC T =[Cwy "=[CL"-e.
Similarly, if T € ¥Cells; ,(W), then [Lus4, proposition 21.5]
(6.6.14) Irrlfutr(W) = IrrELLUO(W) =Irrp (W) ¢.

This shows in particular that
(6.6.15) LUOF Wy = I.

So tensoring by € induces a permutation of Kazhdan-Lusztig c-families and of c-
cellular KI-characters.

If y : W — k¥ is a linear character (note that y has values in {1,—1}), we set
y-c :Ref(W) = R, s — 7(s)c;. The following Lemma is proven in [Bon2, Corol-
lary 2.5 and 2.6]:

Lemma 6.6.16. — If y € W" and let 2 {L,R, LR}. Then:
(a) The relations <; and <I' coincide.
(b) The relations ~X-¢ and ~y """ coincide.
(c) If C € MCells; (W) = Cells; “(W), then [C L. =y-[CI~
(d) IfT € X Cellst (W) = XICells] o(W), then Trry ™" (W) =y - Irrk = (W).

The next result is easy [Lus4, Lemma 8.6]:

Lemma 6.6.17. — Assume that c; # 0 for all s € Ref(W). Then:
(a) {1} and {wy} are Kazhdan-Lusztig left, right or two-sided c-cells.
(b) Let y : W — k* be the unique linear character such that y(s) =1 if k, > 0 and y(s) =—1
if k; <0. Then [1]IC<L:7 and [ wO]IfL:ye.

Remark 6.6.18. — In fact, [Lus4, Lemma 8.6] is proven whenever k; >0 for all s. To
obtain the general statement of Lemma 6.6.17, it is sufficient to apply Lemma 6.6.16. &

Example 6.6.19 (Vanishing parameters). — If ¢ = 0 (i.e. if ¢; = 0 for all s), then
Cy, = T,, #90) = 0[q®][W] and there is only one Kazhdan-Lusztig left, right
or two-sided 0-cell, namely W. We then have Irryy°(W) = Irr(W) and [W 3" =

Zzelrr(W) )((1))( u



CHAPTER 7

RESTRICTED CHEREDNIK ALGEBRA AND
CALOGERO-MOSER FAMILIES

In this chapter, we start by recalling in §7.1 and §7.2 some results of Gordon [Gor1]
on the representations of the restricted Cherednik algebras. We do not need to ex-
tend the defining field for representations, as the algebras are split. This is useful to
derive consequences about the partition into Calogero-Moser two-sided cells (§ 12).

Notation. Given € a prime ideal of k[6], we denote by €(¢) =
Speck[6]/¢€ the closed irreducible subscheme of 6 defined by €. We
denote by pe the prime ideal of P corresponding to the closed irre-
ducible subscheme €(€) x {0} x {0}. We set

Py=P/pe~k[€6]/C

and we define the Pe-algebra Hy = H/pcH. We denote by Z; the
image of Z in He. We also define Ky = kp(pe).  To simplify the
notation, when € =0, the index € will be omitted in all the previous
notations (P, p, K). Given ¢ € 6 and ¢ = €, the index ¢, will be
replaced by ¢ (K,,...). Note for instance that ps =p+ € P and that
K, ~k.

7.1. Representations of restricted Cherednik algebras

The restricted Cherednik algebra is the k[ 6 ]-algebra H defined by
H=H/pH=k[¢]®, H.

Theorem 4.1.2 gives a PBW decomposition for that algebra.

Proposition 7.1.1. — The map k[€]@ k[ VW @ kW @ k[V*]°") — H induced by the
product is an isomorphism of k[ 6 1-modules. In particular, H is a free k{6 -module of rank
W,
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The algebra H inherits an (N x N)-grading, a Z-grading and an N-grading from H
(cf. §3.2).

Given E elrr(kW), we put A(E) = A(E)®p k[ 6], a Z-graded H-module. Note that
A(E) is isomorphic to k[ €] k[ V] & E as a graded (k[6]W )-module.

We put A(co) = A(co)®p k[ 6] = A(co) ®yyw k=He.

Let ¢ be a prime ideal of 6. Theorem F.2.7 has the following consequence [BeTh1].

Theorem 7.1.2 (Bellamy-Thiel). — H,-modgr is a split highest weight category over
k(€) with standard objects the baby Verma modules Ay(E) = A(E) @4 k(€), E € Irr(kW),
and their shifts.

Proposition 7.1.3. — Given E €Irr(kW), the Hg-module Ay(E) has a unigue simple quo-
tient Lg(E). The map Irt(kW) — Irr(Hy), E — L¢(E) is bijective and the algebra He is
split.

7.2. Calogero-Moser families

Let 6, : k[ 6] — k(€) be the quotient map and let Qf = 0,00y = Oso w0 N: Z - k(€)
for E € Irr(W).

Lemma 7.2.1. — If z € Z, then z acts by multiplication by Q$(z) on Le(E).

Proof. — We may assume that z is Z-homogeneous of degree i. If i =0, then the
lemma follows from Proposition 5.4.1. If i #0, then, as L¢(E) is Z-graded and finite-
dimensional, z acts nilpotently on L¢(E) and, as it also acts by a scalar, this scalar
must be equal to 0. But ©(z) =0 by (4.2.10), and the result follows. O

Given b € Idem,,(Z(Hy)), let Irrg(W, b) denote the set of irreducible representa-
tions E of W such that Ag(E) is in the block Hyb, i.e., bAy(E) # 0. Note that
E € Irry(W, b) if and only if L¢(E) belongs to Irr(Heb). It follows from Proposi-
tion D.1.2 that

Idem,,(Z¢) = Idem,,(Z(Hy)).
So,
(7.2.2) mw)= [ ] (W, b).
beldem,(Zg)
A Calogero-Moser €-family is a subset of Irr W of the form Irrg(W, b), where b €
Idem,,(Z).
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The next lemma follows from Corollary D.2.4, Proposition 7.1.3 and Lemma 7.2.1.

Lemma 7.2.3. — Let E, E' €Irr W. Then E and E’ are in the same Calogero-Moser -
family if and only if Q5 =QS,. Moreover, the map

Oc: IrW — YT (py)
E +— Ker Qf

is surjective and its fibers are the Calogero-Moser €-families.

(7.2.4)

Let b € Idem,,(Z,). We denote by Q} the common value of the Q, for E € Irryg(W, b).
When ¢ =0, we put 2, =Q%. When ¢ =¢, for some ¢ € ¢, we put Q% =Q;°.

Corollary 7.2.5. — If 3 is a prime ideal of Z lying over pg, then the inclusion P — Z
induces an isomorphism P /pe — Z /3.

Proof. — By Lemma 7.2.3, there exists E € Irr(W) such that 3 = Ker(Qf). Since QS :
Z — k(€) factors through a surjective morphism Z — P /p,, the corollary follows. [

Example 7.2.6. — We will call generic Calogero-Moser family every Calogero-Moser
¢’-family, where ¢’ = 0. In this case, the map 6, will be simply denoted by ©. Every
Calogero-Moser €-family is a union of generic Calogero-Moser families. B

Example 7.2.7. — Given ¢ € 6, we define a Calogero-Moser c-family to be a Calogero-
Moser € -family. In this case, ng will be denoted by Q27 and ©, will be denoted by
0, m

Example 7.2.8. — We have |Y,'(0)] = 1, hence there is a unique Calogero-Moser 0-
family. m

7.3. Linear characters and Calogero-Moser families

From Proposition 5.6.2 we deduce the following result.

Proposition 7.3.1. — Given E €lrx(W)and v =(&,&’,y x g) e k* xkK* x (W" %A stabi-
lizing &, we have
"Le(E)~ L{(*E®y™").

The following result follows from Proposition 5.6.2 with £ =&’ =1.

Corollary 7.3.2. — Let ¢ € 6, let y be a linear character of W and let F be a Calogero-
Moser c-family. Then Fy is a Calogero-Moser y - c-family.
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Using Proposition 5.6.2 again, we obtain the following result.

Corollary 7.3.3. — Let 7 = (£,&",y xg) ek xk* x (W"x . A) and let F be a Calogero-
Moser €-family. If T stabilizes €, then Fy is a Calogero-Moser €-family.

Corollary 7.3.4. — Let y be a linear character of W and let F be a generic Calogero-
Moser family. Then Zy is a generic Calogero-Moser family.

Corollary 7.3.5. — Assume that all the reflections of W have order 2. Let F be a Calogero-
Moser €-family. Then F ¢ is a Calogero-Moser C-family (recall that ¢ is the determinant).

Proof. — The element 7 = (—1,1,& x 1) of k* x k* x (W" x A') acts trivially on k[6].
The result follows now from Corollary 7.3.3. OJ

Example 7.3.6 (Generic families and linear characters). — Lety € W"and y € Irr(W)
be in the same generic Calogero-Moser family. Then 2, (eu) = Q,(eu), hence y(s) =
r(s)y(1) for all s € Ref(W). In other words, all the reflections of W are in the center
of y (that is, the normal subgroup of W consisting of elements which acts on E, by
scalar multiplication). It follows that the center of y is W itself, hence y =7.
Consequently, a linear character is alone in its generic Calogero-Moser family.
This result applies in particular to 1, and ¢, and is compatible with Corollary 7.3.4. ®

7.4. Graded dimension, b-invariant

By Proposition C.1.2, the elements of Idem,,(Z;) have Z-degree 0. In particular,
given b € Idem,,(Z), then bZ; is a finite-dimensional graded k(¢)-algebra. The aim
of this section is to study this grading. We put A¢(co) = A(co) @y k(E).

Theorem 7.4.1. — Let b € ldem,,(Z,) and let F =Irrg(W, b). Then:
(a) dim{y, bZ, = Z £, £, 0.

XET
(b) There exists a unique y € F with minimal b-invariant, which we denote by y 5.

(c) The coefficient of t®z» in [y, (O is equal to 1.
(d) bAg(co)=bHge is a projective cover of Le(y 7).
(e) The algebra EndﬂE(AC( x7)) is a quotient of b Zy. In particular, it is commutative.
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The character y 5 is called the special character of the family .Z (relative to €).

By (2.5.6), we obtain the following immediate consequence:

Corollary 7.4.2. — Given b € Idem,,(Z,), we have
dimye) b Ze = Z 7 (17

x €lrry(W,b)

Remark 7.4.3. — Theorem 7.4.1 generalizes [Gorl, Theorem 5.6] and Corollary 7.4.2
generalizes [Gorl, Corollary 5.8] (case of families with only one element). As pointed
out to us by Gordon, in [Gor1, Theorem 5.6], p, (t) = tPr—by 1t fx*(t‘l) should be re-

placed by p,(t) = f,.(0)f,.(t"!) with the notation of [Gorl]. Note that the difference

with our result comes from the fact that we have used a Z-grading opposed to the

one of [Gorl, §4.1], which amounts to swapping V and V* and so to swap, in this

formula, y and y*. m

Proof of Theorem 7.4.1. — Lemma 5.1.3 shows that
[bAc(co)lf =D f (AT,

XET
The right action of bZ; on bHge induces an isomorphism of graded algebras
bZ; — ebHge (Corollary 4.2.7). We deduce now assertion (a):

dim(y,(b Ze) = dimf{y (e bA(co) = > £, () dimf, (K@[VI*WSE,)")= > f,(C")f, (1.
YET YET
Since Endg, (bHge) is isomorphic to the local commutative algebra bZ, the He-
module bHe is indecomposable (and of course projective), so it admits a unique
simple quotient L¢(y #), for some y 5 € .Z. The highest weight category structure of
H,-modgr shows that

[bHe]—t"7[Ac(y5) € Pt ZIt A1)
XET

The assertions (b), (c) and (d) follow.

Let M be the kernel of a surjection bHge — Ag(y 7). Since Endg, (bHce) is gener-
ated by Z, it follows that the Hg-endomorphisms of bHge stabilize M. We obtain
by restriction a morphism of k(¢)-algebras bZ; — EndﬂE(AQ( X 7)) which is surjective
since bHe is projective. O
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Corollary 7.4.4. — Let z € Z and let car,(t) € P[t] denote the characteristic polynomial of
the multiplication by z in the P-module Z. Then
car,(t)= 1_[ (t—Q){(z)))‘“)2 mod .
Z€ln(W)
Proof. — Let b € Idem,,(k(¢ )Z). Since z —Q,(z) is a nilpotent endomorphism of
bk(6)Z, the characteristic polynomial of z on bk(6)Z is (t—Q,(z))d™«a PK€)Z  Con-
sequently,
car,(t)= l_[ (t— 0, (2))limee PKEZ o f.

beldem,,, (k(6)Z)
Since Q,(z) = Q,(z) for all y € Irry(W, b), the result follows from (7.2.2) and from
Corollary 7.4.2. O

Corollary 7.4.5. — Let y: W — K> be a linear character. Then Z is unramified over P
at Ker(£2,).

Proof. — Indeed, if b, denotes the primitive idempotent of k(‘¢)Z associated with
7, then Irry(W, b,) = {r} by Example 7.3.6. This implies, by Corollary 7.4.2, that
dimy)(b,k(6)Z)=1.

Set 3, = Ker(Q2,) (we have 3,NP =p). Then Z /3, ~k[€], hence Z, /57’237 ~k(%). But,
on the other hand, Z, [pZ, = b k(€)Z. So dimy«)Z, /pZ; ) =1, which implies that
PZ, =3, ,as desired. O

7.5. Exchanging V and V*

If E is a graded (k[V]x W)-module, one can define
A*(E)=Ind}.. (k[€]® E),

which is a graded H-module, as well as its reduction modulo p, denoted by A*(E),
which is a graded H-module. If € is a prime ideal, we also set A%(E) = k(€)®y 4] A*(E),
which is a graded Hgs-module.

Assume now that E € Irr(W). Then, as in Proposition 7.1.3, the He-module A%(E)
is indecomposable and admits a unique simple quotient, which will be denoted by
Ly(E). Moreover, the map
Irr(W) — Irr(Hy)

(7.5.1) Eo— L)

is bijective.
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Remark 7.5.2. — From Proposition 7.1.3 and (7.5.1), it follows that there exists a
unique permutation % of Irr(W) such that
Ly(E)= Le¢(*k¢(E))

for all E € Irr(W). It turns out that the permutation % is in general difficult to
compute, and that it depends heavily on the prime ideal €, as the reader can already
check when dim V=1. 1

We say that E and F belong to the same *-Calogero-Moser ¢-family if L}(E) and
L¢(F) are two simple modules belonging to the same block of H. It follows from
Remark 7.5.2 that E and F belong to the same x-Calogero-Moser ¢-family if and
only if % ¢(E) and % ¢(F) belong to the same Calogero-Moser ¢-family.

However, there is another easier description of x-families which has been ex-
plained to us by Gwyn Bellamy. It follows from (5.1.1) that

Resgg Ae(E)~k(®) k[ VW Q E.
Recall that N =|Ref(W)| and that k[ V];‘,)(W) is one dimensional, affording the charac-
ter £ (as a kW-module) and that K[V ] = 0. So one gets an injective morphism of
H!-modules E ® £ — Resgg A¢(E). By adjunction, one gets a non-zero morphism

(7.5.3) AL(E ® £)— Ag(E).

In particular,

(7.5.4) the simple module Ly(E ® €) is a composition factor of Ag(E).

Since A%(E) is indecomposable with unique simple quotient L;(E), this implies that

(7.5.5) the simple modules Ly(E ® €) and L¢(E) belong to the same block of H,.

Proposition 7.5.6. — The simple kW-modules E and F belong to the same Calogero-
Moser €-family if and only if E®¢ and F ® ¢ belong to the same x-Calogero-Moser C-family.

The following consequence was announced in Remark 4.2.12.

Corollary 7.5.7. — If z € Z, then Q(z) = e(*(2)).

Proof. — Itis sufficient to prove that, for all E € Irr(W), we have w;(f2(z)) = w (“0*(2)).
Since w(&(N*(2))) = wre((2)), it is sufficient to prove that
W (U2)) = W pee (X (2)).

Take € to be the zero ideal of k[6], so that k(¢) = k(6). By Lemma 7.2.1 (and its
version obtained by swapping V and V*), we get that w;(£(z)) is the scalar by which
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z acts on the simple module Ly(E) while we.(22*(2)) is the scalar by which z acts on
the simple module Ly(E ® €). So the result follows from (7.5.5). O

7.6. Geometry

The composition

(7.6.1) K€ 7 L K[€]

is the identity, which means that the morphism of k-varieties Qi 16— Z in-
duced by Q, is a section of the morphism oY : Z — € (see the diagram 4.4.2).
Lemma 7.2.3 says that the map

Idem,,(k(6)Z) — TYT7'(p)

b —  Ker(Q,)

is bijective or, in geometric terms, that the irreducible components of Y~!(6 x 0)
are in bijection with Idem,,(k(¢ )Z), through the map b — an(‘é ). We deduce the
following proposition.

Proposition 7.6.2. — Let ¢ € 6. Then the following are equivalent:
(1) [1demy,(K(6)Z)| = [Idemy, (K, Z)|.
(2) |Y1(0)| is equal to the number of irreducible components of T~'(6 x 0).
(3) Every element of Y'(0) belongs to a unique irreducible component of T~'(6 x 0).
(4) If b and b’ are two distinct elements of Idem,,(k(€ )Z), then 0,08, #0,0Q,,.

We say that ¢ € € is generic if it satisfies one of the equivalent conditions of Propo-
sition 7.6.2. It will be called particular otherwise. We will denote by € ., (respec-
tively 6 ,,,) the set of generic (respectively particular) elements of 6.

Corollary 7.6.3. — 6, is a Zariski dense and open subset of 6 and €, is Zariski
closed in 6. If W # 1, then 6 ,,, is of pure codimension 1 and contains 0.
Moreover, € g, and 6, are stable under the action of k* x kK* x (W" x.A).

Proof. — The stability under the action of k* x k* x (W" x .4") is obvious. The fact
that 6., (respectively €,,) is open (respectively closed) follows from Proposi-
tion D.2.11(2). Whenever W # 1, the trivial character is alone in its generic Calogero-
Moser family (see Example 7.3.6) while its Calogero-Moser 0-family is Irr(W). This
shows that 0 € 6, and, by Proposition D.2.11(1), 6, has pure codimension 1. []
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We deduce the following from Example 7.3.6.

Corollary 7.6.4. — If ¢ € 6 is generic, then any linear character of W is alone in its
Calogero-Moser c-family.

Corollary 7.6.5. — Let v : W — k* be a linear character and assume that c is generic.
Then Z is unramified over P at Ker(Q;).

7.7. Smoothness and Calogero-Moser families

Let b € Idem,,(Z;) and let j, denote the prime ideal of Z equal to the kernel of
Qf : Z — Kk(€). Note that bZ; is a local finite dimensional k(¢)-algebra with residue
field k(€).

By [Gorl, §5], we have the following characterization of smoothness.

Proposition 7.7.1. — Thering Z is regular at 3, if and only if | Irry(W, b)| = 1. Moreover,
if Z is reqular at 3, then

Proof. — Theorem 5.4.5 provides the first equivalence. Assume now Z is regular at
35 Theorem 5.4.5 shows that Hyb e induces a Morita equivalence between Hyb and
Mat;y (b Zg). Since b Z is local, it follows that the finitely generated projective b Z,-
module Hgbe is free. On the other hand, Theorem 5.4.5 shows that Hebe ®,, 7, Z(55)
is a vector space of dimension |W| over Z(3,), hence H¢be is a free b Zgs-module of
rank |W|. The proposition follows. O

Consider now ¢ € 6 and b € Idem,,(Z,). Let z, denote the point of T '(0)c %, C
% corresponding to b.

Proposition 7.7.2. — The following assertions are equivalent:

(1) & is smooth at z,.
(2) %, is smooth at z,,.

Proof. — Let us first recall the following Lemma:
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Lemma 7.7.3. — Let ¢ : % — X be a morphism of k-varieties (not necessarily
reduced), let y € % and let x = p(y). We assume that there exists a morphism of
k-varieties o : X — % such that y = o (x) and ¢ oo =1dg-. Then

Ty(¥) =T, (p*(x)® T, (0(X).

Here, 7,(%) denotes the tangent space to the k-variety % and p*(x) denotes the
(scheme-theoretic) fiber of ¢ at x, viewed as a closed k-subvariety of %, not neces-
sarily reduced.

Let y € Irrg(W, b). The morphism of varieties ng 1€ — % is a section of the
morphism moY : Z — 6. Moreover, by assumption, z;, = Qﬁ((c). By Lemma 7.7.3
above, we have

7., %)= T, (%) T, (2 (6)).

Since Zh(ﬂﬁx(‘g ) >~ 7.(6), the Proposition follows from the smoothness of 6 and
from the fact that dim(%) = dim(%,)+ dim(¥). O

After the work of Etingof-Ginzburg [EtGi], Ginzburg-Kaledin [GiKa], Gordon [Gor1]
and Bellamy [Bel2], a complete classification of complex reflection groups W such
that there exists ¢ € € such that Z . is smooth has been obtained. Note that the state-
ments “There exists ¢ € 6 such that Z . is smooth” and “The ring k(6)®y4 Z =k(6)Z
is reqular” are equivalent. We recall now the result.

Theorem 7.7.4 (Etingof-Ginzburg, Ginzburg-Kaledin, Gordon, Bellamy)
Assume that W is irreducible. Then the ring k(6)Z is reqular if and only if we are in
one of the following two cases:

(1) W has type G(d,1,n), with d, n > 1.
(2) W is the group denoted G, in the Shephard-Todd classification.

The following proposition is a consequence of the work of Etingof-Ginzburg [EtGi],
Gordon [Gorl] and Bellamy [Bel2], by using the Shephard-Todd classification of
complex reflection groups. Recently, Bellamy-Schedler-Thiel gave a proof of this
fact which does not rely on the classification [BST, Corollary 1.4].

Proposition 7.7.5. — Let ¢ € 6. Then the following are equivalent:

(1) The variety Z . is smooth.
(2) The points belonging to Y_'(0) are smooth in % .
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7.8. Blocks and Calogero-Moser families

We assume in §7.8 that W is irreducible.

Calogero-Moser families and blocks of the category & are closely related, as the
following lemma shows. Given E € Irr(W), we put A¢(E) = A(E) &3¢ k(€). As in
Example 3.2.1, we consider w, ={'Id, a generator of W NZ(GL(V)).

Proposition 7.8.1. — Let E,F € Irt(W) and let i € Z. The standard objects A¢(E) and
Ag(F)(i) are in the same block of O(k(€)) if and only if E and F are in the same Calogero-
Moser €-family and wg(w,)='wp(w,).

Proof. — We use the notation of Example 3.2.1. The element w, € Z(W) acts on the
degree r part of Ag(F)(i) by wp(w,){ . It follows from §5.4 that if A(E)®¢ k(¢)
and A¢(F) ®¢ k(€)(i) are in the same block of 0(k(€)), then wg(w,)=wp(w, )"

Note that A¢(E) has a filtration whose successive quotients are isomorphic to
A¢(E) &, (C[V]Y).. As a consequence, Ay(E) and A¢(E)(—i) are in the same block,
whenever (C[V]Y)! #0. Since z,, = ged(d,, ...,d,), it follows that A;(E) and A¢(E){zy)
are in the same block.

Assume now E and F are in the same Calogero-Moser ¢-family and wg(w,) =
{'wp(w,). There is an integer j such that A¢(E) and A¢(F)(j) are in the same block
of O(k(2)). It follows that w(w,) = wx(w,)/, hence d|(i— j). So, A¢(E) and Ay(F){i)
are in the same block of 0(k(¢)). O

Let Z be the set of height one prime ideals € of k[¢] such that the blocks of d(k(¢))
are not trivial, i.e., there exists E, F € Irr(W) and r € Z such that Ay(E) and Ag(F){r)
are in the same block and E#£F(r). Note that the ideals of Z are homogeneous for
the Z-grading on k[€].

We assume for the remainder of §7.8 that V #0.

Proposition 7.8.2. — The ideals in & are (T) and the ideals (Cy — Cp — r T) such that
(Cp—Crp—r)e ZF,, where E,F €Irr(W)and r € Z\ {0}.

Proof. — Proposition 7.8.1 shows that 0(k(¢)) has non-trivial blocks for all prime
ideals ¢ of k[¢]. It follows that (T)e Z.

Let € be an ideal of  distinct from (T). Since € is homogeneous, it follows that
it is generated by some irreducible polynomial P(T)= >  a;T’, where r >0 and
a; is a homogeneous polynomial of degree d —i in the indeterminates C;, for some
d € Z. Consider the proper ideal q= (T —1, P(T)) of K[€]. Since ¢ € Z and € C g, it
follows that P(1)k[¢] contains an ideal in .%;, hence P(1)is divisible by Cy—Cr—r for
some E, F € Irr(W) with Cy # Cr and some r € Z\ {0}. Since P(T) is homogeneous, it
follows that it is divisible by Cy—Cr—rT. We deduce that (P(T))=(Cyz—Cpr—rT). O
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Define .7, to be the set of height one prime ideals € of k[ 6] such that the Calogero-
Moser ¢-families are different from the generic Calogero-Moser families. Proposi-
tions 7.8.1 and 7.8.2 have the following consequence. The fact that the ideals in %,
define hyperplanes of 6 (and not merely hypersurfaces) is due to Bellamy, Schedler
and Thiel [BST, Theorem 5.1].

Corollary 7.8.3. — The ideals in F, are those ideals of the form (Cr — Cy) for some E, F €
Irr(W) such that there exists r € Z\ {0} with (Cp — Cr—r) € Z;.

Theorem 7.8.4. — Let ¢ € 6. The Calogero-Moser c-families are the smallest subsets of
Irr(W) that are unions of generic Calogero-Moser families and unions of blocks of 0 (k(h))
for all morphisms of k-algebras k[ 6] — k(%) of the form C — fic + ¢’ with k(c’) € A (Q).

Proof. — Let I be the set of prime ideals € =(Cy—Cr—r) € Z, such that Cy(c) = Cx(c).

By Propositions 7.8.1 and 7.8.2, the Calogero-Moser c-families are the smallest
subsets of Irr(W) that are unions of generic Calogero-Moser families and unions of
blocks of 0(¢) for all ¢ € 1.

Consider a morphism of k-algebras k[ 6] — k(%) of the form C — fic + ¢’ with
k(c’) € #(Q). Let I(c’) be the set of € = (Cy —Cr—r) € Z, such that (Cy; — Cp —
r)#fic+c¢’)=0,ie., Cz(c)=Cr(c) and (Cy — Cr)(c’) = r. The blocks of 0(k(#)) are the
smallest subsets of Irr(W) that are unions of blocks of ¢(k(¢)) for all € € I(c’). Since
I= Uc,e,g(Q) I(c"), the theorem follows. O

Since blocks of @ correspond to blocks of the Hecke algebra (cf. §6.3.B), we can
reformulate the previous result.

Theorem 7.8.5. — Let ¢ € 6 and k =«(c). The Calogero-Moser c-families are the small-
est subsets of Irr(W) that are unions of generic Calogero-Moser families and unions of blocks
of C(q*)A for all morphisms of C-algebras C[F']— C(q*) of the form qs ;j — {5, ;9" where
(o5, ) )w, jrewe 18 a family of roots of unity.

Using Proposition 7.7.1, we deduce a description of Calogero-Moser families
from blocks of the Hecke algebra, when the Calogero-Moser space is smooth for
generic values of the parameter.

Corollary 7.8.6. — Assume %, is smooth, for n) the generic point of 6. Let ¢ € 6 (k). Let
I be a subset of Irrf(W). The following are equivalent:
(i) I is a union of Calogero-Moser c-families.
(ii) I is a union of blocks of O(k()) for all morphisms of k-algebras k[6] — k(1) of the
form C — Tic + ¢’ with k(c¢’) € #(Q).
(iii) I is a union of blocks of C(q¥) for all morphisms of C-algebras C[7']— C[q*] of the
form qs j — L5, ;"1 where ({55 ;)w, jyew 1S a family of roots of unity.
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Remark 7.8.7. — When W has a unique conjugacy class of reflections, the previous
results are trivial: when ¢ # 0, the algebras C(q*)s# in Theorem 7.8.5 and Corollary
7.8.6 are semisimple. B






CHAPTER 8

CALOGERO-MOSER CELLULAR CHARACTERS

In this Chapter 8, ¢ denotes a prime ideal of k[6]. We use Verma modules for
H'*" to define the notion of Calogero-Moser €-cellular characters. We expect that they
coincide with the Kazhdan-Lusztig cellular characters when W is a Coxeter group.

This chapter will mainly consider left Calogero-Moser ¢-cellular characters and
(left) Verma modules: definitions and results can be immediately transposed to the
right setting.

Notation. Given € a prime ideal of k[6], we denote by p™ (resp.
ph®™) the prime ideal of P corresponding to the closed irreducible
subscheme 6 (C)x V/W x {0} (resp. 6(€)x {0} x V*/W ). We set
PEft = p/pleft ~ K[ 6]/ @K[V]Y,
{P%m P/y 8 ~K[6)/COKV]",
and we define

the Pf"-algebra HE" =H/ps"H,
the P“ght—algebra Hrlght =H/ p“ght H.

We denote by Z (resp. Zy®") the image of Z in HE™ (resp. Hy2™).
We also define
{Klgft =k (plceft ,
K = kp(pe™).
To simplify the notation, when € =0, the index € will be omitted
in all the previous notations (p'eft, HUsht Klett ). Given ¢ € 6 and
€ =¢,, the index €, will be replaced by ¢ (pUeht, H'*" Krish ).
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8.1. Verma modules and cellular characters

8.1.A. Morita equivalence. — Let P8t = k[¢ x V™®8/ W x{0}] = P™8®, Pleit | Zregleft —
preglelt7 and Hslelt = pregleity, Note that, by Example 4.5.6, 340g N P ¢ p'. Hence,
Theorem 11.4.2 can be applied. Thanks to Corollary 4.5.3, we obtain the following
result.

Theorem 8.1.1. — The (H™#'tt, Zreelelt) pimodule H8'*Me induces a Morita equivalence
between the algebras H™8'" and Z™8!e". Consequently, the (KE"H'™", K" Z'")-bimodule
K"H'" e induces a Morita equivalence between the algebras K"H'™" and K" Z'e".,

The Morita equivalence of Theorem 8.1.1 induces a bijection

Irr(Kléeft Hleft) - II'I'( Kléeft Zleft)

(8.1.2) 2 — 1

On the other hand, the (isomorphism classes of) simple K¢"Z"*"-modules are in
bijection with the maximal ideals of K" Z'", that is, with the minimal prime ideals

of Z¥" or, in other words, with Y~!(p"). Using (8.1.2), we obtain a bijection

Yl(plel) — Irr(KetH"")

8.1.3
( ) 3 — ngﬁ(ﬁ).

8.1.B. Cellular characters. — Let ;€Y !(pk") and let ¢, be the corresponding prim-
itive idempotent of K"z,

We identify Gy((Z£"),[W]) with Gy(kW) by [(Z/3)® E]— [E] for E €Irr(W).

The right action by multiplication of kW on kW induces a right action of kW on
A(kw).

Definition 8.1.4. — We define the Calogero-Moser C-cellular character associated with
3 as the character of W given by

P = (12, K AGW ), 1)

When € = 0 (respectively ¢ = €, for some ¢ € ¢), they will be called generic
Calogero-Moser cellular characters (respectively Calogero-Moser c-cellular char-
acters).

Given 3 € T7'(ps™) and y € Irr(W), we denote by multsy the multiplicity of the
simple module Lg"(3) in a composition series of the Verma module K" A(y).
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The above definition can be expressed in terms of length of Z,-modules, through
the Morita equivalence. We first need the following lemma. Given M a finitely gen-
erated Z"-module, the Z-module M, has finite length and we denote this length
by Length, (M,).

Lemma 8.1.5. — Let M be a finitely generated H"-module. Then eM, is a Z,-module of
nite length and Length, (e M) is equal to the multiplicity of L'*%(3) in the Ki"H*"-module
fi 8 gth, (eM;) is eq plicity of L™ (3 ¢
Kt
[

Proof. — By construction, Length, (e M) is equal to the multiplicity of e LE"(3) in the
Kt Z"-module eK"M. The result follows now from the Morita equivalence of
Theorem 8.1.1. O

Given ; € Y~!(p"), we put

rnult;i\;I =Length z, (eKlé’ﬁA( ){))3.

Proposition 8.1.6. — Let 3 €Y} (pie"). We have

CM _ CM |
Yy = Z )multM X

y€lrr(W

Proof. — We have A(kW) = pciw)A(E)® E*, hence
Z,eKAKW) =D Z,e K A(E) ® E*.
E

Since [Z,eKE"A(E iz, = Lengthzé(eKIQ’?ftA(E ));,[Z /3], we deduce the first equality.

3

The second equality follows from Lemma 8.1.5. O

Remark 8.1.7. — We expect that the cellular characters associated to two different
prime ideals are distinct and that the cellular characters are linearly independent.

8.2. Choices

Lemma 8.2.1. — Given v a linear character of W, the K¥tH"*"-module K" A(y) is abso-
lutely simple.

Proof. — This follows from Theorem 8.1.1 and (5.1.1). O
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Fix now a linear character y of W. By Lemma 8.2.1, the endomorphism algebra
of K*"A(y) is equal to K*". This induces a morphism of P-algebras Q" : Z — K'*"
whose restriction to P is the canonical morphism P — P, Since Z is integral over
P, the image of Q" is integral over P and contained in K" = Frac(P""). Since
P~ k[ x V//W]is integrally closed, this forces (" to factor through P'*"". We set

5left — Ker(Qlleft) and qleft — COp(ﬁlEﬁ).

Proposition 8.2.2. — The ideal q"*" of Q satisfies the following properties:
(@) q'° is a prime ideal of Q lying over p'ett,
(b) qleft Cq.
(C) pleft — P/pleft ~ Q/CIIEft.

Proof. — Since K" is a field, ¢’ is prime. Since the restriction of Q" to P is the
canonical morphism P — Pt gleftny p = pleft. This shows (a).

By construction, A(y)/pA(y)=A(y) and so the morphism Q:Z— P =P/p factors
through the morphisms Qlyeﬁ : Z — P and P'*" — P, whence (b).

Finally, the isomorphism (c) follows from the fact that the image of ©, is P'. [

Proposition 8.2.2 allows us to choose a prime ideal of Q lying over p't and com-

patible with our choice of q. The next lemma shows that this choice is unique:

Lemma 8.2.3. — We have p""Q; = ¢""Q.

Proof. — 1t is sufficient to prove that pl"ﬁQEI is a prime ideal of Q;. By Lemma 12.1.1,
the local morphism of local rings P, — Q; is étale. Moreover, P/ pleft~ k6 x V*/W]is
integrally closed (it is a polynomial algebra) and so P;/p*"B; is also integrally closed.
By base change, the ring morphism P;/p'"P, < Q;/p'"Q; is étale, which implies
that Q,/p""Q,, which is a local ring (hence is connected), is also integrally closed
(by [SGA1, Exposé I, Corollaire 9.11]) and so is a domain (because it is connected).
This shows that p'Q; is a prime ideal of Q;, as desired. O

left

Corollary 8.2.4. — The ideal q"*" is the unique prime ideal of Q lying over p'*™ and con-

tained in . Moreover, Q is étale over P at q'°™.

Since Q/q*f ~ P /pleft = k[6 x V /W], we get that Q/(q""+ € Q) ~k[€]/C K[V /W]

and so ¢+ €Q is a prime ideal of Q. We will denote it by ql¢.
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Corollary 8.2.5. — We have Q/q¢" ~ P /p". Moreover, q¢" is the unique prime ideal of

Q lying over p™ and contained in g.

Proof. — The first statement is immediate and the second one follows from the first
one. 0

Remark 8.2.6. — It has been shown in Corollary 7.2.5 that, if g, is a prime ideal of Q
lying over p, then Q/§, ~ P/p. Even though Q/g'"*® ~ P /p'*!t, we will see in Chapter 19
that this cannot be extended in general to other prime ideals of Q lying over p'eft:
indeed, if W has type B,, then there exists a prime ideal ¢'® of Q lying over p
such that P/p' is a proper subring of Q/q™! (see Lemma 19.7.12(c)). So, in general,

K" ¢ M", where €=0.m

left

Proposition 8.2.7. — Let 3 be a prime ideal of Z lying over pi¢". Then there exists a
unique prime ideal of Z lying over p, and containing 3'°": it is equal to 3! +(Z o, Zs).

*

Proof. — The proposition follows from Lemma C.2.11 applied to the extension Z/P
and the prime ideals p, and 3!t O

% °

Proposition 8.2.7 provides a surjective map

limygp: T (pl) — T (pe)
8.2.8 ¢ oft e
( ) 5Lﬁ ? 5Lﬂ+ (Z<0)Z50)-

The notation limy; will be justified in Chapter 9.

8.3. Gaudin algebra and cellular characters

8.3.A. Left specialization. — Let Z"*" = 7’/ @y yuw k= Z™8" M @,y req)w k[ V™8], a k[ 6 x
V'¢]-algebra, free of rank |W| as a k[¢ x V™8]-module. It is acted on by W and
(Z/left)w — gzregleft

Lemma 5.5.1 shows that © gives an isomorphism Z"¢ft x W — H™8!!t and the
image of Z* by that map is the k[¢ x V™8]-subalgebra generated by (V).

There is a Morita equivalence between H™#"* and Z™&!¢ft given by the bimodule
A(co)™8 = A(co) @y k[ V™8] = H™8e ®yy.w k= H"8!e. It corresponds to the Morita
equivalence between Z" x W and Z™8!*t given by Z”*!'. Note in particular that
Z"e e W acts faithfully on A(co)™s.
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8.3.B. Gaudin algebra. — There is a canonical isomorphism k[% x V™8] @ kW —
H™8 @y, k = A™8(kW). Through this isomorphism, the action of ©®!(y) (for y € V)
is given by left multiplication by

7= > els)C, D0 @5) e x vesw
se€Ref(W) as
where k[6 x V™8][W] denote the group algebra of W over the algebra k[6 x V']
note that, in this algebra, the elements of k[¢ x V'] and those of W commute. In
other words, k|6 x V*8][W]=k[€¢ x V™8]®@ kW as an algebra. Note that the action
of 7, by left multiplication on the specialization of k[6 x V™¢][W] at a closed point
(¢, v) is the operator Dyc""0 of §5.5.B.

We denote by Gau(W) (resp. gau(W) ) the k[ 6 x V'8]-subalgebra (resp. submod-
ule) of k[6 x V™8][W] generated by the 2,’s (y € V). It will be called the generic
Gaudin algebra (resp. generic Gaudin Lie algebra) associated with W. Note that it is
commutative.

Gaudin Lie algebras and Proposition 8.3.1 below are in [AgFeVe] when W is a
real reflection group.

Proposition 8.3.1. — gaw(W) is a commutative Lie subalgebra of k|6 x V™8][W]. The
k[ 6 x V™8]-module gau(W) is free of rank dim(V / V"W).

Let y' € V™8 and ¢ € 6 be k-points with ¢; # 0 for all s € Ref(W). Then the image
of gaw(W) in k[W], the specialization of k[6 x V™8][W] at (y’,c), is a k-vector space of
dimension dim(V /V"W).

Proof. — Note that the map a® y — a%, for y € V and a € k[6 x V™8] gives a
surjective morphism of k[6 x V™8]-modules f :k[6 x V'8]® V — gau(W). We have
fla®y)=0if y € VW, Consider now b € k[6 x V] ® V with f(b)=0. Given
s €Ref(W), we have (b, a,) =0. It follows that b ek[%6 x V™8]® V. The first part of
the proposition follows.

The second part of the proposition follows by a similar argument. O

Let R =k[6 x V*8][{C "} ;cpew)- One can deduce from the proposition above that
the R-module R ®y g gau(W) is a direct summand of R[W], because the quotient
module is flat, hence projective.

Note also that the external action of W stabilizes Gau(W): we have “%, = 9,,,,
for y € V and w € W. Therefore, we can consider the algebra Gau(W)x W.

Recall that A™8(co) has a filtration with gr A™8(co)~ A(kW). There is a filtration of
Heglelt given for r <0 by

Hreg,left,< r_ {h c Hreg,left | hAreg(CO)< i - Areg(co)< i+r, Vl < 0}
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Via the isomorphism Z”¢ft x W — H#!*ft, we obtain a filtration with (Z"°f x W)<" =
(zet)<r @ kW. We deduce the following:
— The algebra Gau(W) is the image of Z’ =07!(k[6 x V'8 x V*]) in End(A(kW))
— The algebra Gau(W)" is the image of Z™8 =©7'(k[ 6 x V™8x V*]*") in End(A(kW))
— The algebra Gau(W)x W is the image of H™#'"*" in End(A(kW))
— the kernel of the action of H™8!* on A(kW) is a nilpotent ideal.

Thanks to Proposition E.1.3, we also deduce that Gau(W) induces a Morita equiv-
alence between Gau(W)x W and Gau(W)V.

8.3.C. Cellular characters. — Let m be a maximal ideal of Klé’ﬁGau(W). We define

a character of W

7SR = (@) V) @ kW )it Gaugwy, )"

By Proposition E.1.3, the restriction map induces a bijection
(8.3.2) (Irr(KE" Gau(W))) / W = Trr(KE" Gau(W) ™).

Let ; be the maximal ideal of Z;" corresponding to the orbit of m via this bijection.
Theorem 8.3.3. — We have y ;™' =y ™.

Note that, as consequence, we have Y5 = yS for all w e W.

Wm

There is a corresponding result for cellular multiplicities:

Lengthysgay vy, (K(€)(V) ® E)yy) = mult®.

Consider now an algebraically closed field K and a K-point p of Spec(k(€)[V™8])
outside the ramification locus of f : Spec(k(€)Z"¢") — Spec(k(¢)) x V™8,

There is a bijection Irr(K"Gau(W)) — f~'(p). Denote by z, the point of f~(p)
corresponding to m. We have yﬁa“ =[K(f~'(p)lkw- So, the €-cellular characters are
the generalized eigenspaces of the Gaudin operators at p.

Remark 8.3.4. — The description of Calogero-Moser cellular characters provided
by Theorem 8.3.3 allows efficient computations in small groups. B
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8.4. Projective modules for Hecke algebras

Let ¢, ¢’ € ¢(C)with ¢ #0. Consider the morphism of C-algebras C[6]— C(h), C; —
Tic,+ ¢ and the corresponding embedding C — € given by i— fic +¢’.

We consider also the morphism of C-algebras C[€¢]—Ch), T—Hh", C,— c,+
h_lcs’. There is an isomorphism of C(#i)-algebras C(%) ®cj¢; H = C(h) ®c(z] H (cf.
§3.5.A). It induces an equivalence 0 (C(%) ®¢4 C[4]/(T —1)) — &(C(1)) and an iso-
morphism Ky(0' (C() ®¢r4 CI€1/(T —1))) = Ko(O(C(R))).

Recall (Proposition 5.3.3) that there is an equivalence

o(C(n)® = 6 (C) ®ci+ CIG1/(T—1)).

Composing with the equivalence above provides an equivalence 0(C(%))? = 0(C(h)),
hence an isomorphism of Z[t*']-modules

Ky(O(Ch)IE! ] Ko(G(C(R))), [A(E)] — [A(E)] - tieeeer)
where lex(z) = z —Log(exp(z)) and Log is the principal branch of logarithm.

Consider the discrete valuation ring C[#i™'];-1. There is a decomposition map
(cf. §E1.H) Ky(O(C(h))) — Ky(€(C,)) corresponding to the specialization %' — 0,
hence T — 0. Composing with the isomorphism above provides a morphism of
Z[t*-modules K,(0(C(7)))[tF] — Ky(G(C,)).

Forgetting the gradings, i.e. setting t=1, we obtain a morphism of abelian groups
d’ from Ky(0(C(h))) to the Grothendieck group L of the category of finitely gener-
ated H.-modules that are locally nilpotent for V.

Applying C(V)" ®¢yw— provides a morphism from L to the Grothendieck group
L’ of the category of finitely generated (C(V)" ®¢yw H,)-modules that are locally
nilpotent for V. Composing with d’, we obtain a morphism d” : Ky(0(C(h))— L.
Since every finitely generated (C(V)" ®¢yw H.)-module that is locally nilpotent
for V is a finite extension of K¥"H-modules, it follows that pullback through the
quotient map C(V)" &¢;yw H, - K'H induces an isomorphism Ky(K*"H-mod) —
L’. Composing d” with the inverse of that map provides a morphism d": K,(0(C(h)) —
Ko(K"H-mod).

Consider the morphisms of C-algebras C[7] — C[q"], q;; — qkﬁﬁf’e”"’k;f—f/ Py
and C[q®] — C((h)), q" — e?™""/Itwl. We have an isomorphism K;(C(q®)#-mod) —
Ko(C((h))-mod).

Given M € 0(C(h)) with C[V8] ®ciy) M =0, we have d”([M]) = 0. It follows from
Theorem 6.3.1 that d” factors through K,(6(C(#))) = Ky(O(C((h) LA Ky(C((h)).#-mod).
This provides a morphism

d. . Ko(C(q%)#-mod) — Ko(K"H-mod).
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Let us summarize these constructions in the following theorem.

Theorem 8.4.1. — There is a (unique) morphism d.. ., : Ko(C(q%)#-mod) — Ky(K*"H-mod)
such that d, .([E®"]) =[K"A(E)] for all E € Irf(W).
Given L a simple C(q®)#-module, there are non-negative integers d , such that d, .([L]) =

Zzer,l(plceft) dL,z([LlCEﬁ(Zj)])'

Here is a commutative diagram summarizing the situation (we indicate above
each column which specialization it corresponds to):

T—1, Cy—hcg+c,] T—i, Cooeg+hi'c] T—0, Cy—cg
. 11 ~ ~ 1 dec. map ~
Ko(o(C(m))t] Ky(o(C(n™) Ky(0(C,))
t=1 l forget grading
Ko(ﬁ(C(h))) __________________ = KO(Hc'mOdV—loc. nilp‘)
KZ l localization
KO(C(qC)%'mOd) i : ___________ > KO((C(V)W ®(C[V]W Hc)'mOdV—loc. nilp.)
\\d\c,c’\\\\\\\\\ N
Ky(K*"H-mod)
Remark 8.4.2. — The discussion above shows that the cellular multiplicities mea-

sure something like the regular part of the characteristic cycle of a Verma module
C.A(E) (with respect to the filtration H® of §4.6.B), although this doesn’t seem to fit
with the usual characteristic cycle theory. B

Corollary 8.4.3. — The Calogero-Moser c-cellular characters are sums of classes of pro-
jective indecomposable (C(q°)#€)-modules.

Remark 8.4.4. — When W has a unique class of reflections and ¢ # 0, the alge-
bra C(q%)-mod is semisimple, so Theorem 8.4.1 brings no information on cellular
characters. m

Remark 8.4.5. — When W is a Coxeter group of type B, the Lusztig cellular char-
acters for equal parameters are characters of projective indecomposable modules
[LeMi].






CHAPTER 9

BIALYNICKI-BIRULA CELLS OF Z,

Assumption. In this chapter §9, we assume that k = C and we fix
an element c € 6.

The group C* acts on the algebraic variety Z.. We shall interprete geometrically
several notions introduced in this book (families, cellular characters,...) using this
action (fixed points, attractive or repulsive sets...). The main result of this chapter is
concerned with the case of a family corresponding to a smooth point of Z.: we will
show that the associated cell characters are irreducible. This result will be seen as a
geometric result. Indeed, the smoothness of the fixed point implies that the attrac-
tive and repulsive sets are affine spaces which intersect properly and transversally;
a computation of the intersection multiplicity will conclude the proof (see Theo-
rem 9.4.1). Note that another proof can be obtained using results of Bellamy that
appeared after the first version of this book [Bel6].

9.1. Generalities on C*-actions

Let 2 be an affine algebraic variety endowed with a regular C*-action C* x ' —
X, (&, x)— Eex. We will denote by & € the closed subvariety consisting of the fixed
points under the action of C*. Given x € &', we say that lim_,, &« x exists and is equal
to x, if there exists a morphism of varieties ¢ : C — Z such that, if & € C*, then
(&) = Eex and (0) = x,. It is then clear that x, € Z©". Similarly, we will say that
lim;_, &' x exists and is equal to x, if there exists a morphism of varieties ¢ : C - %
such that, if £ € C*, then p(&)=&"'ex and p(0)= x,.

We denote by 2" (respectively 2™P) the set of x € 2 such that lim:_,&«x (re-
spectively lim;_,, &'« x) exists. It is a closed subvariety of 2 and the maps

limg: 2™ — ¢
x o limg  &ex
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. X
lim,,: 2™ — xC

and .
x  — lim: (& lex

are morphisms of varieties (which are of course surjective: a section is given by
the closed immersion ¢ ¢ N2 ™), because Z is affine by assumption (this
follows from the facts that this is true for the affine space C¥endowed with a linear
action of C* and that 2 can be seen as a C*-stable closed subvariety of such a CV).
Note that this is no longer true in general if Z is not affine, as it is shown by the
example P!(C) endowed with the action E«[x; y]=[Ex; y].

Finally, given x, € ", we denote by Z*!(x,) (respectively Z™P(x,)) the inverse
image of x, by the map lim,, (respectively lim,,). The closed subvariety 2*"(x,)
(respectively Z™P(x,)) will be called the attractive set (respectively the repulsive set)
of x,: it is a closed subvariety of 2. Let us recall the following classical fact, due to
Bialynicki-Birula [Bia]:

Proposition 9.1.1. — If x, € Z© is a smooth point of %, then there exists N > 0 such
that 2" (xy) ~ CV. In particular, 2 *(x,) is smooth and irreducible.
The same statements hold for 2 ™P(x,).

We will describe the notions developed in the previous chapters (families, cellular
characters) via fixed points and attractive sets of the C*-action on Z ..

9.2. Fixed points and families

The results of this section §9.2 are due to Gordon [Gorl]. There are several C*-
actions on all of our varieties (2, Z, Z,...). We will use the one which induces the
Z-grading of Example 3.2.1. In other words, an element £ € C* acts on H as the
element (71, &,1x 1) of C* x C* x (Hom(W,C*) x .#). Therefore, for the action on H,
¢ acts trivially on C[¢]® CW, acts with non-negative weights on C[V], with non-
positive weights on C[V*]. We get an action on P and Z., which induces regular
actions of C* on the varieties 2, ~ V/W x V*/W and %, making the morphism

Y, %, — P, =V/Wx VW

C*-equivariant. Given £ € C* and z € Z, the image of z through this action of £
will be denoted by . z. The unique fixed point of 2, is (0,0):

(9.2.1) 2 =(0,0).
Since Y, is a finite morphism, we deduce that

(9.2.2) Z< =1'(0,0).
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Proposition 9.2.3. — The construction above provides a bijection between %" and the
set of Calogero-Moser c-families.

9.3. Attractive sets and cellular characters

First of all, note that
(931) 2M=V/Wx0cV/WxV*/W and PP=0xV*/WcCV/WxV*/W.
In other words, 22" is the irreducible subvariety of &, associated with the prime
ideal plfﬁ. Moreover, since 7, is a finite morphism, we have
Lemma 9.3.2. — We have Z2" ="' (V/W x0)and Z? =T_'(0x V*/W).

Proof. — Let p : Z, — C[t,t '] be a morphism of C-algebras such that p(P,) c C[t].
Since Z, is integral over P,, it follows that p(Z,) is integral over p(R,). As C[t] is
integrally closed, we deduce that p(Z,) c C[t]. This shows that 23" =V/W x0 c
T, (Z2%). The reverse inclusion is clear, and the other equality is proven similarly.

]

We have the following immediate consequence.

Proposition 9.3.3. — There is a bijection from Y *(p'") to the set of irreducible compo-
nents of Z" sending 3 to the corresponding irreducible closed subvariety Z3"[3].

Since lim,, : Z** — Z<" is a morphism of varieties, the image of Z"[3] is irre-
ducible. As & fx is a finite set, we deduce that lim,(2?%"[3]) is reduced to a point.
Hence, the morphism of varieties lim,, : 2™ — #<" induces a surjective map Y (p'*ft) —
T '(p.): this is the map limy.;, defined in (8.2.8).

9.4. The smooth case

Assumption and notation. We fix in §9.4 a point z, € %" which
is assumed to be smooth in % .. We denote by y the unique irre-
ducible character of the associated Calogero-Moser c-family.

Since z, is smooth (and isolated), we have
% (zg) > CN

for some N, hence Z%"(z,) is smooth and irreducible (Proposition 9.1.1). This shows
that lim;&(zo) is irreducible and isomorphic to an affine space. We denote by 3; the
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prime ideal of Z. corresponding to this irreducible subvariety of Z.. The aim of
this section is to show the following result.

Theorem 9.4.1. — The celular character y{™ is irreducible, i.e. y?™ = y.

We will provide a geometrical proof of Theorem 9.4.1. An entirely algebraic proof
can be deduced from [Bel6, Theorem 10(3)]. In type A,, this can also be deduced,
using Gaudin operators (cf. Chapter 5.5), from [MuTaVaz2].

NOTATION - Given A is a commutative local ring with maximal ideal m and given
M a finitely generated A-module, we denote by e, (M) the multiplicity of M for the
ideal m, as it is defined in [Ser, Chapitre V, §A.2].

Let A be a regular commutative ring (not necessarily local) and M and N two
finitely generated A-modules such that M ®, N has finite length. Given a a prime
ideal of A, we put

dimA
%M, N)=">"(~1)'Length, (Tor’(M, N),),
i=0

as in [Ser, Chapitre V, §B, Théoréeme 1] . ®

Proof. — We define similarly 3; as being the defining ideal of Z*(z,): we denote

by yfRM'“ght the associated right Calogero-Moser c-cellular character. We have

() rM=mpy(1) and MU =mgy

for some m;, my. We must show that m; =my =1.

Let us first compute the multiplicity of the Z, ;-module Z, ;/p'*"Z, . for 3Z, ;. The
Krull dimension of this module is n = dim, V. By the additivity formula [Ser,
Chapitre V, §A.2], we have

(©) €52, (Zeg/W"Zo )= D Length, (Z., /0" Z. Jews, (Zes/3Zey):

coht(z)=n
Here, coht(;) denotes the coheight of the prime ideal ; of Z, ;. Since Z%"(z,) is ir-
reducible of dimension 7, there is only one prime ideal of Z,; with coheight n
which contains p'"Z, ; (and so such that Length, (Z., /p*tZ, ) is non-zero), this is
the prime ideal 3,. Moreover, since Z,;/3,Z ; is a regular ring (because Z"(z) is
smooth), the multiplicity e;, (Z.;/3Z. ;) is equal to 1 (see [Ser, Chapitre IV]). Hence,
it follows from (&) and (<>) that

(©1) €7, (Ze /P Zeg)=my (1),
By symmetry,
(Ok) €7, (Zc,g/Prcighth,g;) =mpg x(1).
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On the other hand, P/p*" is a polynomial algebra and Z,/p'"Z, is a free P /p'e-
module of rank [W|. So Z, ;/ plfﬁZC,Z is a Cohen-Macaulay Z, ;-module of dimension
n. Similarly, Z, ;/p""Z_ . is a Cohen-Macaulay Z, ;-module of dimension n. Since
Z. has dimension 21, it follows from [Ser, Chapitre V, §B, Corollaire du Théoreme 4]
that

(W) 15(Z /0" 2, Z 5/ 2, ) = Length, (Z,; [P Z, 5@, Zes/9eE" Z, )=y (1) > 0.

The last equality follows from the fact that p'** + p"8ht = and Corollary 7.4.2.
Consequently [Ser, Chapitre V, §B, Complément du Théoreme 1],

€7, (Zc,g/Plcefth,g) 657, (Zc,g/Prcighth,g) < Zg(Zc,g/PlfﬁZc,grZc,g/Prcighth,g)-
From this last equality and (©), (V) and (#), we deduce that
mympg < 1.

We obtain m; = my =1, as desired. O






PART III

THE EXTENSION Z/P



Important notation. Throughout this book, we fix a copy Q of the
P-algebra Z, as well as an isomorphism of P-algebras cop : Z — Q.
This means that P will be seen as a k-subalgebra of both Z and Q,
but that Z and Q will be considered as different.

We then denote K = Frac(P) and L = Frac(Q) and we fix a
Galois closure M of the extension L/K. Set G = Gal(M/K) and
H = Gal(M/L). We denote by R the integral closure of P in M. We
then have P ¢ Q C R and, by Corollary 4.2.7, Q = R" and P = RC.
This is the Galois context of Appendix B which will be used exten-
sively in this part.

Recall that KZ =K®p Z is the fraction field of Z (see (4.5.7)). We
still denote by cop : Frac(Z) — L the extension of cop to the frac-
tion fields.

Let ZNN, ZN and Z% denote respectively the (N x N)-grading, the
N-grading, the Z-grading induced by the corresponding one of H
(see §3.2, and the examples 3.2.2 and 3.2.1). Through the isomor-
phism cop, we obtain gradings Q™N, QN and Q% on Q.

This Galois extension is the main object studied in this book: we shall be partic-
ularly interested in the inertia groups of prime ideals of R, and their relation with
the representation theory of H. Throughout this part, we will use the results of
the Appendices B and C, which deal with generalities about Galois theory, integral
extensions and gradings.



CHAPTER 10

GALOIS THEORY

10.1. Action of G on the set W

Since Q is a free P-module of rank |W]|, the field extension L/K has degree |W|:

(10.1.1) [L:K]=|W|.
Recall that the fact that M is a Galois closure of L/K implies that
(10.1.2) (¢H=1

geG

It follows from (10.1.1) that
(10.1.3) |G/H|=|W].

This equality establishes a first link between the pair (G, H) and the group W. We
will now construct, using Galois theory, a bijection (depending on some choices)
between G/H and W.

10.1.A. Specialization. — We fix here c € €. Recall that €, is the maximal ideal of
k[ 6] whose elements are maps which vanish at c. We set

p.=¢C.P and 9. =¢.Q=p.Q.

Since P,=P/p. ~k[V]V ®Kk[V*]" and Q. = Q/q. are domains (see Corollary 4.2.7(f)),
we deduce that p. and q. are prime ideals of P and Q respectively. Fix a prime
ideal ¢, of R lying over p, and let R, = R/t.. Now, let D, (respectively I.) be the
decomposition (respectively inertia) group G (respectively G!). Let

K. =Frac(P,), L. =Frac(Q,) and M, =Frac(R,).
In other words, K, = kp(p.), L, = ko(q.) and M, = kp(x,).

Remark 10.1.4. — Here, the choice of the ideal ¢, is relevant. We will meet such
issues all along this book. m
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Since q. =p.Q is a prime ideal, it follows from Proposition B.4.5 that
(10.1.5) G=H-D,=D,-H.

We also obtain that Q is unramified in P at q. (by definition). Theorem B.3.6 implies
that I, ¢ H. Since I, is normal in D,, we deduce from (10.1.2) and (10.1.5) that
I, €(Vgep, “H = (Ngec 8H =1, s0 that

(10.1.6) I.=1.

It follows now from Proposition B.4.9 that

(10.1.7) M. is a Galois closure of the extension L. /K.
Finally, by (10.1.6) and Theorem B.3.4, we get

(10.1.8) GalM,./K,)=D, and GalM./L,)=D.NH.

We denote by cop, : Z, — Q. the specialization of cop at ¢ and we still denote by
cop, : Frac(Z.) — L. the extension of cop, to the fraction fields.

Remark 10.1.9. — In §10.1.B, we will study the particular case where ¢ = 0, and
obtain an explicit description of D,. However, obtaining an explicit description of
D, in general seems to be very difficult, as it will be shown by the examples treated
in chapter 18 (case dimy(V)=1), see §18.5.C. m

10.1.B. Specialization at 0. — Recall that P, =P, = k[V]V @ k[V*]" and Q, ~ Z, =
Z(Hy) ~K[V x V*]A" where A: W — W x W, w — (w, w) is the diagonal morphism.
So,

K, =k(V x V¥ )WW and  Lo=k(V x VAW,

On the other hand, the extension k(V x V*)/K, is Galois with group W x W, whereas
the extension k(V x V*)/L, is Galois with group AW. Since AZ(W) is the biggest
normal subgroup of W x W contained in AW, it follows from (10.1.7) that

M, ~ k(V x V*A2WV),
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Fundamental choice. We fix once and for all a prime ideal v, of R
lying over q, = €,Q as well as a field isomorphism

iso, 1 k(V x V*)24W) M,

whose restriction to k(V x V¥)AW is the canonical isomorphism

k(V x V¥*W = Frac(Z,) — Lo, Here, the isomorphism
Frac(Z,) — L, is cop,.

Convention. The action of the group W x W on the field
k(V x V*) is as follows: V x V* will be seen as a vector subspace of
k(V x V*) which generates this field, and the action of (w,, w,) sends
(¥, x) €V x V™ to (un(y), wy(x)).

Remark 10.1.10. — The action of W x W on k(V x V*) described above is not the one
obtained by first making W x W act on the variety V x V* and then making it act
on the function field k(V x V*) by precomposition: one is deduced from the other
thanks to the isomorphism W x W S W x W, (wy, w,) — (w,, wy). Nevertheless, this
slight difference is important (see Remark 19.7.25). m

These choices being made, we get a canonical isomorphism Gal(M,/K,) — (W x
W)/AZ(W), which induces a canonical isomorphism Gal(M,/L,) — AW/AZ(W).
Since D, = Gal(M,/K,) by (10.1.8), we obtain a group morphism

L:WxW—G

satisfying the following properties:

Proposition 10.1.11. — (a) Kert=AZ(W).
(b) ImL = Do.
(c) Y H)=AW.

Using now (10.1.5), Proposition 10.1.11 provides a bijection
(10.1.12) (W x W)/AW «— G/H.

Of course, one can build a bijection between (W x W)/AW and W using left or right
projection. We fix a choice:

Identification. The morphism W — W x W, w — (w, 1) composed
with the morphism : W x W — G is injective, and we will identify
W with its image in G.
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More concretely, w € W C G is the unique automorphism of the P-algebra R such
that

(10.1.13) (w(r) modty)=(w,1)(r modyy) ink(V x V*) W)
for all r € R. Hence, by (10.1.12),
(10.1.14) G=H-W=W-H and HNW =1.

Corollary 10.1.15. — Given c € 6, the natural map D, — G/H — W induces a bijection
D./(D,NnH)— W.

Proof. — This follows from (10.1.5) and (10.1.14). O

10.1.C. Action of G on W. — Let &y, denote the permutation group of the set W'.
We identify the group &y, (;; of permutations of the set W \ {1} with the stabilizer
of 1in &,,. The identification G/H «—— W and the action of G by left translations
on G/H identify G with a subgroup of &,,. Summarizing, we have

Given g € G and w € W, we denote by g(w) the unique element of W such that
gu(w,1)H =1(g(w),1)H. Through this identification of G as a subgroup of &y, the
map t: W xW — G is described as follows. Given (w;, w,)€ W xW and w € W, then

(10.1.17) Wwy, wy)(w)=w, ww, "

This is the action of W x W on the set W by left and right translation. Since AW is
the stabilizer of 1 € W for this action, we get

(10.1.18) LAW) = (W x W)N Gy ).

This is of course compatible with Proposition 10.1.11(c) and (10.1.16).
Finally, the choice of the embedding of W in G through w — ((w, 1) amounts to
identify W with a subgroup of &y, through the action on itself by left translation.

10.1.D. Euler element and Galois group. — Let eu=cop(eu) € Q.

Proposition 10.1.19. — The minimal polynomial of eu over P has degree |W|. Its spe-
cialization at c is the minimal polynomial of eu, over P,.
We have L=KJeu].
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Proof. — Since Hy=k[V x V*]x W, we have Z(Hy) =k[V x V*]*W and P, =k[V /W x
V*/W] c Z,. Moreover, it follows from Theorem 2.2.1 that Z; is a free P,-module
of rank |W|. On the other hand, eu, = Z:.l:l x;y; (using the notation of §3.3). It
corresponds to Idy via the canonical isomorphism V ® V* — Endy (V). Since W
acts faithfully on V, it follows that the different elements of W define different
elements of Endy (V). Consequently, the orbit of eu, under the action of W x W has
|W| elements. We deduce that the minimal polynomial of eu, over P, has degree
|W|. As a consequence, the field k(V x V*)*W is generated by eu, over k(V /W x
V*/W)

Let F,,(t) € P[t] be the minimal polynomial of eu over P. Since Z is a free P-
module of rank |W| (Corollary 4.2.7), we have deg F,, < |W]|. Since the specialization
eu, has a minimal polynomial over P, of degree |W], it follows that deg F,, = |W|.

Denote by € the prime ideal of k[¢] corresponding to the line kc. Let F be the
minimal polynomial over P ®y k[ 6]/¢ of the image of eu in the integrally closed
domain Z ®y4 k[ €]/¢ (Corollary 4.2.7). We have deg F < |W]|. Since eu, has a min-
imal polynomial of degree |W|, it follows that deg F > |W|, hence deg F =|W]|, so F
is the specialization of F,.

The Euler element is homogeneous for the Z-grading of Example 3.2.2 (cf. Lemma
4.1.5). It follows from Lemma C.2.12 that the specialization of F (hence of F,,) is the
minimal polynomial of eu, over P..

The last assertion follows from (10.1.1). O

The computation of the Galois group G = Gal(M/K) is now equivalent to the com-
putation of the Galois group of the minimal polynomial of eu (or eu). Classical
methods (reduction modulo a prime ideal, see for instance § B.6) will be useful in
small examples.

Let us come back to the computation of the embedding W «— G C &,. Given
weW,leteu, =w(eu) e M. Recall (see (10.1.16)) that if g € G and w € W, then g(w)
is defined by the equality g(w)H = gwH. Since H acts trivially on eu, we deduce
that

(10.1.20) gleu,)=eug,
and so, given (w;, w,) € W x W, we have
(10.1.21) Hwy, wy)(euy,) = ely, ;-

This extends the equality
(10.1.22) w(eu,)=euy,,
which is an immediate consequence of the definition of eu,,. In particular, by (10.1.14),

(10.1.23) the minimal polynomial of eu over P is l_l (t—euy,).

weW
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Note also that, using (10.1.13) and the convention used for the action of W x W on
k(V x V*), we obtain

i=1

Proposition 10.1.24. — We have Z = Pleu] if and only if W is generated by a single
reflection.

Proof. — Assume W is generated by a single reflection. An immediate argument
allows to reduce to the case where dim, V = 1. So we assume now n = dimy(V)=1
and let d = |W|. Let y € V\ {0} and x € V* with (y,x) =1. Then P, = k[x%, y4],
eu, = xy and it is easily checked that Z,=k[x?¢, y, xy], that is, Z, = P,[eu,]. We will
prove here that

Z = Pleu)].

Indeed, Irtf(W) ={e' | 0<i<d—1} and f.(t) =t for 0<i<d—1. Consequently,
(4.6.11) implies that
- 1+ (tu)+ -+ (tu)?!

)= A (=) (1 —ud)

dim,
whereas, since Pleu] =P & Peu®---® Peu?"! by Proposition 10.1.19, we have

A/ _ 1+ (tu) 4.4 (tu)d—l
dlmk (P[eu])_ (l_tu)d—l (]__td) (].—ud)

Hence, dim?**(P[eu]) = dim_**(Z), so Z = P|[eul.

Conversely, if Z = P[eu], then

since the minimal polynomial of eu over P has degree |W| (by Proposition 10.1.19).
We deduce, using (4.6.8), that

=

D ()

Jj=0

dimiXZ(Z) =

n .
(1 —tu)lREf(W)/W| 1_[(1 _tdi )(1 _udi)
i=1
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It then follows from (4.6.10) that

=0

~.

Z (1—t)"
|W| = det(1—wt) det(1—w- lu) & Aol .
| [a+t+ e a—ut)

i=1
By specializing t — 1 in this equality, the left-hand side contributes only when w =1.
Since |W|=d, ---d, by Theorem 2.2.1(a), we obtain

(W1

Zu’
(1= u)n ﬁ(l u

In other words,

n |[W]—1
[ [a+u+tu®=> " ul.
i=1 j=0

By comparison of the degrees, we get
|W|—1:z(di—1).
i=1

But, again by Theorem 2.2.1(a), we have |Ref(W)| = Z?Zl(d,- —1), which shows that
Ref(W)= W\ {1}.

Therefore, if w, w’ € W, then ww’w'w’~! has determinant 1, so it cannot be a
reflection, so it must be equal to 1. In other words ww’ = w’w and W is abelian,
hence diagonalizable. The proposition follows. O

10.2. Splitting the algebra KH

Recall that Theorem 4.5.8 shows the existence of an isomorphism

Recall also that KZ is the fraction field of Z (see (4.5.7)) and that cop : KZ — L
denotes the extension of cop : Z — Q. The K-algebra KH is semisimple, but not
K-split in general.
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Given g € G, the morphism KZ — M, z — g(cop(z)) obtained by restriction of g to
L (through the isomorphism cop) is K-linear and it extends uniquely to a morphism
of M-algebras
g;: MegKzZ — M
me®gz +—— mg(cop(z)).
Of course, g, =(gh), for all h € H and it is a classical fact (see the Proposition B.4.10)
that
(82)grec/n : M KZ — 1_[ M
gHeG/H
is an isomorphism of M-algebras. Taking (10.1.14) into account, this can be rewritten
as follows: there is an isomorphism of M-algebras
MexKZ —  []pewM
X — (Wz(x))wew-
So, the M-algebra M ®x KZ is semisimple and split, and its simple representations
are the w,, for we Ww.
Theorem 4.5.8 provides a Morita equivalence between M ®x KZ and MH. We will
denote by .¢,, the simple MH-module corresponding to w;.

Fix an ordered KZ-basis 98 of KHe (recall that |9| = |W|). This choice provides
an isomorphism of K-algebras

p” : KH— Mat,,(KZ).

(10.2.1)

Now, given w € W, let p# denote the morphism of M-algebras MH — Mat;;,(M)
defined by
p?(mep h)=m- w(cop(p”(h))
for all m e M and h € H. Then p?” is an irreducible representation of MH corre-
sponding to the simple module .Z,,.
Let Irr(MH) denote the set of isomorphism classes of simple MH-modules. We
have a bijection

w - IrrMH

(10.2.2) v — o

and an isomorphism of M-algebras

(10.2.3) [ [ o2 :MH= ] | Maty (m).
wew wew

In particular,
(10.2.4) the M-algebra MH is split semisimple.

Moreover, the bijection (10.2.2) allows us to identify its Grothendieck group K,(MH)
with the Z-module ZW:

(10.2.5) K,(MH)— ZW, [<,,]— w.



133

Since the M-algebra MH is split semisimple, it follows from [GePf, Theorem 7.2.6
and Proposition 7.3.9] that there exists a unique family (sch,,),cy of elements of R

such that car
w
Ty = ,
MH Z sch,,

wew
where car,, : MH — M denotes the character of the simple MH-module .¢,, and 7, :

MH — M denotes the extension of the symmetrizing form 7, : H— P. The element
sch,, of R is called the Schur element associated with the simple module .Z,,. By
[GePf, Theorem 7.2.1], |W|-sch,, is equal to the scalar by which the Casimir element
casy € Z (defined in § 4.6.D) acts on the simple module .¢,,. Therefore,

(10.2.6) sch,, =|W|™- w(cop(casy)).

Remark 10.2.7. — In the general theory of symmetric algebras, the Schur element
sch,, is an important invariant, which can be useful to determine the blocks of a
reduction of RH modulo some prime ideal of R. Here, the formula (10.2.6) shows
that this computation is equivalent to the resolution of the following two problems:
(1) Compute the Casimir element casy.
(2) Understand the action of W (or G) on the image of casy in Q C R.

If Problem (1) seems doable (and its solution would be interesting as it would pro-
vide, after the Euler element, a new element of the center Z of H), it seems however
more difficult to attack Problem (2), as the computation of the ring R (and even of
the Galois group G) is for the moment out of reach. B

10.3. Grading on R

Proposition 10.3.1. — There exists a unique (N x N)-grading on R extending the one of
Q. The Galois group G stabilizes this (N x N)-grading.

Proof. — The proposition is a consequence of Propositions C.2.8 and C.2.4 and of
Proposition C.2.1 and Corollary C.2.2. O

Let R = @ jienxn RN, j] denote the (N x N)-grading extending the one of Q.
Similarly, R = @;y R"[i] (respectively R = @;., R%[i]) will denote the N-grading
(respectively Z-grading) extending the one of Q: in other words,

RY[i]= D R™Miy,ir] and R¥il= P R™Miy, ip].

iy ip=i i—iy=i

Corollary C.2.10 provides the following stability result.
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Corollary 10.3.2. — The prime ideal v, of R chosen in § 10.1.B is bi-homogeneous (in
particular, it is homogeneous).

Corollary 10.3.3. — We have R™¥[0,0]=k.

Proof. — By Corollary 10.3.2, we have v, ¢ R,. Consequently, R""[0,0] is iso-
morphic to the homogeneous component of bidegree (0,0) of R/v,. Since kz(ty) =~
k(V x V*)A2W) and R/v, is integral over Q, = k[V x V*]*% it follows that R/t, C
K[V x V*]A2W) and this inclusion preserves the bigrading, by the uniqueness of the
bigrading on R/t, extending the one of Q, =k[V x V*]*W (Proposition C.2.1). This
shows the result. O

Denote by R, the unique maximal bi-homogeneous ideal of R.

Corollary 10.3.4. — Let D, (respectively I,) be the decomposition (respectively inertia)
group of R, in G. Then D, =1, =G.

Proof. — Letp, =R,NP. Then kx(R,)/kp(p,)is a Galois extension with Galois group
D, /I, (see Theorem B.3.4). By Corollary 10.3.3, kz(R;) = k = kp(p,), so D, /I, = 1.
Note finally that D, = G by Proposition 10.3.1. O

Remark 10.3.5. — We don’t know if G acts as a reflection group on R, /(R,)*: this is
the case when dim V =1 (see §18). When this properties holds, the algebra R is a
complete intersection (Proposition C.3.7).

10.4. Action on R of natural automorphisms of H

The previous Section 10.3 was concerned with the extension to R of the automor-
phisms of Q induced by k* x k*. In Section 3.5, we have introduced an action of
W”" x4 on H which stabilizes Z (of course), P, but also p, and so p,Z: this action
can be transferred to Q ~ Z and still stabilizes q, = p,Q. We will show how to extend
this action to R, and we will derive some consequences about the Galois group. For
this, we will work in a more general framework:
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Assumption. In this section 10.4, we fix a group % acting both on
Z and on k[V x V*] and satisfying the following properties:
(1) ¥ stabilizes P and p,.
(2) The action of ¢ on K[V x V*] normalizes the action of W x W
and the one of AW.
(3) The canonical isomorphism of k-algebras Z, S K[V x V*]AW
is ¢Y-equivariant.

The action of ¢ on Z induces, through the isomorphism cop, an action of ¢4 on
Q. If T € 9, we denote by 7° the automorphism of k[ V x V*] induced by 7: by (2), 7°
stabilizes k[V x V*]A2W) K[V x V*]AW and K[V x V*]W*W

Proposition 10.4.1. — If T € ¢, then there exists a unique extension % of 7 to R satisfying
the following two properties:
(1) Z(xo) =ro.
(2) The automorphism of R/vy induced by % is equal to t°, via the identification iso, :
k(V x V*)A2W) — M, of §10.1.B.

Proof. — Let us start by showing the existence. First of all, M being a Galois closure
of the extension L/K, there exists an extension 7y of 7 to M. Since R is the integral
closure of Q in M, it follows that 7y stabilizes R. Moreover, since 7(q,) = q,, there
exists h € H such that Ty(ty) = h(t,). Let Tyy= h o Ty. Then

Tm(to) =10 and (Tml="7.

Let Ty denote the automorphism of R/, induced by 7y;.

By construction, the restriction of Ty, to Q/q, is equal to the restriction of iso, o
7°0iso,". Hence, there exists d € Dyn H such that Ty, = d o (iS00 7y 0is0,"). We then
set T =d 1o Ty itis clear that 7 satisfies (1) and (2).

Let us now show the uniqueness. Let 7, be another extension of 7 to R satisfying
(1) and (2) and let 0 =77'7,. We have 0 € G and, by (1), o stabilizes vy, hence o € D,.
Moreover, by (2), o induces the identity on R/v,, hence o € I, =1 (cf. (10.1.6)), and
soT=1T,. L]

The existence and the uniqueness statements of Proposition 10.4.1 have the fol-
lowing consequences.

Corollary 10.4.2. — The action of ¢ on Q extends uniquely to an action of ¢ on R, which
stabilizes vy and is compatible with the isomorphism iso,,.
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In this book, we will denote again by 7 the extension 7 of T defined in Proposi-
tion 10.4.1. Since ¥ stabilizes P, Q, p,, 9o =poQ and v, we deduce the following.

Corollary 10.4.3. — The action of ¢ on R normalizes G, H, Dy =t(W x W)and DyNH =
AW)=W/Z(W).

From Corollary 10.4.3, we deduce that ¢ acts on the set G/H ~ W and that
(10.4.4) the image of ¢ in &y, normalizes G.

Example 10.4.5. — The group ¢ =k* xk* x(W"x.4) acts on H and stabilizes P and
po; by the same formulas, it acts on k[V x V*] and normalizes W x W and AW (in
fact, k* x k* x Hom(W, k*) commutes with W x W and only .4 acts non-trivially on
W x W).

It follows from the previous results that the action of k* x k* x (W" x .A") on Q
extends uniquely to an action on R which stabilizes t, and is compatible with the
isomorphism iso,. By the uniqueness statement, the extension of the action of k* x
k* x W” to R commutes with the action of G whereas the one of .4 is such that the
morphism G — &y is A -equivariant.

Finally, still by the uniqueness statement, the extension of the action of the sub-
group k* x k* corresponds to the extension to R of the (N x N)-grading described in
Proposition 10.3.1. m

10.5. A particular situation: reflections of order 2

Assumption and notation. In this section 10.5, we assume that
all the reflections of W have order 2 and that —Idy, € W. We set
wy=—Idy and 7o=(—1,1,e)ek* xk* x W",

By construction, the restriction of 7, to k[6] is equal to the identity. Since —Id, €
W, the restriction of 7, to k[ V]V is equal to the identity. Similarly, the restriction of
7, to k[ V*]" is also equal to the identity. Consequently,

(10.5.1) YV peP typ)=p.

Recall that 7, denotes also the automorphism of R defined by Proposition 10.4.1.
By definition of the Galois group, we have 7, € G. More precisely, we have the
following description.
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Proposition 10.5.2. — Assume that all the reflections of W have order 2 and that w, =
—Idy € W. Then 7, is a central element of G. Its action on W is given by 7o(w) = wyw
(which means that v, = wy = t(wy, 1), through the canonical embedding W — G) and,
through the embedding G — &y, we have

GcloeGy |YweW, owyw)=w,o(w)}.
Moreover, given w € W, we have
To(€Uy) = —€U,, = el ,.

Proof. — By Lemma 3.5.7(c), we have 7y(eu) = —eu. Moreover, by Example 10.4.5,
the action of 7, on R commutes with the action of G. Therefore, if w € W, then
Toleu,)=—eu,,.

On the other hand, there exists w; € W such that 7o(eu) =eu,, . As —eu, = wy(euy),
it follows from the characterization of the action of W on L that 7,(eu) = eu,,, = —eu.
Since wj is central in W, we have wy(eu,) = eu,, ,, = eu,,,, = w(eu, )= —eu,. So
T, = w, because M =K[(eu, ), cw]-

Now, the fact that G c {oc € &, |V w e W, o(w,w) = wyo(w)} follows from the
fact that 7, = w, commutes with the action of G. O

Note that wyw =—w and so the inclusion of Proposition 10.5.2 can be rewritten
(10.5.3) Gcloe6y |YweW, o(—w)=—0c(w)}.

Viewed like this, it shows that, under the assumption of this section, G is contained
in a Weyl group of type By .

10.6. Special features of Coxeter groups

Assumption. In this section 10.6, we assume that W is a Coxeter
group, and we use the notation of §2.6.

Recall (Proposition 4.7.1) that the algebra H admits another automorphism oy
stabilizing P.

Proposition 10.6.1. — The automorphism oy of Q extends uniquely to an automorphism
ou of R. Given g€ G C Sy, and w € W, we have (“ng)(w)=g(w™ )™

Proof. — Note that oy induces an automorphism of k[ V x V*] which normalizes W x
W and AW. More precisely, consider 0,: Ve V*— Ve V*, (y, x)— (o (x),0(y))
We have

(10.6.2) o.(w, w)o, =(w', w)
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for all (w,w’) € W x W. By Proposition 10.4.1, oy extends uniquely to an auto-
morphism of R which stabilizes t, and which is compatible with iso,. Since oy
normalizes G and its subgroup ¢(W x W) (see (10.4.4)), it follows from (10.6.2) that
its action on the elements of W c G satisfies

(10.6.3) myH=w'H and H%%w=Hw™"

for all w € W. The proposition follows now from (10.4.4). O

Remark 10.6.4. — Note that if W# 1, then the action of GL,(k) on H does not induce
an action on R, since GL,(k) does not normalize W x W. ®

10.7. Geometry

10.7.A. Extension R/P. — Since R and Q =~ Z are also k-algebras of finite type,
they are associated with k-varieties Z and £ ~ %: the isomorphism cop*: 2 — %
is induced by cop : Z — Q. The inclusion P — R (respectively Q — R) defines
a morphism of varieties p; : Z — 2 (respectively py : Z# — £) and the equalities
P =R and Q = R show that p; and py induce isomorphisms

(10.7.1) R|G— P and #/H— 2.

In this setting, the choice of a prime ideal v, lying over q, is equivalent to the choice
of an irreducible component Z . of p;'(£2.) (Whose ideal of definition is t.). Simi-
larly, the argument leading to Proposition 10.1.11 implies for instance that the num-
ber of irreducible components of p'(£2,) is equal to |G|-|AZ(W)|/|W|*. Tt also shows
that (W x W) is the stabilizer of Z, in G and Z,/t(W x W)~ %, that ((AW) is the
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stabilizer of Z, in H and that Z,/((AW)~ £,. We have a commutative diagram
R R

Pu
QCCL) 2 Pc
(10.7.2) T, T
VW X VW —— gl 57 4y V/W x VW
m

{c}———%

which completes the diagram (4.4.2) (if we identify £ and Z through cop*). Only
the two bottom squares of the diagram (10.7.2) are cartesian.

10.7.B. Automorphisms. — The group k* xk*x(W"x.4") (which acts on H through
automorphisms of k-algebras) stabilizes the k-subalgebras k[6], P and Q of H.
Therefore, it acts by automorphisms of k-varieties on 6, 2 and £. Also, this action
extends to an action on # (see Corollary 10.4.2), making the morphisms T, «, py
and p of diagram (10.7.2) equivariant for that action.

10.7.C. Irreducible components of Z x, . — Given w € W, we set

R ={(r,cop(pu(w(r))) | r€eR}C R x5 Z.

Lemma 10.7.3. — If w e W, then R, is an irreducible component of # x » %, isomorphic
to &. Moreover,
Rx, Z=|]) R,

wew
and R, =R, if and only if w=w’.
Proof. — This is only the geometric translation of the fact that the morphism
RepZ — Jl,ewR
x = (wz(X)wew

defined by restriction from the morphism (10.2.1) is finite and becomes an isomor-
phism after extending scalars to K. O






CHAPTER 11

CALOGERO-MOSER CELLS

Notation. From now on, and until the end of Chapter 11, we fix a
prime ideal v of R and we set q=tNQ and p=rNP. We denote by
D, (respectively I.) the decomposition (respectively inertia) group of
vin G.

11.1. Definition, first properties

Recall that, since we have chosen once and for all a prime ideal v, as well as
an isomorphism kg(t,) — k(V x V¥)*W) we can identify the sets G/H and W
(see §10.1.B). So G acts on the set W.

Definition 11.1.1. — A Calogero-Moser t-cell is an orbit of the inertia group I, in the
set W. We will denote by ~M the equivalence relation corresponding to the partition of W
into Calogero-Moser v-cells.

The set of Calogero-Moser v-cells will be denoted by “MCells (W).

Recall that W can be identified with the set Homp_,,(Q, R) = Homg_,4(L, M). By
Proposition B.4.5, if w and w’ are two elements of W, then

(11.1.2) w ~M w’ if and only if w(g)= w'(q) mod« forall g €Q.

Remark 11.1.3. — If v and v’ are two prime ideals of R such that t c v/, then I, C I,
and so the Calogero-Moser t’-cells are unions of Calogero-Moser t-cells. B

Example 11.1.4 (Reflections of order 2). — If all the reflections of W have order
2 and if wy = —Idy € W, then it follows from Proposition 10.5.2 that G c {o €
Sw |V weW, olwyw) = w,o(w)}. Consequently, if I is a Calogero-Moser t-cell,
then w,I' =Tw, is a Calogero-Moser t-cell. m
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The action of G being compatible with the bigrading of R, the following result is
not surprising.

Proposition 11.1.5. — Let T be a finitely generated free abelian group and R =@, R, a
G-stable T-grading on R. Let =D, tNR,. Then I, = I, hence the Calogero-Moser t-cells
and the Calogero-Moser v-cells coincide.

Proof. — This follows from Corollary C.2.14. O

11.2. Blocks

Given w € W, we denote by e, € Idem,,(Z(MH)) the central primitive idempotent
of MH (which is split semisimple by (10.2.4)) associated with the simple module
%, . Itis the unique central primitive idempotent of MH which acts as the identity
on the simple MH-module .%,,. Given b € Idem,,(Z(R.H)), we denote by CM,(b) the
unique subset of W such that
(11.2.1) b= D> e

weCM,(b)
In other words, the bijection W «— Irr MH restricts to a bijection CM,(b) «— Irr MHb.
It is clear that (CM, (b)) beldem, (1) 1S @ partition of W. In fact, this partition coincides
with the partition into Calogero-Moser t-cells.

Theorem 11.2.2. — Let w, w’ € W and let b and b’ be the central primitive idempotents
of R.H such that w € CM(b) and w’ € CM(b’). Then w ~¢,\, w’ if and only if b=b’.

Proof. — Let w, :Z(RH)=R®p Z — R denote the central character associated with
the simple MH-module .Z,, (see § D.2.A). By the very definition of £, we have
w,(r ®p z)=rw(cop(z))

for all r € R and z € Z. Consequently, by (11.1.2), we have w ~,, w’ if and only if
w, = w,, modr. The result follows now from Corollary D.2.4. O

Via Proposition D.2.3, we obtain bijections

CM ~
(11.2.3) Cells (W) NCYITET Idem,,(R.Z)

~

Idem,,(kg(v)Z)

—

where b denote the image of b in kp(v)Z.
Since MZ is the center of MH, the fact that MH is split semisimple implies imme-
diately that

(11.2.4) dimy(MZ b) = [CM,(b).
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Recall that, since Z is a direct summand of H, the algebra ki(t)Z can be identified
with its image in kg(v)H. Note however that this image might be different from the
center of kg(t)H.

Corollary 11.2.5. — We have dim ky(t)Z b = |CM,(b)|.

Proof. — The R.-module R.Z is free (of rank |W|), so the R.-module R.Zb is projec-
tive, hence free since R, is local. By (11.2.4), the R.-rank of R.Zb is |[CM,(b)|. The
corollary follows. O

Example 11.2.6 (Specialization). — Let ¢ € 6. Let t, be a prime ideal of R lying
over p, and, asin §10.1.A, define D, = Gf: and I, = Gé. Then I, =1 by (10.1.6), hence

the Calogero-Moser v -cells are singletons. B

11.3. Ramification locus

Let t,,, denote the defining ideal of the ramification locus of the finite morphism
Spec(R) — Spec(P): in other words, R is étale over P at ¢ if and only if v, ¢ t.
Recall [SGA1, Exposé V, Corollaire 2.4] that the following assertions are equivalent:

— R is étale over P att;
-IL=1;
— R is unramified over P at t.

As G acts faithfully on W, we deduce the following result (taking into account
Theorem 11.2.2).

Proposition 11.3.1. — The following are equivalent:
(1) I #1.
(2) R is not étale over P at .
(3) R is ramified over P at .
(4) tam C .
(5) IIdem,,(R.Q)| < [W]|.

Note that v, is not necessarily a prime ideal of R. However, the purity theo-
rem [SGA1, Exposé X, Théoréme 3.1] implies that Spec(R/t,,y,) is empty or of pure
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codimension 1 in Spec(R) (since R is integrally closed and P is regular). By Corol-
lary 10.3.4 and Proposition 11.3.1, the morphism Spec(R) — Spec(P) is not étale if
W#1. Hence, if W#1, we deduce that

(11.3.2) Spec(R /tpam) is of pure codimension 1 in Spec(R).
Of course,
(11.3.3) tram 15 stable under the action of k* x k™ x ((W" x G)~ JV)

While it is difficult to determine the ideal t,,,, (We even do not know how to deter-
mine the ring R), the ideal p .y, = t;a N P is determined by the extension Q/P. The
following result is classical [SGA1, Proposition 4.10].

Lemma 11.3.4. — Let disc(Q/P) denote the discriminant ideal of Q in P. Then p, =

v/ disc(Q/P).

Remark 11.3.5. — We proved that Spec(R/t.,,) is of pure codimension 1 in Spec(R)
by using the purity theorem. Using the equivalence between (4) and (5) in Lemma 11.3.1,
we obtain another proof using Proposition D.2.11. ®

11.4. Smoothness

Extending scalars, we have the following consequence of Corollary 4.5.5.

Corollary 11.4.1. — Assume 34, NP ¢ p.
The (kg(v)H, kg(v)Z)-bimodule kg(v)He is both left and right projective and induces a
Morita equivalence between ky(v)H and kg(v)Z.

Theorem 11.4.2. — Assume 35,, NP ¢ p.

The kg(t)-algebra kp(v)H is split. Every block of kg(v)H admits a unique simple module,
which has dimension |W |. In particular, the simple kg(v)H-modules are parametrized by the
Calogero-Moser v-cells, that is, by the I.-orbits in W.

Proof. — Let us first show that kz(v)Z = kz(v)®pZ = kz(t)® pZpisa split kp(r)-algebra.
Let 3,,..., 3, be the prime ideals of Z lying over p: in other words, kp(p)31,. .., kp(p)3;
are the prime (so, maximal) ideals of ky(p)Z = Z,/pZ,. Then kp(p)(3, N---N3,;) is the
radical I of kp(p)Z. Moreover,

(kp(0)Z)/ 1 >~ kz(31) % -+ X kz(3,).
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Since kg(r) is a Galois extension of kp(p) containing (the image through cop™ of)
kz(3:), for all i, it follows that kg(t) ®;, ) kz(3:) is a split kg(t)-algebra (see Proposi-
tion B.4.10). As a consequence, kp(t)Z is split. We deduce from Corollary 11.4.1 that
kz(t)H is also split.

On the other hand, since kg(r)Z is commutative, every block of kz(t)Z admits
a unique simple module. Using again the Morita equivalence, the same property
holds for kg(t)H. Finally, as the projective Z,-module H,e has rank |W|, the same
is true for the projective kg(v)Z-module kg(r)He, and so the simple kg(t)H-modules
have dimension |W|.

The last statement of the theorem is now clear. O

11.5. Geometry

By Lemma 10.7.3, the irreducible components of #Z x5, Z are the

R ={(r,cop*(pu(w(r)) | r € 2},

where w runs over W and the morphism Yy : Z x» & — # obtained from Y : & — 2
by base change induces an isomorphism between the irreducible component 2,
and 2.

Consequently, the inverse image through Y of the closed irreducible subvariety
2 (v) = Spec(R/t) is a union of closed irreducible subvarieties
(11.5.1) T, (@)= 2.0,

weW

where 2 ,(t) ~ Z(¢) is the inverse image of 2(t) in 2.

Lemma 11.5.2. — Let w and w’ € W. We have Z ,,(vt)= R ,,.(v) if and only if w ~SM w’.

Proof. — Indeed, 2 ,,(t)= 2 ,,(¢) if and only if, for all r € Z(r), we have py(w(r)) =
pr(w'(r)). Translated at the level of the rings Q and R, this becomes equivalent to
saying that, for all g € Q, we have w(q)= w’(q) mod . O

In other words, Lemma 11.5.2 shows that the Calogero-Moser t-cells parametrize
the irreducible components of the inverse image of Z(r) in the fiber product #Z x , Z.
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11.6. Topology

We assume in §11.6 that k = C and we identify the schemes 2, £ and # with
their C-points and we endow them with the usual complex topology. We fix for the
remainder of the book a pair (v, v}) € V™ x V78,

We denote by 2™ the complement of the ramification locus of p; : Z — £ and
by 2™ its image under pg.

Let y:[0,1]— £ be a path with y([0, 1)) 2™ and such that y(0) = (0, W - v, W - 1;%).
Given w € W, there is a unique path 7, :[0,1] — £ lifting y and such that y,(0) =
0,(w(ve), v )AW) (Lemma B.8.2).

Definition 11.6.1. — We say that w, w’ € W are in the same Calogero-Moser y-cell if
Yw(l) = Yw’(l)-

The choice of the prime ideal ¢, (cf. §10.1.B) corresponds to the choice of an irre-
ducible component of p_'({0} x V/W x V*/W). The isomorphism iso, extends to an
isomorphism k[ V™8 x V*e8]AZW) =, (R /1)) @y xyswsw K[ V8 x V*8]V*W ' We have a
corresponding isomorphism of varieties

Spec(R /to) Xy jwuvsyw (VW x V¥ /W) = (VT8 x VHE8) / AZ(W).

We denote by y, the point of the component that is the inverse image of (v¢, y2)AZ(W).
Let xy = ps (). The choice of y, provides a bijection H\G ST %), Hg — pulg- ).
The bijection W S H\G ST Y(x) is given by w — (w(ve), v2)AW.

Let y; be a point of # that lies in the irreducible component determined by v and
satisfies Stabg(y,) = G..

We fix a path 7 :[0,1] — 2 such that 7([0,1)) ¢ Z™, 7(0) = ), and 7(1) = y;. We
denote by y the image of 7 in &.

From §B.8 we deduce the following result.

Proposition 11.6.2. — Two elements w, w’ € W are in the same Calogero-Moser t-cell if
and only if they are in the same Calogero-Moser y-cell.



PART IV

CELLS AND FAMILIES



Definition. — Fix a prime ideal & (resp. v'%, resp. t5¥") of R lying over e (resp. p'f,
resp. pgght). A Calogero-Moser two-sided (resp. left, resp. right) €-cell is defined to
be an e-cell (resp. v'"-cell, resp. vy ~cell).

When € =0, they will also be called generic Calogero-Moser (two-sided, left or right)
cells and we write € (resp. V%, resp. &) for T, (resp. v, resp. ty®"). Given ¢ € 6 and
¢ =C¢,, they are called Calogero-Moser (two-sided, left or right) c-cells and we write

i} ; - ight
€ (resp. t", resp. vI€") for T (resp. ve", resp. vg' ).

Remark. — Of course, the notion of Calogero-Moser (two-sided, left, or right) ¢-
cell depends on the choice of the ideal t, t‘fft or tréght ; however, as all the prime ideals
of R lying over a prime ideal of P are G-conjugate, changing the ideal amounts to

transforming the cells according to the action of G. m

Remark (Semi-continuity). — Itis of course possible to choose the ideals e, t' or

tréght so that ¥, contains t" and tgght: in this case, by Remark 11.1.3, the Calogero-
Moser two-sided €-cells are unions of Calogero-Moser left (resp. right) ¢-cells.
Similarly, if ¢’ is another prime ideal of k[6] such that € C ¢’, then one can choose
the ideals ty, t or tp" in such a way that they contain respectively &, v or ty®".
Then the Calogero-Moser two-sided (resp. left, resp. right) -cells are unions of

Calogero-Moser two-sided (resp. left, resp. right) ¢-cells. m

With the definition of Calogero-Moser two-sided, left or right cells given above,
this completes the first aim of this book. The aim of this part is now to study these
particular cells, in relation with the representation theory of H: in each case, a family
of Verma modules will help us in this study. More precisely:

— In Chapter 12, we will associate a Calogero-Moser family with each two-sided
cell: the Calogero-Moser families define a partition of Irr(W).

— In Chapter 13, we will associate a Calogero-Moser cellular character with each left
cell.

We conjecture that, whenever W is a Coxeter group, all these notions coincide with
the analogous notions defined by Kazhdan-Lusztig in the framework of Coxeter
groups. The conjectures will be stated precisely in Chapter 15 and some evidence
will be given (see §15.3).



CHAPTER 12

CALOGERO-MOSER TWO SIDED CELLS

In this chapter, we fix a prime ideal € of k[6]. We study the relation between
Calogero-Moser two-sided €-cells and ¢-families.

12.1. Choices

In order to relate the Calogero-Moser two-sided cells with the Kazhdan-Lusztig
ones, we need to make an appropriate choice of a prime ideal t; of R lying over p;.
We do not have a general procedure to make this choice (see §15.2.A for a discussion
in the case of Coxeter groups).

Recall that p denotes the prime ideal of P corresponding to the closed irreducible
subvariety 6 x {0} x {0} of Z (c.f. page 93). There are several prime ideals of Z lying
over p. They are described in Lemma 7.2.3, which says that they are in bijection with
the set of generic Calogero-Moser families of W. Recall also that (Example 7.3.6) the
trivial character 1,, of W is itself a generic Calogero-Moser family. We denote by j
the associated prime ideal of Z:

5=Ker(f2;,, ).

We put q=cop(3).

Lemma 12.1.1. — The ideal q of Q is the unique prime ideal lying over p and containing
eu—> . enKyo. The algebra Q is étale over P at §.

Proof. — It follows from Corollary 7.4.5 that Q is unramified over P at §: as Q is a
free (hence flat) P-module and since, in characteristic zero, all the field extensions
are separable, we deduce that Q is étale over P at §. The fact thateu—)_,,_ ey Ky €
3 follows from Corollary 5.4.2. Now, if 3’ is a prime ideal of Z lying over p and
containing eu—»_,,_ ey Ky, then there exists y € Irr(W) such that j' = Ker(2,). In
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particular, Q,(eu) = > ey €Kiy and so Q,(eu) = Q,  (eu). It has been shown in
Example 7.3.6 that this implies y =1y,. OJ

Let us use now the notation of §7. Lemma 7.2.3 says that the set of prime ideals of
Q lying over p, is in bijection with the set of Calogero-Moser ¢-families. Let 3, de-
note the prime ideal corresponding to the ¢-family containing the trivial character
1, of W:
je= Ker(QfW).
We set g = cop(3e).

Lemma 12.1.2. — We have §s = q+ €Q.

Proof. — The morphism Q, :Z — k[€] induces an isomorphism Z/3 — K[6].
Since 3¢ contains ¢, it follows that 3+ ¢Z is a prime ideal of Z, corresponding to
the closed irreducible subscheme €6 of 6. O

Corollary 12.1.3. — The ideal 4, of Q is the unique prime ideal lying over py and con-
taining eu—> ,,_ , ey Ky o.

12.2. Two-sided cells

Assumption. From now on, and until the end of §12.2, we fix a
prime ideal T, of R lying over §¢. Recall that K¢ = kp(pe) = ki) (€).
We put Ly = ko(§e) and Mg = kg(t). We denote by K, L and M
(respectively K., L. and M) the fields Ky, Ly and Mg whenever € =0
(respectively € =< for some ¢ € 6).

The decomposition (respectively inertia) group of T, will be denoted
by Dy (respectively Iy). We define similarly D, I, D, and I,.

12.2.A. Galois theory. — Recall that, by Corollary 7.2.5, the canonical embedding
P/pe — Q/{¢ is an isomorphism, hence Ky = L. Since Gal(My/L¢) = D¢/ Iy (Theo-
rem B.3.4), we deduce that

(12.2.1) (DeNH)/(Ie N H)~ Dg/I.
In particular,

(12.2.2) (D_Q N H)I_Q == D@.
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Moreover, since the algebra Q is unramified over P at § (Lemma 12.1.1), it follows
from Theorem B.3.6 that I ¢ H. Combined with (12.2.2), we obtain

(12.2.3) IcDcH.

Note that this last result is not true in general for I, as shown by (17.1.2),
To conclude with basic Galois properties, note that, by Corollaries 7.2.5 and B.4.7,
we have

(12.2.4) I,\G/H = D¢\G/H.

12.2.B. Two-sided cells and grading. — Let ¢ =@, ,¢Nk[¢]V[i] be the maximal
homogeneous ideal of k[6] contained in ¢. Then Cisa prime ideal of k[6] (see
Lemma C.2.9). Let tz denote the maximal homogeneous ideal of R contained in
te: it is a prime ideal of R lying over gz (see Corollary C.2.13). The following is a
consequence of Proposition 11.1.5.

Lemma 12.2.5. — We have I; = Iz. The Calogero-Moser two-sided €-cells and the Calogero-
Moser two-sided €-cells coincide.

12.2.C. Two-sided cells and families. — The k[¢]-algebra M, is a finite field ex-
tension of K¢ = kp(p,) = Frack[€¢]/¢) and M¢H = M¢H. Theorem 11.2.2 says that
there is a bijection between the Calogero-Moser two-sided ¢-cells and the Calogero-
Moser ¢-families: given b € Idem,,(R;, Z), this bijection sends CM, (b) to Irry(W, b),
where b denotes the image of b in MH, and b € K H since K H is split.

Terminology, notation. Given b € Idem,,(MyZ), we say that
the Calogero-Moser two-sided €-cell CM;,(b) covers the Calogero-
Moser €-family Irry(W, b). Given T a Calogero-Moser two-sided
¢-cell, we denote by IrtSM(W) the Calogero-Moser €-family covered
by I. The set of Calogero-Moser two-sided €-cells will be denoted by
CMCells] (W)

Remark 12.2.6. — The definition of Calogero-Moser two-sided cells depends on
the choice of the prime ideal t, lying over g.. Given t, another prime ideal of R
lying over g, there exists h € H such that t, = h(t.) and the Calogero-Moser t,-cells
are obtained from the Calogero-Moser t-cells via the action of h on W —G/H.m

The link between Calogero-Moser two-sided ¢-cells and Calogero-Moser ¢-families
is strengthened by the following theorem.
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Theorem 12.2.7. —  (a) The decomposition group Dy acts trivially on “MCells$ ,(W).
(b) Given w e W and y €Irr(W), the following are equivalent
e the Calogero-Moser two-sided C-cell of w is associated with the Calogero-Moser
C-family of y
e w(E)NQ = cop(Ker(2)
e (w(g) modte)= QE(COP_I(C?)) €M, = kg(%¢) for all g € Q.
(c) Given I is a Calogero-Moser two-sided C-cell, we have |I'| = Z el () 7 (1)

Proof. — (a) follows from 12.2.4.

(b) Let &, : Q — R/t denote the morphism of P-algebras which sends g € Q
to the image of w,(q) = w(q) € R in R/t;. Then w belongs to the Calogero-Moser
two-sided €-cell associated with the Calogero-Moser ¢-family of y if and only if
@, =Q,. But, by Lemma 7.2.3, this is equivalent to say that Ker(®w,,)= cop(Ker(Qg)).
Since Ker(®,,) = w™(f¢)NQ, the first equivalence follows. Since Q =(w(x)NQ)+k[ €]
(Corollary 7.2.5), the second equivalence follows.

The assertion (c) follows from Corollaries 7.4.2 and 11.2.5. O

Corollary 12.2.8. — Let &' be a prime ideal of k[€] contained in € and let Ty be a prime
ideal of R lying above pe and contained in ty. Then the Calogero-Moser two-sided &-cells
are unions of Calogero-Moser two-sided &'-cells. Moreover, if T is a Calogero-Moser two-
sided €-cell and if T =T, [ [---] [T, where the I;’s are Calogero-Moser two-sided ¢'-cells,

then
It CM €(W — II‘I‘CM Q ]_[ UII‘I‘CM Q

Corollary 12.2.9. — Assume that all the reflections of W have order 2 and that w, =
—Idy € W. IfT is a Calogero-Moser two-sided €-cell covering the Calogero-Moser €-family
F, then wol' = Tw, is the Calogero-Moser two-sided €-cell covering the Calogero-Moser
C-family e 7.

Proof. — First of all, wyI' = Tw, is a Calogero-Moser two-sided €-cell by Exam-
ple 11.1.4 whereas £.7 is a Calogero-Moser ¢-family by Corollary 7.3.5.

Let weT, y € Z and g € Q. By Theorem 12.2.7(b), we only need to show that
wwy(q) = Q,,(q) modte. Let 7o =(-1,1,¢) € k* xk* x W". By Proposition 10.5.2,
we have wy(q) = g for all g € Q. Moreover, by Corollary 5.6.2, we have ,,.(q) =
"Q, (" q) (because 7, has order 2). Since 7, acts trivially on k[¢], we have Q,,(q) =
Q,(7q). Itis now sufficient to show that w(*°q) =, (*°q) mod t). This follows from
Theorem 12.2.7(b). O
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Example 12.2.10 (Smoothness). — If the ring Q is regular at q, and if y denotes
the unique element of Irry(W, b) (see Proposition 7.7.1), then |[CM,(b)| = y(1)* by
Theorem 12.2.7(c). ®

Remark 12.2.11. — If t; and t are chosen so that t C T, then I C I; and so every
Calogero-Moser €-cell is a union of generic Calogero-Moser two-sided cells. It is
the “cell version” of the corresponding result on families. ®

If y is a linear character, then it is alone in its generic Calogero-Moser family (Ex-
ample 7.3.6) and its covering generic Calogero-Moser two-sided cell contains only
one element (Theorem 12.2.7(c)). Let w, denote this element. By Theorem 12.2.7(b),
we have

(12.2.12) wy_l(f) NQ =Ker(f,).

Corollary 12.2.13. — We have w, , = 1. In other words 1 is alone in its generic Calogero-
Moser two-sided cell and covers the generic Calogero-Moser family of the trivial character
1y, (which is a singleton).

Proof. — By Theorem 12.2.7 and (12.2.12), w, , is the unique element w € W such
that w™'(¥)nQ =Ker(Q,,,)=g. Since tNQ =g, we have w,, =1. d

Proposition 12.2.14. — Let ye W". Then I c w,H wy_l.

Proof. — We shall give two proofs of this fact. First, w, is alone in its generic

Calogero-Moser two-sided cell, so I w,H = w,H, whence the result.

Let us now give a second proof. By Corollary 7.4.5, Q is unramified over P at
Ker(£2,) = w, '(¥)N Q. So, by Theorem B.3.6, l@CH, which is exactly the desired
statement, since I,,-1; = wy_ll_ w,. O

Remark 12.2.15. — The action of H on W «—— G/H stabilizes the identity element
(that is, H stabilizes eu). This shows that the statement of Corollary 12.2.13 does
not depend on the choice of t. B






CHAPTER 13

CALOGERO-MOSER LEFT AND RIGHT CELLS

In this Chapter 13, ¢ denotes a prime ideal of k[6]. We relate Calogero-Moser
cellular characters to Calogero-Moser left cells. This chapter will mainly consider
left Calogero-Moser €-cells and (left) Verma modules: definitions and results can be
immediately transposed to the right setting.

13.1. Choices

As in the case of two-sided cells, the notion of Calogero-Moser left ¢-cell depends
on the choice of a prime ideal of R lying over p". We will use Verma modules to
restrict choices.

Choices, notation. From now on, and until the end of this Part IV,
we fix a prime ideal v of R lying over qi¢" and contained in t;. We
put
M = kg (v,

The decomposition (respectively inertia) group of v is denoted by
D" (respectively 1),

Whenever € = 0 (respectively € = €, with ¢ € 6), the objects ",
K, DF and 1" are denoted respectively by v, K", D' and

I (respectively ¢'*®, K, DI gnd 1't),

c

Corollary 13.1.1. — We have I;*™ ¢ D" c H. If moreover t" contains ', then I'*" c
Iéeft'
Proof. — By Corollary 8.2.5 and Theorem B.3.6, I ¢ H and kp(p") = kq(q™). So,
(D" N H)/(IF N H) ~ D"/ IF", and the first sequence of inclusions follows.

The last inclusion is obvious. O
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We will prove that v determines : for this, we will use the Z-grading on R
defined in §10.3. Set
Ro=EPR™i] and R.,=EPRil.
i<0 i>0

Then:

Proposition 13.1.2. — Tz =t + (R.¢, Ro).

Proof. — The proposition follows from Lemma C.2.11 applied to the extension R/P
and the prime ideals f; and ™. O

Corollary 13.1.3. — D" c Ds.

Proof. — This follows immediately from Proposition 13.1.2 and from the fact that
R.y and R, are G-stable (see Proposition 10.3.1). ]

Remark 13.1.4. — The algebraic proof of Proposition 13.1.2 given here is in fact the
translation of a geometric fact, as will be explained in Chapter 9. m

13.2. Left cells
13.2.A. Definitions. — Recall the definitions given in the preamble of §IV.

Definition 13.2.1. — A Calogero-Moser left €-cell is a Calogero-Moser t$"-cell. Given
¢ € 6, a Calogero-Moser left c-cell is a Calogero-Moser t'*"~cell. A generic Calogero-
Moser left cell is a Calogero-Moser t'*"t-cell.

The set of Calogero-Moser left €-cells is denoted by “MCells}(W). When € = 0 (respec-
tively € =&, with ¢ € 6), this set is denoted by “MCells, (W) (respectively “MCells] (W)).

As usual, the notion of Calogero-Moser left €-cell depends on the choice of the
prime ideal . The next proposition is immediate.

Proposition 13.2.2. — If ¢ is a prime ideal of K[6] contained in € and if v'" is contained

¢
in v, then every Calogero-Moser left €-cell is a union of Calogero-Moser left €'-cells.
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left

Also, since t

C t¢, we have the following result.

Proposition 13.2.3. — Every Calogero-Moser two-sided €-cell is a union of Calogero-
Moser left €-cells.

Finally, let € be the maximal homogeneous ideal contained in € (i.e. € =@, ,€N
k[6]V[i]). Then € is a prime ideal of k[6] (see Lemma C.2.9). Let tla‘?ft denote the
maximal homogeneous ideal contained in tg": it is a prime ideal of R lying over ¢

(see Corollary C.2.13). We deduce from Proposition 11.1.5 the following result.

Proposition 13.2.4. — We have 1" = Iéeft. In particular, the Calogero-Moser left C-cells
and the Calogero-Moser left €-cells coincide.

13.2.B. Left and two-sided cells. — We fix here a Calogero-Moser two-sided ¢-
cell T as well as a Calogero-Moser left €-cell C contained in I. Since Dy stabilizes
I' (see Theorem 12.2.7(a)) and since D" C Dy (see Corollary 13.1.3), the group D"
stabilizes I (and permutes the left cells contained in T'). Set

c’= | ac.
deDl!t
Let w € C. We set §¢(I) = w'(T)NQ and q"(C?) = w'(tf") N Q. We also set

5¢(I) = cop™(§e(I) and 3™M(C?) = cop™(g¥™(C?)). It follows from Proposition B.4.5

that 3.(I') depends only on I and not on the choice of C or w, whereas 315“(C )
depends only on C” and not on the choice of w. We set

dego(C")=[kz(E"(C)): kp(p™)].

We sometimes use the notation ;"(C) or deg,(C) instead of 3"(C”) or deg.(C?).

Proposition 13.2.5. — Let w € C”. Then:

(a) 3e(T) =limyer (55(CP))-
|CD| |Déeft|
(b) dege(C”)="—=—— —.
‘ ICl (D" N wH) I

(c) The map D"\ — lim__} (3¢(I)), C” — 3%(CP") is bijective.
P e left ¢ ]
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Proof. — (a) Note that j¢(I') € Y™ (), 3e™(C?) € Y (p") and 3"(C”) C 3¢(I"), whence
the result by Proposition 8.2.7.

(b) Through the action of w, the extension kg(w™'(cg™))/kp(p") is Galois with
group Y 'DJft/w [ ft whereas the extension kz(w ™ (t1))/ko(q(C?)) is Galois with
group (V' Dyt N H)/( w I2"N H). Hence

| D@left
|(Déeft N WH)Iéeftl '
Moreover, |C”|/|C| is equal to the index of the stabilizer of C in Dcleﬁ: but this stabi-
lizer is exactly (Dgt N H) ™.

deg,(C”)=

(c) follows essentially from the commutativity of the diagram

~

Déeft\G/H T_l(plfﬁ)
limleft
D\G/H T (Pe)s

where the left vertical arrow is the canonical map (since D" c Dg), and the hori-
zontal bijective maps are given by Proposition B.4.5. The additional ingredient is
the equality D:\G/H = I;\G/H (see (12.2.4)). O

13.2.C. Left cells and simple modules. — By Example 4.5.6, we have 34,, N P ¢
p't. Consequently, the results of §11.4 can be applied. Let us recall here some
consequences (see Theorem 11.4.2):

Theorem 13.2.6. — We have:

(a) The algebra ME"H'"" is split and its simple modules have dimension |W|.
(b) Every block Mg"H'" admits a unique simple module.

Given C € “MCells{(W), we denote by L**(C) the unique simple MEtH**-module
belonging to the block of ME"H'" associated with C. When € = 0 (respectively
¢ = ¢, for some ¢ € ¢), the module LE"(C) is denoted by L'*(C) (respectively
LE(C)).

The decomposition group D" acts on the commutative ring Mg Z'*" (the action
factors through a faithful action of D"/ 1;") and

left
(13.2.7) KléftZleft _ (Mlgﬁzleﬁ)D@ '
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So the primitive idempotents of the left-hand side (which are in one-to-one cor-
respondence with the simple K" Z'"*"-modules) are in one-to-one correspondence
with the D;-orbits of primitive idempotents of Mg Z'*". Thus we get a bijection

(13.2.8) In.(Kleft Zleft) (Irr(Mleft Zleft)) / Déeft.

Similarly, the decomposition group D" acts on the commutative ring M"H'*" and

(13.2.9) KleftHleft (MleftHleft)

So, through the bijection (13.2.8) and the Morita equivalence of Theorem 8.1.1, we
get another bijective map

(13.2.10) Irr(KEH') = (Trr(ME"H™™) )/ D2,

Using the one-to-one correspondence DIf\W —— DFfN\G/H — Y7}(pf), C* —
5‘¢eft(C P) given by Proposition B.4.5, we obtain the following commutative diagram

of bijective maps.

Dleft\W T l(pleft

II‘I‘(Klgft Zleft) II‘I‘(Klgft Hleft)

(13.2.11)

(II‘I‘(Mlgﬁzleft))/Déeft ) (Irr(MlceftHleﬁ))/Déeﬁ

Proposition 13.2.12. — Let C° be a DF"-orbit in W and let 3 = 35"(C°). We have

left left left
M ®pen L (3) b L.
CceMcells§(W)
ccce

Proof. — First, it is clear that if C is a Calogero-Moser left €-cell such that LE"(C) is
contained in the Mg"H"*"-module M" ®en LE™(3), then 38™"(C”) =3, hence C” c C°. It
follows that C c C°.

Since the field extension Mg"/Kg" is separable, the M"H'*"-module M" ®gun
Llé’ft(g,) is semisimple. As it is stable under the action of Déeft, it is a multiple of the
right-hand side of the formula. By Theorem 13.2.6, the proof of the Proposition can
be reduced to the proof of the analogous statement for the algebra M 2", Since
this algebra is commutative, it follows that M" @ L () is multiplicity-free. [
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13.3. Back to cellular characters

13.3.A. Left cells and cellular characters. — Recall that the simple M{"H'*"-modules
are parametrized by “MCellsy"(W). There exists a unique family of non-negative in-

c
tegers (mUItCIY\;)CECMCeHSlgﬂ(W)’ yein(w) Such that

left CM lef
[ M€e A(y) ]Mlé;nHleﬁ = Z mUItC,;{ - [ L; t(C) ]Mlé;nHleﬁ
CeCMCells¢ (W)

for all y €Irr(W). They can be used to define the cellular characters, since

M _ cM
(13.3.1) multC’X = multﬁlgﬁ(c)’x.
Proof. — By construction, we have
[MEAG) Iysrgen = > mult - [ME™ @yen LET(5) Ty
3EX1(pEM)
for all y € Irr(W). The result follows now from Proposition 13.2.12. O

We can also prove the following family of identities, which are similar to identi-
ties for the Kazhdan-Lusztig multiplicities multlgx (see Lemma 6.6.7).

Proposition 13.3.2. — With the above notation, we have:
(a) If y €lrr(W), then ZCGCMCeusg(W) rnultg\f( = y(1).
(b) If C € ®MCellsT (W), then erm(m multg\f{ 7(1)=|C|.
(c) If C € “MCells$ (W), if T is the unique Calogero-Moser two-sided ¢-cell containing C
and if y € Irr(W) is such that rnultglf{ #0, then y e r™(W).

Proof. — (a) follows from the computation of the dimension of Verma modules
(see (5.1.1)).

Let us now show (b). First of all, note that, thanks to the Morita equivalence of
Theorem 4.5.8, we have

[MHe Jyy = Z [ %y Ivn-

wew
By applying decy™ to this equality, we deduce that

lefty yleft left
[M{ HEte]MlgﬁHleft: Z IC| - [Lg (C)]MlgﬁHleft-
CeCMCells§(W)

Since M"H'"*""e = M A(co), we have the following equality

(13.3.3) [ M H " e lyetgge = Z 7(1) - Mg AGr) Ingetgpen

y €lrr(W)

and (b) follows.
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(c) is immediate, as the reduction modulo p of the Verma module is the corre-
sponding baby Verma module, and so is indecomposable as a K;H-module. O

Given C a Calogero-Moser left ¢-cell, we set

(13.3.4) [CIM= Z mult

Y Elr(W

In other words,
(13.35) [CI" =7 o).

Taking Proposition 13.3.2(c) into account, the set of irreducible characters appearing
with a non-zero multiplicity in a Calogero-Moser ¢-cellular character is contained
in a unique Calogero-Moser ¢-family .7: we will say that the Calogero-Moser ¢-
cellular character belongs to 7.

If d € D" and C is a Calogero-Moser left €-cell, then d(C) is also a Calogero-
Moser left ¢-cell. The equality (13.3.5) shows that the Calogero-Moser ¢-cellular
characters associated with C and d(C) coincide:

Corollary 13.3.6. — If d € D" and C is a Calogero-Moser left €-cell, then
[d(O)]" =[CI™

Remark 13.3.7. — The previous Corollary 13.3.6 shows in particular that d(C) is
contained in the same Calogero-Moser two-sided €-cell as C, which has already
been proven by a different argument (see the beginning of §13.2.B). m

Corollary 13.3.8. — Let C be a Calogero-Moser left ¢-cell and let 3 = 3$"(C”). Then
|C|=1Length, (Z /pEtZ),.

Proof. — We have [PF"He] = [P A(co)] = Z 2 (DPEMA(y)]. Via the Morita equiv-
alence of Corollary 4.5.5, the module Z /ple“Z corresponds to the module P;"He,
hence
Length,, (Z/p¢"Z), = Z multZ" - 7(1)=|C]|
Zetm(w)
using Proposition 13.3.2(b). O
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Corollary 13.3.9. — Assume that all the reflections of W have order 2 and let T, =(—1,1,¢€) €
k* xk* x WA, Let 3 be a prime ideal of Z lying over p" and let C and C, be two Calogero-

Moser left €-cells such that 3¢"(C) =3 and 32"(C”) = 7(3). Then

CM CM
[Cs]Q ZE'[C]€ .
If moreover wy=—1dy € W, then we can take C, = C w,, hence
[Cuwp ] =e-[CI™.

Proof. — The first statement follows from the fact that *A(y) ~ A(y ¢) whereas the
second can be proven as in Corollary 12.2.9. O

Remark 13.3.10. — Corollary 13.3.8 is interesting in that it provides a numerical
invariant (the cardinality) of an object (a left cell) which is defined using the Galois
extension M/K (and the ring R) in terms of an invariant which is computable inside
the extension L/K (and the ring Z). m

13.3.B. Cellular characters and projective covers. — Note that M"H™ is a M-
subalgebra of ME"H"" of dimension |W[?, whose Grothendieck group is identified
with ZIrr(W) = K,(kW).

Given C a Calogero-Moser left €-cell, we denote by 22,"(C) a projective cover of
the simple M¢"H'*"-module L¥"(C). We denote by Soc(M) the largest semisimple
submodule (the socle) of a module M.

Proposition 13.3.11. — We have

Mlefl Hleft

[Soc(Res_ ¢ Wéﬁt(c))]mlg%ﬂf: Z mult(gf{-)( =[CI".

Mleeﬁl:[,
Y Elrr(W)

Proof. — Let y € Irrf(W). Since the algebra H is symmetric (see (4.6.5)), 2,1(C) is
also an injective hull of LE"(C). So

mult;) = dimyger Homygengn (Mg " A(7), 2,°(C)).

Mleftpyleft
(&
Mlgftl:[,

As ME"A(y)=Ind (Mg ® E, ), we deduce that

Ml@eft Hleft
Mt~

multg\f{ = dimyyien Holigﬂﬁ,(EX, Res 2°M(0)).

The result follows. ]
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13.3.C. Cellular characters and b-invariant. — The following theorem is an ana-
logue of Theorem 7.4.1 (statements (b) and (c)).

Theorem 13.3.12. — Let C be a Calogero-Moser left C-cell. Then there exists a unique
irreducible character y with minimal b-invariant such that mult(gf{ # 0. We denote this
character by yc. The coefficient of tc in f, (t) is equal to 1.

The character y is called the special character of the left ¢-cell C.

Proof. — Let b¢ be the primitive central idempotent of ME"H"" associated with C.
The endomorphism algebra of beME"H" " e is equal to (ME" ®p Z)b. and this (com-
mutative) algebra is local. This shows that the projective module b M¢"H"*"'e ad-
mits a unique simple quotient. The proof continues as that of Theorem 7.4.1. O

13.4. Topology
We assume in §13.4 that k=C.

13.4.A. y-cells. — Recall (cf §5.5.B) that given (c, v, v*) € €(C) x V™8 x V*, we have
a family of commuting operators {Dyc’”'”*} yev acting on @,y Cey,:

c,v,v*, * (y’as>
D; re,— (y,w(v"))e, + ; s(s)cs(v’ o s
seRef(W)
Let y : [0,1] — ¢(C) x V™8/W x V*/W be a path with y([0,1)) ¢ 2™ and 7(0) =
(0, W ve, W-vf) as in §11.6. We denote by 7 the path in €(C) x V x V* lifting y with

7(0)=(0, vc, U(é)-
Theorem 13.4.1. — Let w € W. There is a unique path p, :[0,1] — V* such that

1) pu0)=w(vg).

(2) (y,pu(1)) is an eigenvalue onyf(”for y€eVand t€[0,1)

Two elements w’, w” € W are in the same Calogero-Moser y-cell if and only if p (1) =
Pu(l).

Proof. — Appendix §B.8 applied to the covering Z' — € x V'8 x V*/W of §5.5.A
shows the existence of a path 7, in Z” lifting the image of 7 in 6(C)x V x V*/W and
such that 7,,(0) = (z,,, w™'(v)), where z,, = (0, (v, w™'(v2))AW). Note that the image
of ¥, in Z is the path v, of §11.6. Define p () to be the A-component of the image
of 7,(t) in Z”, via the inverse of the isomorphism of Proposition 5.5.4. It satisfies
the required properties.

The last statement follows by base change via the unramified map V' — V'8/W.
U
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13.4.B. Left cells. — Let € be a prime ideal of C[¢] and let " be a prime ideal of
R as in the preamble to Part IV. Recall that we have defined a point y, € Z(C) above
(0, v, vf) in §11.6.

Let y; € Z(C) be a point in the irreducible component determined by tlé’ft such
that Stabg(y,) = Gr{eeﬂ. Fix a path ¥ :[0,1] —» 2(C) Xy wxvew (V% x V*) such that
72/([0, 1)) c Z(C)™ XV/WXV*/MA/ (V8 x V*), ff(O) = ()0, (vc, v)) and f’(l) maps onto y;. We
denote by 7 the image of 7 in €(C)x V x V*.

Theorem 13.4.1 and Proposition 11.6.2 have the following consequence.

Theorem 13.4.2. — Let w € W. There is a unique path p, :[0,1]— V* such that

(1) pu(0)=w™(vg).

(2) (¥, pu(2)) is an eigenvalue of D' for y € V and t €[0,1)

Two elements w’,w” € W are in the same Calogero-Moser left C-cell if and only if
pw/(].) :pw//(].).

13.5. The smooth case

Assumption and notation. We assume here that k = C. We fix
in §13.5 a point z, € Q’fx which is assumed to be smooth in % ..
We denote by y the unique irreducible character of the associated
Calogero-Moser c-family. We denote by T the Calogero-Moser two-
sided c-cell associated with z, and we fix a Calogero-Moser left c-cell
C contained inT.

The next result is a translation of Theorem 9.4.1 in the cell world.

Theorem 13.5.1. — With the assumption and notation above, we have:
(a) IT]= (1%
(b) Ugepen /C =T,
(@ [CTM =7
(d) [Cl=x(1).
(e) deg (C)=x(1).

Proof. — (a) follows from Theorem 12.2.7(c).

(b) The set of irreducible components of lirn;tlt(zo) is in bijection with D" \T (see
Proposition 13.2.5(c)). As explained in §9.4, lirn;&(zo) is irreducible because z, is
smooth. In other words, with the notation introduced in §13.2.B, we have C” =T.

(c) follows from Thereom 9.4.1 and (d) follows immediately from (c).

(e) follows from (b) and from Proposition 13.2.5(b). O



CHAPTER 14

DECOMPOSITION MAPS

14.1. The general framework

Let R, be a commutative R-algebra which is a domain, and let ¢, be a prime ideal
of R,. We set R, = R,/v;, K; = Frac(R,) and K, = Frac(R,) = kg, (t;). We will say that
the pair (R, ;) satisfies Property (Zec) if the three following statements are satisfied
(see the Appendix D):

(D1) R, is noetherian.

(D2) If h € RiH and if ¢ is a simple K;H-module, then the charac-
teristic polynomial of h (for its action on £) has coefficients in
R, (note that this assumption is automatically satisfied if R; is
integrally closed).

(D3) The algebras K;H and K,H are split.

In this context, completely similar to the one of § D.3, the decomposition map

decy'y : Ko(KyH) — Ko K;H)

is well-defined (see Proposition D.3.1).
Let t, be a prime ideal of R, containing v;. Let Ry = R;/v, = Ry/(vy/vy), Kz =
Frac(R;) = kg, (r2) = kg,(r2/v;) and assume that (R, ,) satisfies (Zec). Then the maps

decﬁ;g, decﬁ;g and decg’;g are well-defined and, by Corollary D.3.2, the diagram
decR;g
Ko(K;H) Ko(K-H)
(14.1.1) dechH
ecy
decy'y ’
Ky(KsH)

is commutative.
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Example 14.1.2 (Specialization). — Let ¢ € 6. Recall that q. =p.Q is prime and let
t. be a prime ideal of R lying over q.. Let us use the notations of example 11.2.6
and of §10.1.A. Then R/t, is an R-algebra, with fraction field M.. As in the proof of
Theorem 4.5.8, we deduce from Corollary 4.5.5 an isomorphism of K.-algebras

H, — Mat;y(L,)
which induces, as in the generic case (see §10.2), an isomorphism of M_-algebras
MCHC;) n Mat|W|(MC).
d(D;NH)ED, /(D,NH)

So the M_.-algebra M H, is split, as well as MH, and its simple modules are in-
dexed by D,/(D, N H): this last set is in one-to-one correspondence with W (Corol-
lary 10.1.15). So, the decomposition map dec’ ", is well-defined, and will be denoted
by dec.. We can moreover identify KO(MCHC)Cwith the Z-module ZW and, through
this identification, the diagram

dec,

(14.1.3) K,(MH)

KoM H,)

W W
is commutative. This follows from the fact that the Morita equivalence between
K. H, and L, is the “specialization at ¢” of the Morita equivalence between H and
Lm

14.2. Cells and decomposition maps

Let ¢ be a prime ideal of R. We will denote by D, the decomposition group
of vt in G and [, its inertia group. The Galois group G (respectively the decom-
position group D,) acts naturally on the Grothendieck group K,(MH) (respectively
Ky(kz(v)H)). Then:

Lemma 14.2.1. — Assume that the kg(v)-algebra ky(v)H is split. Then:

(a) The decomposition map decﬁz}/I y is well-defined (it will be denoted by dec, : Ky(MH) —
Ko(kg(v)H)).

(b) The decomposition map dec, is D.-equivariant.

(c) The group I, acts trivially Ky(kg(t)H).

(d) If w and w’ are in the same Calogero-Moser v-cell, then dec. (%, ) = dec (L)

t)
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Proof. — Since R is integrally closed, saying that the kg(r)-algebra kg(v)H is split is
equivalent to say that (R,t) satisfies (Zec). The decomposition maps being com-
puted by reduction of the characteristic polynomials, the statement (b) is immedi-
ate. The group I, acting trivially on kz(r) by definition, (c) is clear. The statement (d)
then follows from (b) and (c) because the Calogero-Moser t-cells are I.-orbits. O

Lemma 14.2.1 says that, when restricted to an t-block, the decomposition map
dec, has rank 1.

Example 14.2.2. — Set p =tN P and assume in this example, and only in this exam-
ple, that 34,, NP ¢ p. Then Theorem 11.4.2(a) implies that the kg(r)-algebra kg(t)H
is split. Consequently, the decomposition map dec, : Ky(MH) — K (kg(t)H) is well-
defined. Since the simple modules of MH have dimension |W|, as well as the simple
kgr(t)H-modules, the decomposition map sends the isomorphism class of a simple
MH-module on the isomorphism class of a simple kz(t)H-module. So dec, defines a
surjective map

(14.2.3) dec,: W — Irr(kg(v)H)

whose fibers are the Calogero-Moser t-cells (see Lemma 14.2.1).

left

Remark 14.2.4. — The previous example can be applied in the case where t =t

or tp¥", thanks to Theorem 13.2.6(a). m

14.3. Left, right, two-sided cells and decomposition maps

In order to define decomposition maps, one must check that some assumptions
are satisfied (see the previous conditions (D1), (D2) and (D3)). It is the aim of the
next proposition to check that these assumptions hold in the cases we are interested
in:

Proposition 14.3.1. — Let v be a prime ideal of R amongst te, V%, 58" or . Then:

(@) The kg(v)-algebra k(c)H is split.

(b) Assume here that v # %t or €=0 or € =€, for some ¢ € 6. If £ is a simple kp(t)H-
module and if h € H/tH = (R/x)H, then the characteristic polynomial of h (for its
action on ) has coefficients in R /x.
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left right .

Proof. — (a) has been proven for v =rt, in Example 14.1.2, for t=tg" or t=1t," in

Theorem 13.2.6(a) and for v =t, in Proposition 7.1.3.

Let us now show (b). First of all, if v =ty or v or tréght then the images in the
Grothendieck group Ky(kg(t)H) of simple kR(t)H-modules are the images of simple
MH-modules through the decomposition map (see Example 14.2.2 and Remark 14.2.4).
So, if h is the image in H/tH of h’ € H, then the characteristic polynomial of h’ acting
on a simple MH-module has coefficients in R (because R is integrally closed) and so
the characteristic polynomial of & has coefficients in R/t (it is the reduction modulo
t of the one of h).

Now, if t =t or t,, then the simple kz(t)H-modules are obtained by scalar exten-
sion from the simple kp(rN P)H-modules, and the result follows from the fact that
P/p~k[€¢]and P/p. ~kis integrally closed. ]

Taking Proposition 14.3.1 into account, we can define decomposition maps giving
rise to a commutative diagram

W
Ko(MH) Ko(MH)
decie"
rlght
KO(MlgftHleﬁ) doce KO(MUghtHrlght)
——right
%A ¥ /
Ko(MeH) <———— K,(MH)
ZIrr(W) ZIrr(W)

As usual, the index € will be omitted if € =0 or will be replaced by c if €=, (for
some ¢ € 6). Recall that dec, is an isomorphism (by Example 14.1.2, which extends
easily to the case where €, is replaced by any prime ideal € of k[ ¢]) and that

K\M:H)~ZW and Ky(MgH) ~ ZIrr(W).

Note however that decy” : Ky(M H) ~ ZIrr(W) — Ky(MH) ~ ZIrt(W) is not an iso-
morphism in general. Some transitivity formulas follow from 14.1.1.
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14.4. Isomorphism classes of baby Verma modules

The Verma modules A(y) being defined over the ring P, the fundamental prop-

erties of decomposition maps show that
—lef _

(14.4.1) dec, [MEMA(Y) Iyengen = [ MeA() Iyt
The multiplicities mult(ély\; are defined from the image of M"A(y) in the Grothendieck
group Ky(ME"H'" ). We will now be interested to the image of MgA(y) in the Grothendieck
group Ky(McH):

Fix now a Calogero-Moser two-sided €-cell I and set Ly(I') = dece[ L, lyn, for
w €T. Note that Ly(I') does not depend on the choice of w €I by Lemma 14.2.1.

Proposition 14.4.2. — If y e Irr™ (W), then

[MeA(x) I = % (1) Le (D).

Remark 14.4.3. — Proposition 14.4.2 says that, inside a given Calogero-Moser ¢-
family, the decomposition matrix of baby Verma modules in the basis of simple
modules has rank 1: this was conjectured by U. Thiel [Thi1].

A similar property holds for restricted enveloping algebras or Lusztig’s small
quantum groups at a root of unity [BeTh2, Prop. 4.16, (1) and (2)]. m

Proof. — Let C be a Calogero-Moser left ¢-cell. Then multg\; =0 if C is not con-
tained in I' (see Proposition 13.3.2(c)). Hence, by (14.4.1), we have

_ - —left
[MA( ) len= >, multd,-dec [ Le(C) s

CeMcells§(W)
ccr

But, if C T, then [ Lg(C) ]MlgftHleft = decleeft [ £, Iuu Where w € C. Then, by the transi-

tivity of decomposition maps, we have
—left
dec [LQ(C)]MlgﬁHleﬂ = L(I)

(by Lemma 14.2.1). The result follows now from Proposition 13.3.2(a). 0

We conclude with a result comparing the Calogero-Moser €-cellular characters
for different prime ideals ¢:
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Proposition 14.4.4. — Let & be a prime ideal of k[‘6] contained in € and choose a prime
ideal ¥ lying over qi" and contained in v". Let C be a Calogero-Moser left ¢-cell and
let us write C = C, | [---] [ C,, where the C;’s are Calogero-Moser left €'-cells (see Proposi-
tion 13.2.2). Then

[CI"=[C " ++[CT"
Proof. — By Proposition 14.3.1, the decomposition map d : Ko(METH"") — K,(MH'")

is well-defined and it satisfies the transitivity property dodec®" = dec™"

o ¢ - Moreover,
we have

d [Ms"A(y) Ivettgpiene = [ M A(y) Ivpetie
The result then follows from the fact that d [ Le/(C;) Inpettppen = [LE"(C) hergpen for all i
(see Example 14.2.2). O



CHAPTER 15

CALOGERO-MOSER VERSUS KAZHDAN-LUSZTIG

We have recalled in § 6.6 the definition of Kazhdan-Lusztig left, right or two-
sided c-cells, of Kazhdan-Lusztig c-families, and of Kazhdan-Lusztig c-cellular
characters, starting from the representation theory of Hecke algebras. On the other
hand, the notions of Calogero-Moser left, right or two-sided c-cells, of Calogero-
Moser c-families and of Calogero-Moser c-cellular characters have been defined
and studied in Part IV of this book. We conjecture that these notions coincide. The
aim of this chapter is to state precise conjectures and to give arguments which sup-
port these conjectures.

15.1. Hecke families

The aim of this section is to recall the statement of Martino’s Conjecture [Mart1]
which relates Calogero-Moser families and Hecke families (see definition 6.5.1), to
recall what is known about this conjecture, and to show some theoretical arguments
which support it.

Let k* = (kfl w,jeaw denote the element of 6 defined by lcfl i=koj
(the indices j being viewed modulo e;). We assume that Assump-
tion (Free-Sym) is satisfied (see §6.1.B).

15.1.A. Statement and known cases. — Werecall here the statement given in [Mart1,
Conjecture 2.7]:

Conjecture FAM (Martino). — If b € Idem,,(Z,), then there exists a central idempotent
b of OY°[qR],,) (k*) such that:

(@) Irry(W, b)=1Irr (W, b7);

(b) dime(Z b) = dimpgey(F(q®) 7, (k*)b 7).
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In particular, every Calogero-Moser c-family is a union of Hecke k*-families.

This Conjecture has been checked in many cases by computing separately the
Calogero-Moser families and Hecke families. At the time this book is written, no
theoretical link has been made towards a proof of this Conjecture which does not
rely on the Shephard-Todd classification.

Theorem 15.1.1 (Bellamy, Chlouveraki, Gordon, Martino)
Assume that W has type G(de, e, n) and assume that, if n =2, then e is odd or d = 1.
Then the Conjecture FAM holds.

The proof of this Theorem follows from the following works:

— M. Chlouveraki has computed the Hecke families in [Chl3] and [Chl5].

— Whenever e = 1, the Calogero-Moser families have been computed by 1. Gor-
don [Gor2] for rational values of k (using Hilbert schemes). This result has
been extended to all values of k by M. Martino [Mart2] using purely algebraic
methods.

- M. Chlouveraki’s combinatoric and I. Gordon’s combinatoric have been com-
pared by M. Martino [Mart1] to show that Conjecture FAM holds whenever
e=1.

— Whenever e is any non-negative integer (satisfying the conditions of the The-
orem), the Calogero-Moser families have been computed by [Bel5] for rational
values of k, because this computation relied on I. Gordon’s result. His method
can nevertheless be extended to any value of k, once M. Martino’s result has
been established [Mart2].

It was also conjectured by M. Martino that, whenever c is generic, then the
Calogero-Moser c-families and the Hecke k*-families coincide. A counter-example
has been found by U. Thiel [Thi1].

U. Thiel has also obtained many cases of Conjecture FAM amongst the excep-
tional complex reflection groups [Thi2, Theorem 25.4]. His algorithm has recently
been improved by Thiel and the first author [BoTh] and new cases have been
settled [BoTh, Theorem 5.15]. It must be noticed that M. Chlouveraki has com-
puted the partitions into Hecke families for exceptional groups [Chl4] in all cases,
while the partition into Calogero-Moser families is known only for some excep-
tional groups, and mainly in the generic parameter case. Comparison of both sides
gives the following result (note that G,; = W(H;) and G,3 = W(F))):
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Theorem 15.1.2 (Thiel). — If W has type G, with
ne{4,5,6,7,8,9,10,11,12,13,14, 15, 20, 22,23, 24, 25,26,27,28

and c is any parameter (except for n = 20, where it is assumed generic), then the Conjec-
ture FAM holds.

15.1.B. Theoretical arguments. — Corollary 7.4.2 shows that:

Proposition 15.1.3. — In Conjecture FAM, the statement (a) implies the statement (b).

Proof. — Keep the notation of Conjecture FAM (b, b”,...). Since the algebra F(q®).s¢,) (k")
is split semisimple, we have
dimpgs(F(Q) A7 (YD )= > 717

Y EITT (W, b )

But, on the other hand, it follows from Corollary 7.4.2 that
dime(Zb)= >y
y €lrryg(W,b)

Whence the result. O

Remark 15.1.4. — An important result supporting Conjecture FAM is the follow-
ing. It has been proven that, if y and y’ are in the same Calogero-Moser c-family
(respectively Hecke kf-family), then Q¢ (eu) = Q¢ (eu) (respectively C, (k%) = C,.(k"):
see Lemma 7.2.3 (respectively Lemma 6.5.2). But it follows from Corollary 5.4.2 and
from the definition of C,(k¥) that

(15.1.5) Q(eu,)= C, (k).

Even though this numerical invariant is not enough for determining in general the
Calogero-Moser families, it is relatively sharp. m

Alast argument is given by the next proposition, which follows from Lemma 6.5.4
and Corollary 7.3.5:

Proposition 15.1.6. — If F is a Calogero-Moser c-family (respectively a Hecke k*-family),
then F ¢ is a Calogero-Moser c-family (respectively a Hecke k*-family).
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15.2. Kazhdan-Lusztig cells

Assumption. In §15.2, we assume that W is a Coxeter group, that
k = C and that kg = R. We fix an element ¢ € €(R), we set k =
k(c) € H (R) and recall that we set k; =—c/2 for all s € Ref(W).

15.2.A. Cells and characters. — The first conjecture is concerned with two-sided
cells and their associated families.

Conjecture LR. — There exists a choice of the prime ideal t. lying over §, such that:

(a) The partition of W into Calogero-Moser two-sided c-cells coincides with the partition
into Kazhdan-Lusztig two-sided c-cells.

(b) Assume that k>0 for all s € Ref(W). If T € “MCells; (W) = XCells; (W), then
IrfSM(W) = Irrf o (W).

We propose a similar conjecture for left cells and cellular characters.

Conjecture L. — There exists a choice of the prime ideal ©'*" lying over q'*" such that:

(a) The partition of W into Calogero-Moser left c-cells coincides with the partition into
Kazhdan-Lusztig left c-cells.

(b) Assume that k>0 for all s € Ref(W). If C € “MCells](W) = XCells] (W), then
[CIM=[CI"

A similar conjecture can be stated for right cells. Also, if Conjectures LR and L have
positive answer, it should be true that v c ..

We propose a specific choice of ideals t,, . and t*". We describe that choice in
the equivalent setting of paths, cf. §11.6.

Let C; be the dual chamber to Cg, obtained as the image of Cy through some
isomorphism of RW-modules g = Vr. We choose (v¢, 1) € Cg x C and we choose
the path 7 contained in 6(R) x Cg x C and such that #([0,1[) € 6(R) x Cg x C; and
we denote by 7 its image in ¢ x V™8/W x V*/W. We conjecture that the image of
C(R)x Cg x Cf in € x V™8/W x V*/W is contained in #£(C)™ so that we can define
Calogero-Moser y-cells as in Theorems 13.4.1 and 13.4.2. Moreover, as 6 (R)x Cg x C;
is simply connected, Calogero-Moser y-cells do not depend on the particular choice
of 7. We then conjecture that the Conjectures LR and L hold with such choices.



175

15.2.B. Characters. — First of all, note that the set of Calogero-Moser c-families,
as well as the set of Calogero-Moser c-cellular characters, do not depend on the
choice of the ideal . At the level of characters, the statements (b) of Conjec-
tures LR and L imply the following simpler statement, which does refer to the

choice of a prime ideal of R.

Conjecture C. — (a) The partition of Irtf(W) into Calogero-Moser c-families coincides
with the partition into Kazhdan-Lusztig c-families (Gordon-Martino).
(b) The set of Calogero-Moser c-cellular characters coincides with the set of Kazhdan-
Lusztig c-cellular characters.

Note that (a) above has been conjectured by Gordon and Martino [GoMa, Con-
jecture 1.3(1)]. So Conjecture LR lifts Gordon-Martino’s Conjecture at the level of
two-sided cells.

COMMENTARY - The choices of the prime ideals ¥, or t**" are not relevant for the
Conjecture C, but they are relevant for the Conjectures LR and L. m

15.3. Evidence

As will be explained in Part V, the conjectures stated in § 15.2 hold when W has
type A, or B,: they also hold in type A,, but we have not included the computations
in this book. The case of type B, will be treated in § 19. However, the difficulty of
the computations does not allow us for now to extend this list of examples. Note
that Conjectures LR and L have been proved by the first author whenever W is
dihedral of order 2m, with m odd [Bon6, Corollary 6.3] (it turns out that, in this
case, the Galois group G is &yy). The prime ideals involved in the conjectures have
not been determined. However, in the case of dihedral groups at equal parameters,
Conjectures L and LR have been solved by Germoni and the first author [BoGer]
with the specific choice of ideals as discussed above.

Again with this specific choice of ideals, the best evidence for Conjecture L is the
following result [BrGoWh]:

Theorem 15.3.1 (Brochier-Gordon-White). — Conjecture L holds for W of type A.

The article [BrGoWh] gives a new description of the Robinson-Schensted-Knuth
correspondence, a bijection from matrices with non-negative integer entries to pairs
of semistandard Young tableaux. This is realized using the collision of spectra of
Gaudin operators acting on sections of a vector bundle over C" with fiber C[x;, ..., x,]®",
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via a combinatorial description using gl,-crystals based on [HKRW]. The repre-
sentation (C")®" of gl, is a direct summand of that representation, and the colli-
sion pattern of Gaudin operators on a vector bundle with that fiber can be de-
duced. The conclusion is obtained by using some version of Schur-Weyl duality
[MuTaVal, MuTaVa3] that relates this system with the Calogero-Moser one.

The aim of §15.3 is to give some evidence in support of these conjectures. Note
however that Conjecture C, which only deals with characters (and not with the
partition of W into cells), holds for some infinite series of groups (see the details
below).

15.3.A. The case ¢ =0. — The following facts will be shown in § 17.

Proposition 15.3.2. — When ¢ =0, there is only one Calogero-Moser left, right or two-
sided cell: it is W itself. Moreover,

MW =Ir(W)  and  [WIM=[CW gy = Z 7).
x €lrr(W)

Corollary 15.3.3. — Conjectures L and LR hold when c¢ = 0.

Proof. — This follows from the comparison of [Bon2, Corollaries 2.13 et 2.14] with
Proposition 15.3.2. 0

15.3.B. Constructible characters, Lusztig families. — In the sequel of this Chap-
ter, we will only deal with positive parameters. We do not know how to treat the

case where only some parameters are equal to 0 (in order to compare with [Bon2,
Corollaries 2.13 et 2.14]).

From now on, and until the end §15, we assume that k, > 0 for
all s eRef(W).

CONVENTION - When (W, S) has type B,, we write S = {t,s,,5,,...,5,_;} with the
convention that ¢ is not conjugate to some s;, so the Dynkin diagram is

t S S,

Sn—1
oc—"]—0— - - —O
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In this case, we willset b=c, anda=c; =c,=---=c¢, .1

Lusztig [Lus4, §22] has defined a notion of constructible characters of W (that we
will call here c-constructible characters). We can then define a graph ¥.(W) as fol-
lows:

e The set of vertices of ¥,.(W) is Irr(W).
e Two distinct irreducible characters of W are linked in ¥.(W) if they appear in
the same c-constructible character.

We then define Lusztig c-families as the connected components of ¢.(W). Lusztig
conjectures that Lusztig c-families coincide with Kazhdan-Lusztig c-families and
that c-constructible characters coincide with Kazhdan-Lusztig c-cellular charac-
ters. This conjecture is proven in the following cases:

Proposition 15.3.4. — Assume that one of the following hold:

(1) c is constant;

(2) [SI<2

(3) (W, S) has type Fy;

(4) (W, S) has type B,, a#0and b/a €{1/2,1,3/2,2}U]ln—1,+00).
Then:

(@) The c-constructible characters and the Kazhdan-Lusztig c-cellular characters coin-
cide.
(b) The Lusztig c-families and the Kazhdan-Lusztig c-families coincide.

Proof. — Lusztig [Lus4, Conjectures 14.2] has proposed a series of conjectures (num-
bered P1, P2,..., P15) about Kazhdan-Lusztig cells and the a-function. They have
been proven in the following cases:

(1) when c is constant in [Lus4, chapitre 15];

(2) when [S] < 2 in [Lus4, chapitre 17];

(3) when (W, S) has type F, in [Gec2];

(4) when (W, S) has type B, and a = 0 or when a # 0 and b/a € {1/2,1,3/2,2}

in [Lus4, Chapter 16];

(4') when (W, S) has type B,,, a# 0 and b/a > n—1in [Bola], [Bon1] et [Gela].
Also, it is shown in [Lus4, Lemma 22.2] and [Gec3, §6 and §7] that these conjec-
tures implies that the c-constructible characters and the Kazhdan-Lusztig c-cellular

characters coincide. This shows (a). The statement (b) now follows from [BoGec,
Corollary 1.8]. O

15.3.C. Conjectures about characters. —
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Families. — The c-constructible characters (and so the Lusztig c-families) have
been computed in all cases by Lusztig [Lus4]. We deduce from Proposition 15.3.4
that the Kazhdan-Lusztig c-families are known in the cases (1), (2), (3) and (4) of
Proposition 15.3.4. But, the explicit computation of Calogero-Moser c-families has
been made in all irreducible types except H,, Es;, E; and Eg in the series of arti-
cles [Bell, Bel5, Gorl, Gor2, GoMa, Mart2, BoTh]. In all cases, they coincide with
Lusztig families. Proposition 15.3.4 then implies the following theorem.

Theorem 15.3.5. — Assume that one of the following holds:

(1) |S] < 2.

(2) (W, S) has type A,, or D,.

(3) (W,S) has type B,, a>0and b/a €{1/2,1,3/2,2}U]ln—1,4+00).
(4) (W, S) has type H; or F,.

Then Conjecture C(a) holds.

Cellular characters. — If (W,S) has type A, or if (W,S) has type B, with a > 0
and b/a €{1/2,3/2}U]n —1,4+00), then it follows from the previous results that the
Kazhdan-Lusztig c-cellular characters are irreducible. Moreover, it follows from
the work of Gordon and Martino that, in those same cases, the Calogero-Moser
space Z . is smooth. Therefore, the next theorem follows from Theorem 13.5.1.

Theorem 15.3.6. — Assume that one of the following holds:
(1) (W,S) has type A,;
(2) (W, S) has type B,, with a #0 and b/a €{1/2,3/2}U]ln—1,400).

Then Conjecture C(b) holds (and the c-cellular characters are irreducible).

Whenever W is dihedral, the first author proved Conjecture C(b), by a direct
explicit computation using Gaudin algebras [Bon6, Table 4.14].

Other arguments. — First of all, note that, if we assume that Lusztig’s Conjectures P1,
P2,..., P15 hold (see [Lus4, conjectures 14.2]), then the previous argument imply
that Conjecture C(a) holds in type B, and Conjecture C(b) holds in type B, when-
evera>0and b/a¢{1,2,...,n—1} (because in this case, the c-constructible charac-
ters are irreducible and the Calogero-Moser space is smooth).
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Remark 15.3.7. — If 7 is a Calogero-Moser (respectively Kazhdan-Lusztig) c-family,
then Z ¢ is a Calogero-Moser (respectively Kazhdan-Lusztig) c-family: see Corol-
lary 7.3.5 and (6.6.14).

Similarly, if y is a Calogero-Moser (respectively Kazhdan-Lusztig) c-cellular char-
acter, then y¢ is a Calogero-Moser (respectively Kazhdan-Lusztig) c-cellular char-
acter: see Corollaries 13.3.9 and (6.6.13). m

Remark 15.3.8. — If 7 is a Calogero-Moser (respectively Lusztig) c-family, then
there exists a unique character y € .# with minimal b-invariant: see Theorem 7.4.1(b)
(respectively [Bon4], or [Lus2, Theorem 5.25 and its proof] whenever c is constant).

Similarly, if y is a Calogero-Moser c-cellular character (respectively a c-constructible
character), then there exists a unique irreducible component y of minimal b-invariant:
see Theorem 13.3.12 (respectively [Bon4]). m

15.3.D. Cells. —

Two-sided cells. — The first argument which supports Conjecture LR comes from
the comparison of the cardinality of cells, and from the fact that Conjecture C(a) has
been proven in many cases.

Remark 15.3.9. — Assume here (W, ¢) satisfies one of the assumptions of Theo-
rem 15.3.5. Let Z be a Calogero-Moser c-family (that is, a Kazhdan-Lusztig c-
family according to Theorem 15.3.5). Let I (respectively Iy;) denote the Calogero-
Moser (respectively Kazhdan-Lusztig) two-sided c-cell covering .Z. It follows from
Theorem 12.2.7(c) that

ITem| = Z ){(1)2

1eF
and it follows from (6.6.6) that
Gel= > 2 (1.
1eF
Therefore,
Tem| = Tial-

This is not sufficient to show that I.y; = I. However, this shows Conjecture LR when-
ever the Galois group G is equal to &y: indeed, by replacing t, by some g(t,.) for
some g € G = Gy, we can arrange that I, = I (for all families .%). This also shows
the importance of making the choice of t, precise in Conjecture LR. ®
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Remark 15.3.10. — Let Iy (respectively Iy; ) be a Calogero-Moser (respectively Kazhdan-
Lusztig) two-sided c-cell. Let w, denote the longest element of W. Then:
- By (6.6.12) and (6.6.15), wyIx = I w, is a Kazhdan-Lusztig c-cell and IrrlfutrKll(W) =
IrrﬁLL(W)s.
— Since all the reflections of W have order 2, it has been shown in Corollary 12.2.9
that, if wy is central in W, then wyIcy = Icy w, is a Calogero-Moser two-sided
c-cell and Irrful(\frCM(W) = Irr(rjcﬁ(W)s.
These results show some analogy whenever w; is central in W. For the second state-
ment, it is not reasonable to expect that it is true whenever wj is not central (as is
shown by the type A,) without making a judicious choice of t.. B

Left cells. — Let us recall that numerous Kazhdan-Lusztig left cells give rise to
the same Kazhdan-Lusztig cellular character. On the Calogero-Moser side, Corol-
lary 13.3.6 also shows that numerous Calogero-Moser left cells give rise to the same
Calogero-Moser cellular character (see for instance Theorem 13.5.1 in the smooth
case).

Remark 15.3.11. — Let Ccy (respectively Cy) be a Calogero-Moser (respectively
Kazhdan-Lusztig) left c-cell. Let w, denote the longest element of W. Then:

— It follows from (6.6.12) and (6.6.13) that w,Cy and Gy w, are Kazhdan-Lusztig
left c-cells and that [ w, G 15 =[ Cuwe 15 =[ G 15 e

— Since all the reflections of W have order 2, it follows from Corollary 13.3.9 that,
if wy is central in W, then w,Cey = Coq Wy is a Calogero-Moser left c-cell and
that [ wyCou ]SM =[Cemwy ]SM =[Cem ]SMs- u

Remark 15.3.12. — Note also the analogy between the following equalities: if C is
a Calogero-Moser (respectively Kazhdan-Lusztig) left c-cell and if y € Irr(W), then
ICl= > multd y(1),

yelrr(W)

()= Z multg)flx

CrecNCells (W)
(respectively

ICl= > multd, (1),

yelrr(W)

y(1)= Z mult ).

C’eXiCells (W)
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See Proposition 13.3.2 (respectively Lemma 6.6.7). It would be interesting to study
if other numerical properties of Kazhdan-Lusztig left cells (as for instance [Gec3,
Lemma 4.6]) are also satisfied by Calogero-Moser left cells.

A final argument to support Conjectures L and LR is the following.

Theorem 15.3.13. — Assume that we are in one of the following cases:
(1) (W,S) has type A,, and ¢ > 0;
(2) (W, S) has type B,, with a>0and b/a €{1/2,3/2}U]ln—1,400).
Then there exists a bijective map ¢ : W — W such that:

(@) If T is a Kazhdan-Lusztig two-sided c-cell, then ¢(T') is a Calogero-Moser two-sided
c-cell and IrrfM(W) = Irrg(\ﬁ)(W).
(b) If C is a Kazhdan-Lusztig left c-cell, then ¢(C) is a Calogero-Moser left c-cell and
[CI=Te(O)"
Proof. — Under the assumptions (1) or (2), the Calogero-Moser space % is smooth
(see [EtGi, Theorem 1.24]in case (1) and [Gorl, Lemma 4.3 and its proof]) in case (2))

and so Theorem 13.5.1 can be applied to all the Calogero-Moser c-cells of W. The
result follows now from a comparison of cardinalities of cells. O






CHAPTER 16

CONJECTURES ABOUT THE GEOMETRY OF Z,

Assumption. We assume in this chapter that k= C.

16.1. Cohomology

We follow some of the notation of Appendix A. Given i € Z, we set

cwy= @ cw,
wew
codime(V*)=i
so that CW = @,,(CW)'. This is of course not a grading on the algebra CW, but
the filtration by the vector subspaces (CW)*’ =@, < ,(CW); induces a structure of
filtered algebra on CW.

If A is any subalgebra of CW, it inherits a structure of filtered algebra by setting
AST=AN(CW)<. Asin Appendix A, we can then define its associated Rees algebra
Rees(A) (which is contained in C[71]® A), as well as its associated graded algebra
gr(A).

If 2 is a quasi-projective complex algebraic variety, we denote by H(%') its i-th
singular cohomology group with coefficients in C. We denote by H?*(2') the graded
algebra ;. H? (Z'). The Euler characteristic of  will be denoted by (). If Z is
endowed with an algebraic action of C*, we denote by H. (2') its i-th equivariant
cohomology group, with coefficients in C. We denote by HZ’,(Z') the graded algebra
@Din HZ (Z): it will be viewed as a C[7i]-algebra by identifying HZ (pt) with C[7] in
the usual way.

Recall that, given ¢ € ¢, we have defined in §4.2.C a morphism of algebras
N :Z, — Z(CW). We propose the following conjectures about the (equivariant)

cohomology of the variety Z .

Conjecture COH. — Let c€6.
(1) If i €N, then H**Y(%,)=0.
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(2) We have an isomorphism of graded algebras H**(% .) ~ gr(ImQ°).

Conjecture ECOH. — Let c€6.
(1) If i €N, then HZ P (%) =0.
(2) We have an isomorphism of graded C[h]-algebras HZ:,(Z ;) ~ Rees(ImQ°).

We refer to [BoSh, Conjecture 3.3] for a more precise version of the conjecture.

Example 16.1.1. — Assume here that ¢ = 0. Recall (Example 4.2.8) that H, = C[V x
V*]x W and that Z,=C[V x V*]*W_ In particular, Z,=(V x V*)/AW and Im(°)=C.
Therefore,

C ifi=o,

and Hixf :HiXVXV*WZHiX 1),
0 otherwise, ox(Fo) = He.( ) c«(pt)

H (%, =H'(V x V)V = {

so Conjectures COH and ECOH hold. m

Given E € Irtf(W), we denote by er € Z(CW) the corresponding primitive central
idempotent (the unique one such that wy(ez) =1). Given 7 is a subset of Irr(W), we
set ez =Y 5 eg. It follows from Lemma 7.2.3 and from (9.2.2) that

(16.1.2) ImQ° = @ Cegy)

In particular,

(16.1.3) dime(ImQ°) =|Z<|
hence
(16.1.4) 7(Z,.)=dimc(ImQ°).

This is compatible with Conjecture COH.

Theorem 16.1.5 (Etingof-Ginzburg). — If % is smooth, then Conjecture COH holds.

Proof. — Assume that Z . is smooth. In [EtGi, Theorem 1.8], Etingof and Ginzburg
proved that this implies that Z. has no odd cohomology, and that

H2(Z,) > gi{Z(CW)).

By Proposition 7.7.1, the smoothness of %, implies that ©, : Irr(W) — Z< is bijec-
tive, so that ImQ° =Z(CW). O
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Based on Etingof-Ginzburg’s result, Peng Shan and the first author proved the
following, using localization methods [BoSh, Theorem A]:

Theorem 16.1.6. — If Z . is smooth, then Conjecture ECOH holds.

Apart from the smooth case and the case ¢ =0, both conjectures are known only
in rank 1. For Conjecture COH, see the upcoming Chapter 18 (Theorem 18.5.8). For
Conjecture ECOH, see [BoSh, Proposition 1.7].

16.2. Fixed points

Assumption and notation. Recall that A = N o (W). We fix
in this section an element of finite order v € . That element
acts on 6 and % and, if c € 67, it acts on % .. We denote by Z*
(respectively Z7, for c € 6") the reduced closed subvariety of Z
(respectively %) consisting of fixed points of © in Z (respectively
% .): it is an affine variety whose algebra of reqular functions is
Z [\ {t(2)—z,z € Z) (respectively Z.[+/{t(z)—z,z € Z.)).

We say that a pair (V/, W’) is a reflection subquotient of (V, W) if V' is a subspace of
V and if there exists a subgroup N’ of the stabilizer of V' in W such that W’ = N'/N/
is a reflection group on V', where N/ is the kernel of the action of N’ on V’. In this
case, we denote by Ref(W’) the set of reflections of W' for its action on V', by 6(W")
the vector space of maps ¢’ : Ref(W’) — C constant on W’-conjugacy classes and by
Z(V',W’) the Calogero-Moser space associated with (V/, W’).

Conjecture FIX. — Given & an irreducible component of Z°*, there exists a reflection
subquotient (V', W’) of (V, W) and a linear map ¢ : 6* — 6€(V’', W’) such that

X ~ .fZ;(V’, W/) Xg(wn €6".

Remark 16.2.1. — Conjecture FIX has been extended to symplectic leaves of Z”
and made more precise by the second author [Bon7]. In that more general case, the
closures of symplectic leaves are not always normal. We do not know if this can
occur in Conjecture . B
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Example 16.2.2. — Assume in this example that T € C* is a root of unity, acting on
V by scalar multiplication. Note that ¢° = € in this case. Under this assumption,
we will show in § 19.8 that Conjecture FIX holds when W is of type B,. It is shown
by the first author [Bon6, Theorem 7.1 and Proposition 8.3] that it also holds if W
is of type G, (computer calculation using the MAGMA software [Magmal]), or if W is
dihedral of order 2m, with m odd, and 7 is a primitive m-th root of unity.

When 7 is a root of unity, it is shown in [BoMa] that Conjecture FIX holds if W is
the group denoted G, in Shephard-Todd classification (this uses again the MAGMA
software). The best result about Conjecture FIX has been obtained by Ruslan Maksi-
mau and the first author [BoMa]. We need some notation to state it. Let 6, denote
the (open) subset of 6 consisting of elements ¢ € ¢ such that % is smooth (it can
be empty, see Theorem 7.7.4). We put Z;,, = Z X G-

Theorem 16.2.3. — Let X be an irreducible component of %, and assume that T is a root
of unity. Then there exists a reflection subquotient (V',W') of (V, W) and a linear map
06— 6V, W) such that p(Csm) C Csm(V’', W') and

X =~ ‘gsm(vl’ W/) ><<Ksm(W’) (gsm-
Note also that the linear map ¢ of the above theorem is explicitly described
in [BoMa]. m

Example 16.2.4. — Conjecture FIX also holds if W has type D, or L,(m) and 7 is the
order 2 diagram automorphism [Bon7, Bon8].
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CHAPTER 17

CASE c=0

17.1. Two-sided cells, families

Recall that R, denotes the unique maximal bi-homogeneous ideal of R and that
R/R, ~k

(see Corollary 10.3.3). Recall also that D, (respectively I,) denotes its decomposition
(respectively inertia) group and that

(see Corollary 10.3.4).

Proposition 17.1.1. — R, is the unique prime ideal of R lying over p,,.

Proof. — Indeed, p, = P, and so R, is a prime ideal of R lying over p,: since it is
stabilized by G, the uniqueness is proven. O

So if we denote by T, the unique prime ideal of R lying over f, = P,, D its decom-
position group and I its inertia group, then

(17.1.2) EO - R+ and D_O == I_O = G.

Hence:

Corollary 17.1.3. — W contains only one Calogero-Moser two-sided 0-cell, namely W
itself, and

Irr(;VM(W) =TIrr(W).



190

A feature of the specialization at 0 is that the algebra H, inherits the (N x N)-
grading, and so the N-grading. If we set

IjIO,+ = @I:I(I?[l]’

i>1
then Hy, is a nilpotent two-sided ideal of H, and, since HY[0] = kW, we get the
following result:

Proposition 17.1.4. — Rad(H,)=H,, and Hy/Rad(H,) ~kW.

In particular,

(17.1.5) [ Le, () o = 2 € Ko(kW)[t, 7]
and
(17.1.6) [Kol ()], = x (1) [KW Ly € ZIrr(W) > Ky (H).

17.2. Left cells, cellular characters

Recall that, in §10.1.B, we have fixed a prime ideal v, of R lying over q, = &,Q as
well as a field isomorphism

isog 1 k(V x V¥)AAW) M, = ka(t,)

whose restriction to k(V x V*)*W is the canonical isomorphism k(V x V*)AW =
Frac(Z,) — L,. Hence, R/t, C isoo(k[V x V*]*?")) and these two rings have the
same fraction field, the field M,. Recall also that we do not know if these two rings
are equal, or equivalently, if R/v, is integrally closed or not.

Proposition 17.2.1. — There exists a unique prime ideal of R lying over p{™ and contain-
ing to.
Proof. — Let p* =iso, (pi"/p,). Since k[V x V*[W>*W /p* ~ K[V x 0]"*W, there is only

one prime ideal t* of k[ V x V*] lying over p*: it is the defining ideal of the irreducible
closed subvariety V x 0 of V x V*. In other words,

k[V x V*]/t* =Kk[V x0].
Consequently, the unique prime ideal ¢ of R lying over p{"* and containing t, is
defined by v /¢, = isoo(v* Nk[V x V*]24W) N (R /xy). d
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Let t/*" be the unique prime ideal of R lying over " and containing t, (see Propo-
sition 17.2.1) and let D,*" (respectively I}*") denote its decomposition (respectively
inertia) group.

Proposition 17.2.2. — (a) (W x W) C Dy and «(W x 1) C I}*".
(b) The canonical map T : W x W — D"/ 1" is surjective and its kernel contains W x
Z(W).

(c) Dt/ 1" is a quotient of W /Z(W).
(d) If R/x, is integrally closed (i.e. if R/vy ~ K[V x V*]A2W)) then Ker(t) = W x Z(W)
and D"/ I ~ W /Z(W).

Proof. — The first statement of (a) follows from the uniqueness of ti" (see Propo-
sition 17.2.1). For the second statement, let us use here the notation of the proof of
Proposition 17.2.1, and note that W x 1 acts trivially on k[V x V*]/¢*.

Now, let By be the inverse image of R/t, in k[V x V*] through iso,. Then k[V x
0]">*W c By/t* K[V x 0]**W) = K[V x 0]V*“W) c k[ V x 0]. (b), (c) and (d) follow from
these observations. O

This study of decomposition and inertia groups allows us to deduce the following
result.

Corollary 17.2.3. — W contains only one Calogero-Moser left 0-cell, namely W itself,
and
[WIM=[kW gy = D, 200).

x €lrr(W)

Proof. — The first statement follows from Proposition 17.2.2(a) whereas the second
one follows from Proposition 13.3.2(a). O

Let us conclude with an easy remark, which, combined with Proposition 17.2.2,
shows that the pair (1", D}") has a surprising behaviour.

Proposition 17.2.4. — Let € be a prime ideal of kK[6]. Then there exists h € H such that
hIleft C Ileft.
¢ 0

Proof. — Let € denote the maximal homogeneous ideal of k[ 6] contained in €. By
Proposition 13.2.4, we have [ = [". This means that we may assume that € is
homogeneous. In particular, € c &,. So g c g and there exists h € H such that
h(c™) C v, Therefore, "I c I}°". O
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It would be tempting to think, after Proposition 17.2.2, that D" = (W x W) and
I = (W x Z(W)). However, this would contradict Proposition 17.2.4, if we assume
that Conjectures LR and L hold: indeed, I must contain conjugates of subgroups
admitting as orbits the left cells. We will see in Chapter 18 that if dimy(V)=1, then
Dyt =G.



CHAPTER 18

GROUPS OF RANK 1

Assumption and notation. In §18, we assume that dim, V =1,
we fix a non-zero element y of V and we denote by x the element of
V* such that (y, x) =1. We also fix an integer d > 2 and we assume
that k contains a primitive d-th root of unity {. We denote by s the
automorphism of V defined by s(y)={y, so that s(x)={"'x. We
assume finally that W = (s): s is a reflection and W is cyclic of order
d.

18.1. The algebra H

18.1.A. Definition. — We have Ref(W)={s' |1<i<d—1}. Given1<i<d—1,we
denote by C; the indeterminate Cj;, so that K[€¢]=K[T,C,C,,...,Cs ] and k[6] =
K[C,,C,,...,C ]. The k[€ J-algebra His generated by x, y, s with the relations
(18.1.1) syst={Cy, sxs'=C"xand [y, x]=T+ Z ('=1)C; s'.
1<i<d-1
We set Cy = Cy = 0. The hyperplane arrangement .¢/ is reduced to one element, and
o/ |W as well (we write .o/ /W = {U}), we put K; = K5 ; (for 0 < j < d—1). Recall that
the family (K;), < j < 4—1 is determined by the relations

(18.1.2) Vo<i<d-l1, c,:digf(f—”Kj.
j=0
We put ]
Kdi+j = Kj
forallieZand j€{0,1,...,d—1}. Recall that
K+ K +-+K;,=0.
The last defining relation for H can be rewritten as

[y, x1=T+d > (Kyi—Kpines,

0<i<d-1
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iNod-l i
where ¢; =d lzj:; Jiisi,
18.1.B. Differential operators on C*. — We have
-1 d—1
D,=T3,—x"'> {'Cs'=T8,—dx" > Ke;.
i=1 i=0

Given L a C[€6][y]x W-module, the W-equivariant connection on O« ® L is given
by
dp d—1
—_ . -1 . .
Vipel)=——ol+pey-l+dx D> Kipoel.

i=0

When L=C[¥¢][y]/(y)®det" =C[¥€], we obtain V=20 + x'K,,.

18.1.C. The variety (V x V*)/AW. — Let X =x? and Y = y“. Recall that eu, = x y.
We have

K[V x V2" =K[X, Y, eu,]
and the relation
(18.1.3) eu/ =XY

holds. It is easy to check that this relation generates the ideal of relations.

18.2. The algebra Z
Recall that eu= y x + Z?:_ll C; s' (its image in Hy is eu,) and that ¢ : W — k* is the
determinant, characterized by &(s)={. We have ¢ =1 and
IrrW=1{1,¢,¢€%...,e ).

The image of the Euler element by €2, can be computed thanks to Corollary 5.4.2:
we have

(18.2.1) Q.i(eu)=dK_;
forall i € Z.

Recall that p = (X, Y)p and that pZ c Ker(52,) for all y € Irr(W). More precisely, we
have

d
(18.2.2) (Ker(@.)=pZ = (X, Y).
i=1



195

Proof. — It follows from Example 7.3.6 that the generic Calogero-Moser families
are reduced to one element. Given 1<i<d, let b; denote the primitive central
idempotent of k(¢ )H such that Irrk(‘¢)Hb; = {L((¢')}. We have

d
k(6)Z ~ l_[k(‘é)Z_ b;
i=1
and, by Theorem 7.4.1,
Since b; is characterized by Q,:(b;) = 6, ; (the Kronecker symbol) forall i € {1,2,...,d},
the equality (18.2.2) follows. O

The next result is well-known.

Theorem 18.2.4. — We have Z = Pleu]=k[C,,...,C;_,X,Y,eu]=k[K},...,K;_;, X, Y, eu]
and the ideal of relations is generated by
d

n(eu—dKi):XY.

i=1
Proof. — The equality Z =k[C,,...,C;_;,X,Y,eu] = P[eu] has been proven in Propo-
sition 10.1.24. Define .

z= l_[(eu— ax;).

Since Q,:(z) =0 for all i by (18.2.1), it E)lllows from (18.2.2) that

z=0 mod (X,Y),.
Moreover, since eu? = XY, we have

z=XY mod({(C,...,Ci_,),.
Therefore,
Z—XY e(X,Y),N{(Cy...,Cui)y =(CX,C.Y,CX,CY,...,Cyr X, Cyr Y) .

On the other hand, z—XY is bi-homogeneous with bidegree (d, d), whereas C; X and
C;Y are bi-homogeneous with bidegree (d +1,1) and (1, d + 1) respectively. Conse-
quently, z— XY =0, which is the required relation.

Since the minimal polynomial of eu over P has degree |W|= d (Proposition 10.1.19),

we deduce that .

n(t— dK,)—XY
i=1
is the minimal polynomial of eu over P: this concludes the proof of the theorem. [
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Corollary 18.2.5. — The k-algebra Z is a complete intersection.

We denote by F,(t) € P[t] the minimal polynomial of eu over P. Theorem 18.2.4
gives

d
(18.2.6) E,(t)= 1_[(t— dK,)—XY.

18.3. The ring R, the group G

18.3.A. Symmetric polynomials. — To take advantage of the fact that the mini-
mal polynomial of the Euler element is symmetric in the variables K;, we will recall
here some classical facts about symmetric polynomials. Given T;, T,..., T; a fam-
ily of indeterminates and given 1<i < d, we denote by ¢ ,(T) the i-th elementary
symmetric function

oi=0(T,...T)= >,  T-Tj
1< ji<<ji<d
Recall the well-known formula
o0 (T) _
(18.3.1) det( o )l ciica= ]_| (T;—Ty).
J 1<i<j<d

The group &, acts on k[T;, ..., T;] by permutation of the indeterminates. Recall the
following classical result (a particular case of Theorem 2.2.1).

Proposition 18.3.2. — The polynomials o(T),..., 04(T) are algebraically independent
and K[T,..., T;1% = K[o|(T),...,04(T)]. Moreover, the k-algebra K[T,,..., T;] is a free
k[o((T),...,04(T)]-module of rank d!

Recall also that o((T) =T, +---+ Tj.

Corollary 18.3.3. — We have (k[Tl,..., Td]/(ol(T)»Gd ~ k[o,(T),...,04(T)] and the k-
algebra K[ T,,..., T;]/(0(T)) is a free K[o5(T), ..., 0 4(T)]-module of rank d..

As a consequence of Proposition 18.3.2, there exists a unique polynomial A, in d
variables such that

(183.4) [] @-17=240uD),0,m),....04M).

1<i<j<d
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18.3.B. Presentation of R. — Let 0,(K)=0,(Kj,..., K;) (in particular, o,(K)=0). By
Corollary 18.3.3, the ring Py, =k[05(K), ..., 04(K), X, Y] is the invariant ring, in P, of
the group &, acting by permutation of the K;’s. Moreover,

(18.3.5) P is a free Py,,-module of rank d..

Let us introduce a new family of indeterminates Ej,..., E; ;, and let E; =—(E; +---+
E,,)and 0,(E)=0(E,,..., E;) (in particular o,(E)=0). Let Ry, =k[E,, ..., E;_;, X, Y]=
K[E,,...,E;, X, Y]/{o,(E)), on which the symmetric group S, acts by permutation of
the E;’s. The ring Rggl is again a polynomial algebra equal to k[o,(E),...,04(E), X, Y]
(still thanks to Corollary 18.3.3).

Identification. We identify the k-algebras Py, and RS¢ through
sym
the equalities
o4(dK)=0,4E)+(—1)¢XY
Note that o ,(dK)=d!o;(K).

Asa consequence,

(18.3.6) Ry, 15 a free Py, -module of rank d..

Lemma 18.3.7. — Thering P ® Py Rsym 15 an integrally closed domain.

Proof. — First of all, note that we may, and we will, assume in this proof that k is
integrally closed. Let R=P ® Py Rsym- Then R admits the following presentation:

Generators: K, K,,...,K;,E\,E,...,E;, X, Y
0,(dK)=0,(E)=0

Relations: V2<i<d-1, o0,dK)=0,(E)
o4(dK)=04E)+(-1)XY

(2)

The presentation (22) of R shows that R is endowed with an N-grading such that
deg(K;) = deg(E;) =2 and deg(X) =deg(Y)=d. Thus, the degree 0 component of R is
isomorphic to k, which shows that

(&) R is connected.

Since R is a free Pyym-module of finite rank, it follows that R has pure dimension
d + 1. The presentation (2?) shows that

() R is complete intersection.
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Let us now show that
() R is reqular in codimension 1.

Let # = Spec R, a closed subvariety of A2?*2(k) consisting of elements r = (ki,..., kg, e;,
satisfying the equations (#?). The Jacobian Jac(r) of this system of equations (#?) in
r €% is given by

( d d 0 0 0 0 \

0 0 -1 -1 0 0

20,(dK) 20,(dK) 20,(E) 00,(E) 0
ok, ok, ) T D —gg, 0

Jac(r)=
00.41(dK) 20,1(dK) | 204(E) 20,41(E)
—ox, ) Tak, ) TTam W Tag O 0
30d(dK) . 30',/1,1(dK) _30d(E) . _ao'd(E)  yd+l  yd+l

\ "ok ) ) G5, () Uy e

Since Z is of pure dimension d + 1, its singular locus is the closed subvariety X
of points r where the rank of Jac(r) is less than or equal to d. A point of X satisfies
the equations

do(dK)
det(a—Kj(kly e kd))

By (18.3.1), this means that

[T ki-ko= J] (e—er=0

1<i<j<d 1<i<j<d

do;(E)

= det( 2E,

(el,...,ed)) - =0.

1<i,j<d 1<i,j<d

In particular,
Ad(al(kl’---’kd)r---ro'd(kl’---’kd)):Ad(al(el’---’ed)r---ro'd(elr---’ed)):O'

It is well-known that A,4(0, U, ..., U,) is an irreducible polynomial in the indetermi-
nates U,..., U;. It follows that the variety of (a,, ..., a4, x, y) € A" (k) such that

(+) A0, a5,...,a9-1,87) = Dg(0, a5, ..., aq_1, aq+(=1)"xy)=0.
has dimension < d —1. Consequently, X has codimension > 2 in Z%.

The assertions () and (#) imply that R is normal (see [Ser, §IV.D, Théoreme 11]).
So it is a direct product of integrally closed domains. Since it is connected, it follows
that it is an integrally closed domain. O

We can now describe the ring R.

Theorem 18.3.8. — The ring R satisfies the following properties:

e €0, X, Y)
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(a) R is isomorphic to P ® Py Bsym- 1t admits the following presentation:

Generators: K, K,,...,K;,E},E>,...,E;,X,Y
0.(dK)=0,(E)=0

Relations: V2<i<d-1, 0;(dK)=0;(E)
04(dK)=04(E)+(—1)¢XY

(2)

(b) R is complete intersection and is a free P-module of rank d..

(c) There exists a unique morphism of P-algebras cop : Z — R such that cop(eu) = E,.
This morphism is injective, with Q its image.

(d) For the action of G, by permutation of the E;’s, we have R®* = P and R®-1 = Q.

(e) G=6y~6,; givenoc €6, and 1 < i < d, we have 0(E;)= Ey(;y.

() G is a reflection group for its action on R, /(R,).

Proof. — Let R =P ®p, Ry The relations (2) show that, in the polynomial ring
R[t], the equality

—

d
(t—dK,)—XY = l_[(t—E,-)

i=1 i=1

holds. It follows that F,,(E;) = 0. By Theorem 18.2.4, we deduce that there exists a
unique morphism of P-algebras cop: Z — R such that cop(eu) = E,. Let 3 = Ker(cop).
We have 3N P =0 since P C R and, since Z is a domain and is integral over P, this
forces 3=0. So cop: Z — R is injective.

Let M be the fraction field of R (recall that R is a domain by Lemma 18.3.7). By
construction, R is a free P-module of rank d! and, by Corollary 18.3.3, RSa = Pp.
So the extension M/K is Galois, contains L (the fraction field of Q) and satisfies
GalM/K) = &,. Moreover, GalM/L)= &,_; since &,_, is the stabilizer of E,; in &,.
Since the unique normal subgroup of &, contained in &, is the trivial group, this
shows that M/K is a Galois closure of L/K. So M ~ M.

Since R is integrally closed (Lemma 18.3.7) and integral over P, this implies that
R ~R. Now all the statements of Theorem 18.3.8 can be deduced from these obser-
vations. For the statement (f), we can use (b), and Proposition C.3.7 because &, acts
trivially on the relations, or check it directly by noting that R, /(R,)* is the k-vector
space of dimension 2d generated by K;,..., K;, E,..., E;, X, Y, with the relations
Ki+:--4+K; =0and E, +---+ E; = 0: this shows that, as a representation of &,,
R, /(R,)? is the direct sum of the irreducible reflection representation and of d + 1
copies of the trivial representation. O
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18.3.C. Choice of the ideal v,. — Let v' denote the ideal of R generated by the
elements E; —{'E,. We then have

0,(E)=0,(E)=---=0,,(E)=0 modv'.

We choose the ideal of R vy =t"+ (K, ..., K;)z. The k-algebra R/t has the following
presentation:

Generators: E;, X,Y
(2) { ¢

Relation: E j =XY

Recall that Z(W) = W. We recover the isomorphisms of P-algebras R/t, >~ Q/q, =~
K[V x V*]AW by mapping eu= E, to euy = yx €k[V x V*]*". Recall that an element
w € W, viewed as an element of the Galois group G =&, ~&,, is characterized by
the equality

(w(eu) mod ty)= w(y)x ek[V x V¥]*W,
Since si(y)={"y, we have

(18.3.9) s'(eu)=E,.

For the action of G = &y, ~ &, this corresponds to identifying the sets {1,2,...,d}
and W via the bijective map i — s’.

18.3.D. Choice of the ideals v, +"8" and . — Let t” denote the ideal of R gener-
ated by the E; —dK;’s. Then

V1<i<d, 0;(dK)=0,;(E) mod+r”.

In particular, XY €t”. We choose tt =t/ + (Y ), v ="+ (X)z and T ="+ (X, Y ).
Then

R/tleﬁ [ k[Kl, ceey Kd—l’X] = P/pIEft’
(18310) R/tright ~ k[Kl’ oKy, Y] — P/pright’
R/t~K[K,,...,K; ]=Kk[€]=P/p.

The next proposition follows easily.

Proposition 18.3.11. — D't = [left = pright — pright — [ — [ =1,
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18.4. Cells, families, cellular characters

Notation. We fix in this section a prime ideal € of k[€] and we
denote by k; the image of K; in k[|6]/¢C.

By (18.3.10), we have

(18.4.1) et = el @R, =184 R and  Fo=T+CR
and

R/tléeft =k[?]/Cek[X]= P/plfff,
(18.4.2) R/ =K[€]/cok[Y]=P/p",

R/t =K{%]/€= P /pe.
We will denote by S[¢] the subgroup of &, consisting of permutations stabilizing
the fibers of the natural map {1,2,...,d} = k[€]/¢, i — k;. In other words,

Proposition 18.4.3. — D = [t = 8" = [[®" = P, = [, = &[¢].

Corollary 18.4.4. — Let i, j € Z. Then s’ and s/ are in the same Calogero-Moser two-
sided (respectively left, respectively right) €-cell if and only if k; = k;.

Let us conclude with the description of families and cellular characters.

Corollary 18.4.5. — Let i, j€Z. Then e and ¢~/ are in the same Calogero-Moser family
if and only if k; = k;.

The map w — >, € " induces a bijective map between the set of S[C]-orbits in {1,2,...,d}
(that is, the set of fibers of the map i — k;) and the set of Calogero-Moser €-cellular charac-
ters.

Proof. — Since Z = P[eu], we deduce that e/ and ¢/ are in the same Calogero-
K¢

Moser ¢-family if and only if ¢ (eu) = foj(eu). So the first statement follows

from (18.2.1).

For the second statement, note that eu acts on .%;; by multiplication by s’(eu) = E;.
So, modulo tlgﬁ (or %), the element s’(eu) is congruent to dk; = fo,-(eu). Hence,
if w is an G[¢J-orbit in {1,2,...,d}, then C = {s' | i € w} is a Calogero-Moser left,
right or two-sided €-cell (see Corollary 18.4.4) and, as a two-sided cell, it covers the
Calogero-Moser €-family {¢ | i € w}. Since Mlgﬁ//l left(¢~7) is an absolutely simple
MEtH"*"-module (because it has dimension |W), it must be isomorphic to £;"(C).
This shows that [ C ]gM =Y, & d

icw
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18.5. Complements

We will be interested here in geometric properties of Z (smoothness, ramifica-
tion) and in the properties of the group D,. To simplify the statements, we will
make the following assumption:

Assumption and notation. In this section, and only in this section, we
will assume that k is algebraically closed. We will identify the variety
Z with

a
Z={(ky,..., kg, x,y,€) € AW | ky+-+ky =0 and | [(e—dk;)=xy}.
i=1
Similarly, & (respectively 6 ) will be identified with the affine space
P ={(ky,....,kz, %, 7)€A?K) | ky +---+ k; =0}
(respectively
€ ={(ki,....ks) €AMW | ky +---+ ks =0} ),
which allows to redefine
T: % — P
(kyy..o kg, x,y,e) — (ky,.... kg, x,¥).

Finally, we denote by Z g, the singular locus of Z and % ., the ramifi-
cation locus of Y.

18.5.A. Smoothness. — Let us start by the description of the singular locus of Z:

Proposition 18.5.1. — Given 1<i < j<d, let Z,;; = {(ky,....ks, x,y,e)e Z | e =
dk;=dk;jand x =y =0}. Then
gsing = U gi,j'
1<i<j<d
Moreover, %, ; ~ A**(k) is an irreducible component of % gng and % g is purely of codi-
mension 3.

Proof. — The variety Z being described as an hypersurface in the affine space
{(ki,.... kg, x,y,e)€ AYB(K) | ky+--+k; =0} ~ A9(k), a point of z = (ky,..., ks, X, y,e) €
% is singular if and only if the jacobian matrix of the equation vanishes at z. This is
equivalent to the following system of equations:

x:y:(),
V1<i<dTule—dk)=0
i 1jxle—dk)=o0.
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The last equation is implied by the second family of equations, it is then easy to
check that Z;,, is as expected.
The last statements are immediate. O

Corollary 18.5.2. — Given ¢ € 6 and z € %, then z is singular in % if and only if it is
singular in % ..

18.5.B. Ramification. — The variety Z being normal, the variety # being smooth
and the morphism Y : Z — 2 being finite and flat, the purity of the branch lo-
cus [SGA1, Exposé X, Théoreme 3.1] tells us that the ramification locus of T is
purely of codimension 1. It is in fact easily computable:

Proposition 18.5.3. — Let z =(ky,..., kg, x,y,e)e Z and p =(ky,..., ks, x,y)=Y(z) €
P . Let Fy, ,(t) € K[t] denote the specialization of F,(t) at p. Then Y is ramified at z if and
only if F,;, (e)=0, that is if and only if e is a multiple root of Fe, .

Proof. — Since Z = P[t]/{Fy(t)) (see Theorem 18.2.4), this follows immediately from [SGA1,
Exposé I, Corollare 7.2]. O

Corollary 18.54. — Let ¢ = (ky,...,k;) € € and (x,y) € A*(k) (so that (c,x,y) € P).
Then (¢, x,y) € Y(Z am) if and only if Ay(0,0,(c),...,04-1(c),04(c)—(=1)?xy)=0.

18.5.C. About the group D.. — Amongst the groups D,, the only one we use is
Dy. In this subsection, we will show that, even when n = dimy(V) =1, the groups D,
have a very subtle behaviour.

The material of this subsection §18.5.C has been explained to us by G. Malle (any
errors being of course our responsibility). We thank him warmly for his help.

Fix ¢ € €, and let E¢(t) € k[X, Y][t] denote the specialization of F,(t) at c. Note
that D, is the Galois group of F¢(t), viewed as a polynomial with coefficients in the
field k(X, Y). Actually, we have F¢(t) e k[T][t], where T = XY. The following result
will be helpful for computing D,.

Lemma 18.5.5. — D, is the Galois group of E(t) viewed as a polynomial with coefficients
ink(T).

Proof. — If L is a splitting field of E¢(t) over k(T), then the field L(Y) of rational
functions in one variable is a splitting field of the same polynomial over k(7,Y) =
k(X,Y). The result follows. O
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Corollary 18.5.6. — The subgroup D, of G =&, contains a cycle of length d.

Proof. — Thanks to Lemma 18.5.5, we may view F(t) as an element of k[ T'][t]. Since
k has characteristic zero and k[T] is regular of dimension 1, the inertia group at
infinity I is cyclic. Since d > 2, the polynomial F¢(t) is totally ramified at infinity,
which implies that I acts transitively on {1,2,...,d}. Whence the result. ]

Corollary 18.5.6 gives very restrictive conditions on the group D,. For instance,
we have the following results, the first of which is due to Schur, the second one to
Burnside.

Corollary 18.5.7. — (a) If d is not prime and D, is primitive, then D, is 2-transitive.
(b) If d is prime, then D, is 2-transitive or D, contains a normal Sylow d-subgroup.

We will give now some examples that show that the description of D, in general
can be rather complicated. In the following table, we assume thatk=C, and ¢ € ¢ is
chosen so that E¢(t) € Q[t]. We will denote by D@ the Galois group of E(t) viewed
as an element of Q[t]: it might be different from D,, as it is shown by table. We
denote by Fr),, the Frobenius group (Z/rZ)x (Z/pZ), viewed as a subgroup of &,
where p is prime and r divides p —1.

E() D@ D,
(> +20t+180)(t>—5t—95)* — X Y Aut(2g) Aut(2g)
(t+1D*t—2?*(—3t—14)— XY (635163)NAqy | (G52163)N A,
t(t?+6t*+25)— XY Ag Aq
t(t*+6t2+25°2 - XY A Ay
-9t +27°—3063+9t— XY G3 X (Z/3Z)* | &3 % (Z/3Z)?
t' =119+ 44 — 77 + 558 — 11t— X Y Fryo Fr,,
t13—13t11 +65t°— 156t + 182 — 913+ 13t— X Y Fris6 Fryg

To prove the results contained in the table, let us recall some classical facts:

(a) D, is a normal subgroup of D,
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(b) The computation of DX in all the cases can be performed thanks to the MAGMA
software [Magma].

(c) Since there are no non-trivial unramified coverings of the complex affine line,
the group D, is generated by its inertia subgroups.

(d) Given z € C, let E2%(t) denote the specialization T — z of ES(t). If a € Cis a
root of E%*(t) with multiplicity m, then D, contains an element of order m.

From these facts, the result in the table can be obtained as follows. Let A.(T) €
k[T] denote the discriminant of the polynomial FE¢(t).

(1) The computation of D@ in the first example is done in [MalMatz, Theorem 1.9.7].
Note that, to retrieve the polynomial of [MalMatz, Theorem 1.9.7], one must
replace t by 2t—5, and renormalize: this operation allows to obtain a polyno-
mial whose coefficient in t” is zero, as must be the case for all the F¢(t). Going
from Q to C then follows, as this example comes from a rigid triple.

(2) In the second example, the MAGMA software tells us that D/Q = (&3 6;) N y.
On the other hand, D, is a normal subgroup of DC(Q). Moreover, —1 is a root of
E&0(t) with multiplicity 4, so D, contains an element of order 4 (see (d)). It also
contains an element of order 9 (see Corollary 18.5.6). But D© contains only
one normal subgroup containing both an element of order 9 and an element of
order 4, namely itself. So D, = D.

(3-4) In the third and fourth examples, the equality D@ = 2 is obtained by the
MAGMA software. The fact that D, =2 follows from the fact that D, is normal
in D@ and contains an element of order 9.

(5) Once the computation of DC(Q) done by the MAGMA software, note that
ES*(t)=(t—2)(t+ 1)t —3t+ 1),

This allows to say, thanks to (d) and Corollary 18.5.6, that D, contains an ele-
ment of order 9 and an element of order 2. So 18 divides |D,|. But DC(Q) does not
contain any normal subgroup of index 3 and containing an element of order 9.

(6-7) The last two examples can be treated similarly. We will only deal with the last
one. In this case, thanks to the MAGMA software, we get

A(T)=133(T—2)%T +2)°.

This discriminant is not a square in Q(7T), but it is a square in C(T). The non-
trivial inertia groups in D,, except the inertia group at infinity, lie above the
ideals (T —2) and (T +2). But,

FS2(1) = (t—2)(t° + 15— 5t* — 46> + 66> + 3t— 1)
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and

ES2(t)=(t+2)(t° - —5t* +4¢° + 66" — 3t — 1)°.
So the inertia groups have order 2, which shows that D, is generated by its
elements of order 2. So D, =Fr..

18.5.D. Cohomology. — We assume in this subsection that k= C. We aim to prove
the following result:

Theorem 18.5.8. — If dim¢(V)=1, then Conjecture COH holds.

Proof. — Let ¢ € 6 and let k,,..., k; be the images of K;,..., K; in C[4]/¢.. We
put r =% fxl =|{ky, ks, ..., k;}|. The equations defining %, show that it is rationally
smooth (it has only type A singularities). So it follows from the Proposition 18.5.9
below that

1 ifi=0,
dimcH (Z,)={r—1 ifi=2,
0 otherwise.
On the other hand,
1 ifi=0,
dimegr(imQ°)' ={ r—1 ifi=2,
0 otherwise.

So, both H**(Z ;) and gr(ImQ°) are isomorphic to the graded algebra klay, ..., a,;1/(a;a;)1 <1 ; < r—1,
with a;’s in degree 2. O

In order to complete the proof of Theorem 18.5.8, we fix an infinite sequence
of non-zero natural numbers d,, d,,..., as well as an infinite sequence z,, z,,...of
complex numbers such that z; # z; if i # j. We set

%(r)={(e,x,y) € A¥C) | ]__[(e—z,-)di =xy}.

First, note that Z'(r) admits an automorphism o : Z'(r) — Z'(r), (e, x,y) — (e, y, x).
It is an involution. So o acts on the cohomology of Z'(r). We denote by C, (respec-
tively C_) the C{o)-module of dimension 1 on which o acts by multiplication by 1
(respectively —1). Finally, if z € C, we set

X(r).={le,x,y)eZ(r)| e#z}

and XL, ={le,x,y)eX(r)| e==z}.
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These are o-stable subvarieties of Z'(r). The following result describes the coho-
mology of Z(r) as a C(o)-module. We denote by H.(Z (r)) the i-th cohomology
group with compact support of Z'(r).

Proposition 18.5.9. — With the above notation, we have:
(a) The cohomology with compact support of X (r) is given, as a C{o)-module, by
H2 (2 (r)=C!,
H}(Z (r)=0,
H} (2 (r))=C,.
(b) If r #1 or z # z,, then the cohomology with compact support of X (r) is given, as a
C(o)-module, by

2 _ (Ci l:fz¢{Z1,Z2,...,Zr},
Hc(%(r)#z)_{(ci—l Z:fZG{Zl,Zg,...,Zr},
Hi(%(r)#z):(c+;

H (2 (1)) =C,.

(c) Finally,

(1)
Hi(‘%’(l)#zl) = C+ GB(C—)
(

H2(2(1),,,)=C’,
HA(2(1).,,)=C,.

REMARK - As Z(r) and Z(r),, are affine surface, their cohomology with compact
support vanishes in degree different from 2, 3 or 4. m

Proof. — We first gather some elementary fact which will allow a proof of this The-
orem by induction. If A€ C, let
A5 ={(x,y)eC’ | xy =2}
It is endowed with an action of o given by (x, y) — (y, x). Then it is well-known
that
Hi(%k) = (C—y

C if A#0
H2(A;) =1 © ’
() {C+®C_ if 1=0.

(&)

Also, the quotient of C* by the action of o given by (x, y) — (¥, x) is isomorphic to
C?, through the map (x, y) — (x+y, xy). Therefore, by setting u=x+y and v=xy,
we obtain that

x(r)/(o)={(e,u,v)eC? | ]__[(e—z,-)di =},
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SO

() x(r)/{o)~C".

On the other hand, there is an obvious isomorphism of varieties
(©) () W

which is o-equivariant. Finally, if £ denotes a complex number such that &* =
1= (2, —2;)%, then the map

%(r)#zr - ‘%’(r_l)fzr

(&) (e,%,7) — (e,&x,E )

is a o-equivariant isomorphism of varieties.
We can now start the proof of the proposition by induction on r.
o If r =1, then, if we translate e — e — z;, we may assume that z; =0. Then
Z2(1)={e,x,y)eC® et =xy}~ C*/uy,,
where the group w,_, of d;-th roots of unity in C* acts on C* by by ¢-(x,y) =
({x,Z7'y). So the cohomology of Z'(1) is equal to the space of invariants, under the

action of u, , of the cohomology of C?. So (a) follows. Now, the “open-closed” long
exact sequence gives, by using (9), the following exact sequence of C(o)-modules

0

Hi(%zdl) -

H2(X (1)) — HAX (1)) — HZ (A ) —

HY(2 (1)) — HY(2 (1) 0

H} (2 (1)) — H(2'(1)) 0
But, by (a), H%(2'(1)) = H3(2'(1)) =0, so (b) follows from (¢b).

e Let r > 2 and assume that the result cohomology of Z'(r—1)is given by Proposi-
tion 18.5.9. If z € C, let A(z) = ]_[;zl(z —z;)%. The “open-closed” long exact sequence
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gives, by using (9), the following exact sequence of C(o)-modules

0

H! (A3,) —

H2(2 (r),) — H2(Z (1)) —= H2(H ) —
(%)

H3 (2 (1)) —= HY(Z (1)) 0

H{(Z(r)y) — H(2'(r)) 0
Assume first that z = z,. Then A(z) =0 and, by (#), Z'(r);, ~ %X (r —1),, . Using the
induction hypothesis and (&), the exact sequence (x) becomes
0—C_—C ' —H)Z(r)—C,eC_.—C, —H}(Z(r))— 0— C, — H}(2Z(r) —0.
But it follows from () that H (2(r))” =0 if i €{2,3}. Since the map C, — H3(2'(r))

is surjective, this forces Hi (Z(r))=0. Also, Hi(% (r))=C! for some [ so, taking the
C_-isotypic component in the above exact sequence yields an exact sequence

0—C_—C'—cl—c.—o.
So | =r—1, as desired. This proves (a).

Now, if z €{z,, z,,...,z,} then, by symmetry, we may assume that z = z, and the
isomorphism (#) yields (b) in this case by the induction hypothesis. Now, assume
that z ¢ {z1,2,,...,2,}. Then A(z) # 0 and it follows from (a) that the exact sequence
(%) becomes

0— C_— H3(Z(r);,) — C ' — C, — H3(2 (r).) — 0— 0— H2(Z/(r).) — C, — 0,

So (b) follows because the maps are o-equivariant. O






CHAPTER 19

TYPE B,

Assumption and notation. In §19, we assume that dim, V =2,
we fix a k-basis (x,y) of V and we denote by (X,Y) its dual basis.
Let s and t be the two reflections of GL(V') whose matrices in the
basis (x, y) are given by

(01 PR Co
8—10 an =\lo 1)

We assume moreover that W = (s, t): it is a Weyl group of type B,.

19.1. The algebra H

Weset w=st, w' =ts,s’=tst,t'=stsand wy=stst =tsts=—Id,. Then

Moreover,

The matrices of the elements w, w’, s’, t" and wj in the basis (x, y) are given by

(19.1.1)

W={l,s,t,w,w’, s’ t', w} and Ref(W)={s,t,s’, t'}.

Ref(W)/W ={{s,s'}, {t, t'}}.

( L 0 1
w=st=st'= ,
-1 0

w=ts=t's'= 0 -
1 0)

— e
h\
Il
o~
(%}
o~
Il
I
— (e}
I
e o
N—
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We set K, =—C,/2 and K, =—C,/2 (as in §6.2.B). Weset A=—C, =2K; and B=—C, =
2K, so that, in H, the following relations hold:

[x,X]=A(s+s)+2Bt,
[x,Y]=A(s"—5),
[y, X]=A(s"—5),
[y, Y]=A(s+s')+2Bt’.

(19.1.2)

We deduce for example that

r[x,Xz] =A(s+s)X+A(s—s')Y,
[x,XY]=2BtY,
[x,Y?]=—A(s + )X —A(s — s")Y,
[y, X?]=—A(s +s)Y —A(s — s")X,
[y, XY]=2Bt'X,

Bz Y2|=A(s+s)Y +A(s—s)X.

(19.1.3) 3

. . . . . -1 1
Finally, note that H is endowed with an automorphism r corresponding to ( ) €

1 1
N
Y—X X+Y

nx)=y—x, nly)=x+y, MXFP—E—, ny)=

nA)=B, n(B)=A4, n(s)=r and nls)=r.

19.2. Irreducible characters

Let &, (respectively ¢,) denote the unique linear character of W such that &(s) =
—1 and &,(t) = 1 (respectively ¢,(s) = 1 and ¢,(t) = —1). Note that ¢;¢, =¢. Let y
denote the character of the representation V of W. Then

Irr(W): {1;85;5}’8’%}

and the character table of W is given by Table 19.2.1. The fake degrees are given by

(f=1,
fe. (=1,
(19.2.2) { fe, =1,
L=t
L=t+¢
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g 1 Wy S t w
|Cly (g)l 1 1 2 2 2
o(g) 1 2 2 2 4

Cw(g | W | W |(ss)]| ()| (w)

1 1|1 1 1 1
£, 1|1 | -1 1 | -1
&, 1|1 1 -1 | -1
¢ 1| 1| -1] -1 |1
¥ 2 | =2 o0 0 0

TABLE 19.2.1. Character Table of W

19.3. Computation of (V x V*)/AW
Before computing the center Z of H, we will compute its specialization Z, at
(A, B)—(0,0). By Example 4.4.5,
Zy=k[V x V¥]AW,
Thanks to (19.2.2) and Proposition 2.5.10, the bigraded Hilbert series of Z; is given

by
1 +tu+ tu® +262u® + tu+ S’ + ttu?
19.3.1 dimZ*%(Z,) =
(19.3.1) my (%) 1—2) (1l —t)(1—u)1—ud)
Set
o=x*+y* m=x*y? X=X*+Y? and II=X°Y%
Then
(19.3.2) KV"=Ko,7]  and  KV]Y =KX,

So the bigraded Hilbert series of P, =k[V x V*|">*W =Kk V]V o kK[ V*]" =k[o, 7, %, II]
is given by

1
1-e)1-t)1-u?)1—u?)

(19.3.3) dimZ*(p,) =
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Now, set

euy=xX+yY, ew)=(xY +yX)XY, eu) =xy(xY +yX), eu)'=xy(xX+yY)XY,
0p=xyXY, 6,=(x"—y*)(X*—Y?) and Ay=xy(x*—y?)XY(X*—Y?).

It is then easy to check that the family (1, eu,, eu;, eu;, eu;’, 6, 66,A0) is P,-linearly

independent and is contained in k[V x V*]2W. On the other hand, 1, eu,, euy, eu,,

eug’, 0, 66 and A, have respective bidegrees (0,0), (1,1), (1,3), (3,1), (3,3), (2,2),

(2,2) and (4,4). So the bigraded Hilbert series of the free P,-module with basis
(1,eup, eu),eu),eu’,d,,0,,A,) is equal to the one of Z, (see (19.3.1) and (19.3.3)).
Hence

(19.34) KVxV*]*"=PePeu®Peu,oPeu,dPeu, ®P.5,®P6,oPA,.

The following result, already known (see for instance [AlFo]), describes the algebra
Zy:

Theorem 19.3.5. — Z, = K[V x V*]*V =Ko, 7, 3,11, eu,, euy, eu/, 8,] and the ideal of
relations is generated by the following ones:
(

(1) eu, eu, =oll+X 6,
(2) eu, eu; = X7 +0 b,
(3) 0, eu; =1l euy,
(4) 0, euy =T eu,
3 (5) o> =mnll,
(6) eu; =11(4 6,—eu; +0),
(7) eu’ =74 6,—eu’ +0Y),
(8) eu) eu; =4nll+0X 6,—06, eus,
L(9) euy(4 6,—eu;+0X)=0 eu; +X euy.

Moreover, Zy=P & Peu,® Peu;® P6,® Po,eu,® Po,eu; ® Peu & Peu.

Proof. — It is easily checked that

(19.3.6) 6,=2eu.—0X—46, A;=6,6, and eu) =§, eu,.
According to (19.3.4), these three relations imply immediately that k[V x V*]AW =
klo, m, %, 11, euy, euy, euy, 6, ). This shows the first statement.

The relations given in Theorem 19.3.5 follow from direct computations. Taking (5)
into account, the relation (8) can be rewritten

(8 eu) eu; =6,(4 6,+0X—euw),
whereas (6) and (7) imply

(10) meu; =1l eu;’.
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Let E, E’, E” and D be indeterminates over the field k(o, 7, >, 1) and let
p:kKo,n,%IL,E EE’,D]— K[V x V*]*W

denote the unique morphism of k-algebras which sends the sequence (o, 7, %11, E, E, E”, D)
to (o, m, %11, euy, euy, euy, 6,5). Then p is surjective. Let f; denote the element of

klo,n, 3,11, E, E’, E”, D] corresponding to the relation (i) of the Theorem (for 1 < i <9),

by subtracting the right-hand side to the left-hand side. Set

I={h b oo fus J5: Jor oo Joo Jo) C Kerp.
Let Z,=klo, 7, %I E,E',E”,D]/J and let e, e/, ¢” and d denote the respective im-
ages of E, E/, E” and D in Z,. Set
Z;=P.+P,e+Pe’+Pe'+Pe"+Pd+Pde+Pde’.
Then Z] is a k-vector subspace of Z,. The relations given by (f;), < <9 show that Z;
is a k-subalgebra of Z,. As moreover o, 7, ¥, 11, e, e/, e’ and d belong to Z(;, we
deduce that Z,=Z/.
Consequently, Z, is a quotient of the graded k-vector space
and Z, is a quotient of Z,. As the Hilbert series of the k-vector space & is equal to
the Hilbert series of Z,, we deduce that
Z;=P.®oPedPe’®Pe ®Pe"®P.doPdedPde’
and that Z, ~ Z,. This shows that Kerp =7, as desired. O

Corollary 19.3.7. — The relations (1), (2),..., (9) is a minimal system of relations. In
particular, the k-algebra Zy=k[V x V*]*W is not complete intersection.

Proof. — Let us use the notation of the proof of Theorem 19.3.5. It is sufficient to
show that (f;); <; < is @ minimal system of generators of J. Let Z; = Zy/(o, 7, %, 1I)
and let e, e/, ¢” and d denote the respective images of eu,, eu;, euj and 6, in Z.
Then it follows from (19.3.2) and from the relations (19.3.6) that

Zo=kokeoke’oke’ ke’ okd @ kde ®kde®.
Let f; €k[E,E’, E”, D] denote the reduction of the polynomial f; modulo (o, 7, %,1I).

We only need to show that (f;); < ; <9 is @ minimal system of generators of the kernel
of the morphism of k-algebras

p:KE,E E",D]— Z,
which sends E, E’, E” and D on e, e’, e” and d respectively.

The algebra N = k[E, E’, E”, D] is bigraded, with E, E’, E” and D of respective
bidegrees (1,1), (1,3), (3,1) and (2,2), and the elements fir.nr fo are homogeneous of
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respective bidegrees (2,4), (4,2), (3,5), (5,3), (4,4), (2,6), (6,2), (4,4), (3,3). We deduce

that
(Zlkﬁ-)ﬂ(ZMﬁ) c (Zlkﬁ)ﬂ(ZIkEﬁ)

Since all these spaces are bigraded, this intersection is contained in
(kH)NKE i)+ (Kf)N(KE f;)+ (kfs + k)N (KE f).

Since E divides neither f; nor f;, nor any non-zero element of kf; +kf;, we conclude
that (Z?:lk fi)n (Z?:l N,f;) =0, s0 (fi)i<i<s is @ minimal system of generators of
Kerp. L

Corollary 19.3.8. — The minimal polynomial of eu, over P, is
t*—20% €+ (0?2? +2(0’ 1+ X — 8nlD)) t* — 20 % (0 * T+ X2 — 87ll) € + (02 TT— 221
Proof. — By multiplying the relation (9) by eu, and by using the relations (1) and (2),
we get

ew, (46, +oX—ew))=0’l1+ X’ +20%8,.
We deduce immediately that

0o(4eu; —20%) =eu,—oXeu, + o I+ °m.

Taking the square of this relation and using the relation (5), we get that the polyno-
mial of the Corollary vanishes at eu,. The degree of the minimal polynomial of eu,
over P, being equal to |[W| =8, the proof of the Corollary is complete. O

19.4. The algebra Z

Recall that
eu=xX+yY—A(s+s)—B(t+1)

and set
e =(xY+yX)XY+A(s—s)XY—BtY>—Bt'X?,
e’ =xy(xY+yX)+Axy(s—s')—By*t—Bx?*t/,
6=xyXY—Bxt'X—BytY + B*(1+ wy)+AB(w + w’).

A brute force computation shows that

(19.4.1) eu,eu’,eu’, 0 € Z=7(H)
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and that the following equalities hold:

(Z1) eueu =0ll+X o,
(22) eueu'=Xn+0 0,
(Z3) 6 eu’' =1l eu” + B?Y eu,
(Z4) 6 eu’ =7 eu + B%0 eu,

(19.4.2) {(Z5) 6° = nll+ B? eu?,
(Z6) eu’=1II(4 6 —eu’+0oX +4A>—4B?)+ B?Y?,
(Z7) eu”’=m(4 6 —eu’>+0X +4A>—4B?)+ B%0?,
(Z8) eu eu’=6(4 6 —eu>+0X +4A*2—4B?)— B%0Y,
(Z29) eu(4 6 —eu’ +0X+4A>—4B?)=0 eu' + X eu”.

We immediately see that eu,, eu), eu; and 6, are the respective images, in Z, =

Z[poZ, of the elements eu, eu/, eu” and 6. On the other hand, the relations (1),
(2),..., (9) of Theorem 19.3.5 are also the images, modulo p,, of the relations (Z1),
(Z22),...,(29).

Theorem 19.4.3. — The k-algebra Z is generated by A, B, o, 7, X, 11, eu, ew’, eu” and o.
The ideal of relations is generated by (Z1), (Z2),..., (Z9).
Moreover, Z =P ® Peu® Peu’® P6 ® Péeu® Poeu’ ® Peu’ ® Peu”.

Proof. — The proof follows exactly the same arguments as the ones of Theorem 19.3.5,
based in part on comparisons of bigraded Hilbert series. O

Corollary 19.4.4. — The relations (Z1), (Z2),..., (29) is a minimal system of relations. In
particular, the k-algebra Z is not complete intersection.

Proof. — This follows immediately from Theorem 19.4.3, using the same arguments
as in the proof of Corollary 19.3.7. O
Corollary 19.4.5. — The minimal polynomial of eu over P is

t?—2(0 X +4A%+4B%) t°+(0° 2% + 2(0* T+ X —8711) + 8(A* + B*)o =+ 16(A°— B*F*) t*
—2((0= +4A*—4B*) (0?1 +X*1)—80 Xnll + 2B*0*Y?) £ + (0TI — X2 1)

Proof. — The proof follows exactly the same steps as the proof of Corollary 19.3.8,
but by starting with the relations (Z1),..., (Z9) instead of the relations (1),..., (9). O
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z€Z eu eu | eu” 0

Q, | 2B+4) | 0| 0 |2B(B+A)

2(B—A) | 0 | 0 |2B(B—A)

—2(B—A)| 0 | 0 |2B(B—A)

Q, |-2B+A4)| 0| 0 |2B(B+A)

TABLE 19.5.1. Table central characters of H

Acknowledgments — The above computations (checking that eu, eu’, eu” and o
are central, and checking the relations (Z1),..., (Z9)) have been done without com-
puter. Even though we have been very carefully, the heaviness of the computations
imply that it might happen that some mistakes occur. However, U. Thiel has de-
veloped a MAGMA package (called CHAMP, see [Thi3]) for computing in the algebra
H: hence, he has checked independently that the elements eu, eu’, eu” and ¢ are cen-
tral and that the relations (Z1),..., (29) hold. We wish to thank warmly U. Thiel for
this checking: he has also checked that the minimal polynomial of eu is given by
Corollary 19.4.5. m

19.5. Calogero-Moser families

The Table 19.5.1 gives the values of Q2 (for y € Irr(W)) at the generators of the
P-algebra Z. They are obtained by computing effectively the actions of eu, eu’, eu”
and o or by using Corollary 5.4.2 and using the relations (Z1),..., (Z9) (knowing that
Q,(0)=Qy (1) =, (X)=Q,I1)=0).

Now, let K be a field and fix a morphism k[6] — K. Let a and b denote the
respective images of A and B in K. The previous Table allows to compute imme-
diately the partitions of Irr(W) into Calogero-Moser K-families, according to the
values of a and b. The (well-known) result is given in Table 19.5.2.
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Conditions K-families
a=b=0 Irr(W)
a=0,b#0 {1,e)}, f{e,e} et {y}
a#0,b=0 (e}, f{e,e} et {y}
a=b#0 {1}, {e} et {e,e,x}
a=—b#0 e}, {e) et {Ley}
ab#0,a*#b* | {1}, {e}, e}, {e} et {y}

TABLE 19.5.2. Calogero-Moser K-families

19.6. The group G

Since w, =—Idy belongs to W (and since all the reflections of W have order 2), the
results of § 10.5 can be applied. In particular, if 7o =(—1,1,¢) e k* xk* x W*, then 7,
can be seen as the element wy, € W — G and is central in G (see Proposition 10.5.2).
Hence, by (10.5.3), we get

GCW,

where W, is the subgroup of &y, consisting of permutations o of W such that
o(—x)=—o(x) for all x € W. We denote by N, the (normal) subgroup of W, con-
sisting of permutations o € W, such that o(x) € {x,—x} for all x € W. Then, if we set
up ={1,—1},
N, ~ (H2)4-

Moreover,

|W,| =384 and |N,| =16.
Let &)y : &y — u, = {1,—1} be the sign character and let W/ = W,NKere,, and N, =
W/NN,. Then

N, = {(11,M2,05,Na) € ()" | mnansng =1} = (u,)*.
Moreover,
|W,)| =192 and IN,|=8.
Recall that H is identified with the stabilizer, in G, of 1 € W. Moreover, G contains

the image of W x W in &y,. This image, isomorphic to (W x W)/AZ(W), has order
32 and its intersection with H, isomorphic to AW /AZ(W)~ W /Z(W), has order 4.
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The elements (s, s) and (¢, ¢) of W x W are sent to distinct elements of N,. So H NN,
is a subgroup of N, of order 4. Since (wy, 1) is sent to an element of N, which does
not belong to H, we deduce that

N4’CG.

Let f(t) € P[t] denote the unique monic polynomial of degree 4 such that f(eu?)=
0 (it is given by Corollary 19.4.5). According to (B.7.1), we have

disc(f(t*)) =256 disc(f)? - (o*TI—X2m)?,
and so the discriminant of the minimal polynomial of eu is a square in P. Hence,
Gcw,.

We will show that this inclusion is an equality.

Theorem 19.6.1. — G = W4’.

Proof. — It is sufficient to show that |G| =192. We already know that N, c G ¢ W/,
which shows that G NN, = N,. To show the Theorem, it is sufficient to show that
G/N]~&,. But, G/N; = G /(G NN,) is the Galois group of the polynomial f. So we
only need to show that the Galois group of f over K is &,. Let G denote this Galois
group.

Letp=(0—2,%+2,A—1,B,I—7). Then p is a prime ideal and P/p ~k[r]. Let f
denote the reduction of f modulo p. Then

fO) =t +(16m—167*)t—64 1)
So, by (B.7.2), we have
disc(f) = (647°)* - (—4(16 1 — 16 7°)* —27 - (—64 1)) =2 ' (m—4)2 T + 1),

So the discriminant of f is not a square in k[7t], which implies that the discriminant
of f is not a square in P. So G is not contained in the alternating group 2,.

Since f is irreducible, G is a transitive subgroup of &,. In particular, 4 divides |G|.
Moreover, if ¢ € 6 is such that ¢; = ¢, =1, then, by Table 19.5.2 and Theorem 12.2.7,
G admits a subgroup (the inertia group of t.) which admits an orbit of length 6. So
3 divides |G| and so 3 divides also |G|. Hence, 12 divides |G| and, since G ¢ ,, this
forces G =6,. O

Remark 19.6.2. — Recall that W, is a Weyl group of type B, and that W, is a Weyl
group of type D,. B
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19.7. Calogero-Moser cells, Calogero-Moser cellular characters

19.7.A. Results. — The aim of this section is to show that the Conjectures LR and L hold
for W. If a and b are positive real numbers and if ¢, = —a and ¢, = —b, then the
description of Kazhdan-Lusztig left, right or two-sided c-cells, of Kazhdan-Lusztig
c-families and c-cellular characters is easy and can be found, for instance, in [Lus4].

The different cases to be considered are a > b, a = b and a < b: by using the au-
tomorphism 1 of W which exchanges s and ¢, we can assume that a > b > 0. The
Conjectures LR and L then follow from the description of Calogero-Moser left, right

or two-sided c-cells, of Calogero-Moser c-families and c-cellular characters given

in Table 19.7.2:

Theorem 19.7.1. — Let ¢ € 6, set a =—c, and b = —c, and assume that ab # 0. Then
there exists a choice of prime ideals v'*" C . such that the Calogero-Moser left, right or two-

sided c-cells, of Calogero-Moser c-families and c-cellular characters given by Table 19.7.2.
Consequently, Conjectures LR and L hold if W has type B,.

NOTATION - In Table 19.7.2, we have set
L, ={t,st,ts,sts}, T;z{t,st}, F;:{ts,sts}, I, ={s,ts,sts}etl,={t,st,tst}.

Moreover:

e W, =H denotes the stabilizer of 1€ W in G = W, and W,’ denotes the stabilizer
of s in W,. Note that W)’ (respectively W)’) is a Weyl group of type D; = A,
(respectively D, = A; x A;).

¢ &; denotes the subgroup of W, which stabilizes I (this is also the stabilizer of
I;): it is isomorphic to the symmetric group of degree 3.

e Z/27Z denotes the stabilizer, in W, of 1“; (or l“;). [ |

We will now concentrate on the proof of Theorem 19.7.1: we will first start by the
generic case, by running over the descending chain of prime ideals p D p' > (7).
The use of the ideal () will help us to remove some ambiguity for the computa-
tion of Calogero-Moser left cells. It is natural to ask whether this method can be
extended, since the prime ideal (7r) is not chosen randomly: it is the defining ideal
of a W-orbit of hyperplanes in V*.

After studying the generic case, we will specialize our parameters to deduce The-
orem 19.7.1. The most difficult step is the computation of left cells (see for instance
Proposition 19.7.23).
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Conditions | B, = L. Two-sided cells y | dimez, )| ren | Dl Left cells
r IT| | Tere(W) c (lclfei™
1 1 1y (1w 8 1 |1 1y
’ w 1 £ £ 8 w 1 £
wh | " : z/2z | Wy |-
s 1 g | e 8 s 1 &
Wo S 1 e e 8 wps | 1 &
Tt 2
T, 4 b4 X 8 X X
r, 2 X
1 1 1y (1w 8 1|1 1y
a?bz;ébo Wy wy 1 £ £ 8 S, S, | Wo 1 €
£ 1 I 3 | &+y
w 1, W, 6 &g, &y,
ML un} txst 1 I; 3 | g+y
X 6
TABLE 19.7.2. Calogero-Moser cells, families, cellular characters
Notation. If z € Z (or q € Q), we denote by E,(t) (or F,(t)) the
minimal polynomial of z (or q) over P. If F(t) € P[t], we will denote
by F(t) (respectively F'*(t), respectively F™(t)) the reduction of F(t)
modulo p (respectively p't, respectively (r)).
19.7.B. Generic two-sided cells. — We set eu = cop(eu), eu’ = cop(eu’), eu” = cop(eu”)

and 6 = cop(0). Recall that p = (o 7, %, 1), that 3 = Ker(2,) and that § = cop(3): ac-
cording to Table 19.5.1, we have

(19.7.3) §=pQ+(eu—2(A+B),6 —2B(A+ B),eu’,eu”),.
Also, Q/q=P/p=Kk[A, B]. Recall that
(19.7.4) F,()=t'(t+2(A+ B))(t+2(B—A))(t—2(A+ B))(t—2(B — A)).

Recall also that, since w, =—Id, € W and that W is generated by reflections of order
2, we have eu,,, =—eu, for all v € W (see Proposition 10.5.2).

Lemma 19.7.5. — Let v € W\ {1, w,}. Then there exists a unique prime ideal T of R lying
over q and such that eu, =2(B— A) mod T.
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Proof. — Let us first show the existence statement. Let ¥’ be a prime ideal of R lying
over §: then eu=2(A+B) mod ' and eu,,, =—2(A+B) mod t". By (19.7.4), there exists
a unique element v’ € W\ {1, w,} such that eu,, =2(B —A) mod t.

Recall also that H is the stabilizer of 1 € W in G = W, C &y, this is also the
stabilizer of w,. Then H acts transitively on W\ {1, wy} (by Theorem 19.6.1) and so
there exists o € H such that o(v’) = v. Let t = o(¥'). Then t is a prime ideal of R
lying over § (since o € H) and eu, = 2(B—A) mod t. This concludes the proof of the
existence statement.

Let us now show the uniqueness statement. So let t and t’ be two prime ideals of
R lying over § such that eu, + 2(A— B) € tN¥. Then there exists o € H such that ¥’ =
o(t). We then have eu, = eu,,) = 2(A— B) mod t. By (19.7.4), we know that 2(B — A)
is a simple root of f(t),soo(v)=v. Consequently, o € I, where [ is the stabilizer of
v in H. By Theorem 19.6.1, I is the Klein group acting on W \ {1, w,, v, vw,} (note
that |I| =4).

Let D (respectively I) denote the decomposition (respectively inertia) group of t
(in G). By (19.7.4), we have I c D c I and it remains to show that I = I. But the
generic two-sided cell covering the generic Calogero-Moser family {y} has cardi-
nality y(1)? =4, and it is an orbit under the action of I. So |I| >4 =|I|. Whence the
result. O

As a consequence of the proof of the previous Lemma, we obtain the next result:

Corollary 19.7.6. — Let v e W\ {1, w,}. Let t denote the unique prime ideal of R lying
over q and such that eu, =2(B—A) mod t. Let D (respectively I) denote the decomposition
(respectively inertia) group of © in G. Then:
(@ D=I={reG|t(l)=1and t(v)=v}~7Z/27 x 7] 2Z.
(b) R/t=Q/q=P/p~K[A, B].
(c) The generic Calogero-Moser two-sided cells (with respect to t) are {1}, {w,}, {v},
{vwy} and W\{1, wy, v, vw,}. Moreover, Irry,(W)= {1y}, Irry, ,(W) = {€}, Irr(,,(W) =
{es}, Irryy, (W) ={g,} and Irr, (W) = {x}.

Choice. From now on, and until the end of this Chapter, we denote
by t© the unique prime ideal of R lying over § and such that eu; =
2(B—A) mod t.

With this choice,
(19.7.7) D=I=W/
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and the generic Calogero-Moser two-sided cells are {1}, {s}, {w,s}, {w,} and T, and

(W) = (L)

I (W) = {e,},
(19.7.8) { Irr{w s}(W)—{s },
(W) ={e},

{w}

LIHZ( )={x}

19.7.C. Generic cellular characters. — Recall that p'*t = (X, II) .

Lemma 19.7.9. — We have ¢ = p''Q + (eu—2(B + A),eu’— BX,eu”, 6 —2B(A + B)),,.

Proof. — Let q' = (eu—2(B + A),eu’— BX,eu”,6 —2B(A+ B)),. First of all, note that
Q/p'tQ is the P/p*t =k[A, B, X, [1]-algebra admitting the following presentation:

((Q1left eueu' =X 9§,
(Q2lefty eueu’ =0,
(Q3'eft 6 ew’ =II eu” + B>Y eu,
(Qaket) 5 eu” =0,
(19.7.10) { (Q5'f) 62=B%eu?,
(Q6'"f) eu” =TII(4 6 —eu®+4A?—4B?)+ B?Y?,
(Q7left) eu”? = 0,
(Q8'ft) eu’ eu” =6(4 6 —eu®+4A%*—4B?),
(Q9'et) eu(4 6 —eu®+4A>—4B*) =X eu”.

A straightforward computation shows that these relations hold in Q/q’. Let q” =
ptQ +q’. Then Q/q” ~Kk[X,I1, A, B] ~ P/p'!, s0 q” is a prime ideal of Q, containing
p and contained in § (by (19.7.3)). The result then follows from the uniqueness
statement in Corollary 8.2.4. O

Recall that the Calogero-Moser cellular characters can be defined without com-
puting the Calogero-Moser left cells, by using only prime ideals of Z (or Q) lying
over p't. Note also that

(19.7.11) EXM(t)=t*(t+2(A+ B))(t+2(B — A))(t—2(A+ B))(t—2(B — A)).

This equality allows us to construct other prime ideals of Q lying over p'ft:
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Lemma 19.7.12. — Set
fqlleft left = pleftQ + (eu—2(B + A),eu’ + BX, eu”,6 —2B(B+A))o,
et = p‘eﬁQ +({eu—2(B—A),eu’+ BY,eu”,6 —2B(B—A)),
{ g =p"Q +(eu+2(B—A),eu’ — BY, eu”,6 —2B(B—A)),,
qleft = p'Q + (eu+2(B + A),eu’ — BX,, eu”, § —2B(A+ B)),
qlxeft:pleftQ + (eu, e, 5)q.

Then:
left . . . .

(@) If y € Ire(W), then q. is a prime ideal of Q lying over p
Calogero-Moser cellular character is y.

(b) If y e Hom(W,k*), then queﬁ = Ker(Ql;’ﬁ) and Q/ queft = pleft,

() If we denote by e, the image of ew’ in Q/ q?ﬁ, then Q/ qk’ft =(P /pleﬁ)[eu’ | and the
minimal polynomial of ew, is t? —T1(4A% — 4B%)— B?X2.  In particular, [kQ(qle“) :
kp(p')]=2.

(d) If q is a prime ideal Q lying over p'*", then there exists y € (W) such that q= g™

left, The associated generic

Proof. — (b) is easily checked by a direct computation, and it implies (a) whenever
y is a linear character.

It follows from the presentation (19.7.10) of Q/p**Q that Q/qlxeft = (P/pleft)[eu;{]
and that the minimal polynomial of e, is t> —II(4A? —4B?)— B?X:2. Since this last
polynomial with coefficients in P/p'*® = k[X, I, A, B] is irreducible, this implies that
qlxBft is a prime ideal lying over p'*'. We deduce (c) and the first statement of (a). The
last statement of (a) follows from Theorem 13.5.1.

(d) follows from the fact that the sum of the already constructed Calogero-Moser

cellular characters is equal to the character of the regular representation of W. [

19.7.D. Generic left cells. — We will now lift the results about cellular characters
to results about left cells. The first one is a consequence of Theorem 19.7.12.

Corollary 19.7.13. — Let v be a prime ideal of R lying over ¢ and contained in ©

and let D' (respectively I'*) denote its decomposition (respectively inertia) group. Then
Dleft — I/Vzl and |Ileft| =2.

Proof. — First of all, by Corollary 13.1.3, we have D" c D = W;. It follows from
Lemma 19.7.12(c) that, if C is a generic Calogero-Moser cell contained in the generic
Calogero-Moser two-sided cell T covering the family {y}, then |C| =2 and |C"| =4.
In particular, 2 divides |I'®%| and 't ¢ D't by Proposition 13.2.5(b). The Corollary
follows. 0
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Corollary 19.7.14. — There exists a unique prime ideal v'*" of R lying over q'*% and con-
tained in t.
Proof. — Let ¢ and ¢! be two prime ideals of R lying over ¢ and contained in

t. Then there exists h € H such that ¢ = h(¢'"). We deduce from Proposition 13.1.2
that t = g(t). So h belongs to the decomposition group of t, which is the same as the
one of " (by Corollary 19.7.13). So tleft = ¢*ft, O

We will denote by ' the unique prime ideal of R lying over q'*
and contained in t. We will denote by D' (respectively I'*") its
decomposition (respectively inertia) group.

Corollary 19.7.13 says that
(19.7.15) Det'=w’ and | =2.

2

left ~, left ;o
Corollary 19.7.16. — R/c*"~Q/q;" is integrally closed.

Corollary 19.7.17. — {1}, {s}, {tst} and {w,} are generic Calogero-Moser left cells, and
their associated generic Calogero-Moser cellular characters are given by

[1]CM: 1W»
[S]CM =&,
[tst]M =g,

]CM

[LUO =E£.

Proof. — This follows from the fact that the subsets given in the Corollary are also
generic Calogero-Moser two-sided cells and that their associated generic Calogero-
Moser families are given by Corollary 19.7.6. O

Corollary 19.7.18. — The following congruences hold in R:

(eu=2(B+A) mod ¢,

s(eu)=2(B—A) mod t'ft,

{ tst(eu)=—2(B—A) mod ',
wy(eu)=—2(B+A) mod v’

| tlfeu)=st(eu)=ts(eu)=sts(eu)=0 modrt

left
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Proof. — By (19.7.11), the following congruence holds in R[t]:
() | [t—wlew)=t't+2(a+ B)(t+2(B—A)t—2(A+ B))t—2(B—A)) mod *"R[t].
wew

We already know that, since ¢t c ¢!*", that eu = +2(B + A) mod ¢"*". This implies
that s(eu) is congruent to 2(B — A), —2(B + A), —2(B — A) or 0 modulo . But, since
s(eu)=2(B—A) mod t by construction, this forces s(eu) =2(B —A) mod v’

The third and fourth congruences are obtained from the first two ones by noting
that ¢rst(eu) = wys(eu) =—s(eu) and wy(eu)=—eu.

The last one follows from (x). O

Corollary 19.7.19. — The following congruences hold in R:

(6=2B(B+A) mod ",

s(6)=2B(B—A) mod ',

{ tst(8)=2B(B—A) mod t*F,
wy(6)=2B(B+A) mod t'°f,

| 1(6)=5t(8)=15(58)=55(6)=0 mod t'eft

eu’ = BY mod ¢left,

s(ew’)=BY mod v,

and  { tst(ew’)=—BX mod ',

wy(eu’)=—BY. mod t'*f,

{ tlew'=stlew') =ts(ew') =sts(eu')? = B3(X?—4I1)+4A%TT mod v,

Finally, g(eu”)=0 mod " for all g € G.

Proof. — The equalities (Q1'"),..., (Q9'") are of course also satisfied in the algebra
R/p"™"R. Since p"R is a G-stable ideal of R, we can apply any element of G to the
equalities (Q1'"),..., (Q9""), and then reduce modulo t!*t. We deduce for instance
from (Q7'°") that g(eu”)=0 mod ¢ for all g € G, as desired.

Whenever g(eu)Z0 mod ', we deduce from (Q9'°") that 4g(5) = g(eu)>—4A?+4 B>
mod v, which allows to show that the congruences of §, s(8), st(6) and wy(6)
modulo ' are the ones expected. Moreover, if g€ W\ {1, s, tst, w,}, then g(eu)=0
mod t'*" and we deduce from (Q5') that g(6) =0 mod t'f.

Finally, whenever g(eu) # 0 mod ", the congruence of g(eu’) modulo '

is eas-
ily determined thanks to (Q1""), and is as expected. However, whenever g(eu) =0
mod v, then g(6) =0 mod " by the previous observations, and it follows from (Q6"")
that g(eu’)? = B?(X?—4II)+4A?Il mod t'°™, O

Lemma 19.7.20. — F“'(t) = (t— BX)*(t+ BX)?(t* — B>X% — 4 AT + 4 B*I1)2.

ew’
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Proof. — First of all, by applying the elements of W x W to euy e k[V x V*], we note
that euj has 8 conjugates, and so the minimal polynomial of eu;, over P, has degree
8. Consequently, F,,(t) has degree 8: it is in fact the characteristic polynomial of the
multiplication by eu’ in the free P-module Z. Hence,

()= | ]t~ w(ew)

wew

and the result then follows from Corollary 19.7.19. O

As a conclusion, if g€ {t,st,ts,sts} and if g € {eu,eu”, o} then

(19.7.21) g(g)=0 mod ¢
and
(19.7.22) g(euw')? = B?(X* —4I1) 4+ 4A%TT mod v,

The next Proposition makes the congruence (19.7.22) more precise: it is the most
subtle point of this Chapter.

Proposition 19.7.23. — The following congruences hold in R:
t(eu)=st(eu’) mod v,
rs(eu’)=sts(ew’) mod v,

t(ew)# ts(eu’) mod v,
Proof. — By Corollary 19.7.19,
(t—t(ew))(t—st(ew))(t—ts(ew))(t—sts(ew)) = (P— B>Z2—4AX T+ 4B mod t**R][t].

This shows that there exists a unique g, € {s¢,ts,sts} such that gy(eu’) = t(eu’)

mod ", Since t(eu’) Z 0 mod v and sts(eu’) = rwy(ew’) = —t(eu’), the element

8o is not equal to s¢s. So
goe{st, ts}.
We only need to show that
(%) go=Sst.
Let E7 (t) be the reduction modulo 7P of the minimal polynomial of eu’. Set
F™t) = t'—2BXt*+(—4A’T1+4B*II—oXID

+(8A*BXII+2B%*Y® -8B~ + 2BoX* 11— 4Boll*)t

—4A’B*S*TI— B*S* +4B*S* 11— B*0 X1+ 4 B0 XII + o °TT°.
Then

FT (t)= F"(t)- F*(—t).

ew’
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Let v be a prime ideal of R lying over 7P and contained in ¢*". Let t7 be a prime
ideal of R lying over mP +p, and contained in t". One checks easily that F"(t) is
prime to F”(—t) and is separable, so F (t) admits 8 different roots in R/t", which
are the classes of the g(eu’)’s, where g runs over W. Let F'*f(t) denote the reduction
modulo p'*" of F7(t). Then

Feit(t) = (t— BY)*(t> — B?X? — 4 AI1 + 4 B?1N).

So it follows from Corollary 19.7.19 that eu’ and s(eu’) are roots of F”(t) in R/t". On
the other hand, since W, acts transitively {z,st,ts,sts} and stabilizes veft we may,
by replacing t* by g(t") for some g € W, if necessary, assume that 7(eu’) is a root of
F™(t) modulo t*. The other roots modulo t” is then s¢(eu’) or ts(eu’) (this cannot
be sts(eu’) =—t(eu’), as this one is a root of F™(—t) modulo t™). So let g, denote the
unique element of {st, £ s} such that g;(eu’) is a root of F”(t) modulo ¢". By reduction
modulo t], we get

eu’- s(eu’)- t(eu’)- g (eu’) = F*(0)= 0’ mod .
Moreover, there exists g € G such that t, C g(t]). But, since G = W/, there exists signs

M1, N2, N3, Na such that {g(1),g(s),g(1), g(g1)} = {1, N28,M3t, 1481} and 1y1n,n3n, = 1.

Consequently,

® modr,.

eu’ - s(eu’)- t(eu’)- g(ew’) = 0TI
The next computation can be performed directly inside k[V x V*]A2W) 5 R /v
eu; - s(eug)- t(eup)- rs(eu)) = (xY+yX)xX+yY)—xY+yX)(—xX+yY)X'v*
_ (yz y2_ x2X2)(y2X2 — X2V
= (x*+yM—nX*+ v
o*I’ mod nk[V x V*].

Sog =ts.
We have therefore proven that
(t—eu’)(t—s(eu’))(t— t(eu’))(t—ts(eu’)) = F*(t) mod r"R[t].

By reduction modulo '

(t—t(ew))(t—ts(ew))=t? — B?S2 —4A*T1+4B?I1 mod " R[t].

, we get

So t(eu’) =—ts(eu’) mod ", which shows that g, # ts. So g,=st. O

Corollary 19.7.24. — For the choice of v made in this section, the generic Calogero-
Moser left cells are {1}, {s}, {tst}, {wp}, {ts,sts}and {t,st}.

Let gt denote the involution of G which leaves 1, s, tst and w, fixed and such that
ien(t) = st and gt s)= sts. Then ' = (giep).



230

Remark 19.7.25. — We understand better here the convention chosen for the action
of W x W on k(V x V*) (see §10.1.B). Indeed, if we had chosen the other action (the
one described in Remark 10.1.10), the generic Calogero-Moser left cells would have
coincided with the Kazhdan-Lusztig right cells. m

19.7.E. Proof of Theorem 19.7.1. — Keep here the notation of Theorem 19.7.1 (a =
—cs, b =—c,). Let us fix for the moment a prime ideal " of R containing " and
p.R. Since R/t ~ P/p, we deduce that t, =t+p R is the unique prime ideal of R
lying over & and containing v'". Let D" (respectively I'*") be the decomposition
(respectively inertia) group of cleft
(respectively inertia) group of t..

It follows from Corollaries 19.7.18 and 19.7.19 and from Proposition 19.7.23 that
(

and D, (respectively I.) be the decomposition

eu=2(b+a) mod ",

s(eu)=2(b —a) mod ¢,

(&) { tst(ew)=—2(b—a) mod vk,

wy(eu)=—2(b +a) mod tmft

| t(ew)=st(ew)=ts(eu)=srs(eu)=0 mod cleft,

(6=2b(b+a) mod ",

s(6)=2b(b—a) modtleft

() { tst(6)=2b(b—a) modtleft
wy(8)=2b(b +a) modtleft

| 1(6)=51(8)=15(8)=5t5(6)=0 mod '

(ew’=bY mod cleft,
s(eu’)=bY mod ¢!,
) tst(eu’)=—bY mod ",

V)
®) wy(ew)=—bX mod tleft
tlew)=st(eu)=—rs(eu’)=—sts(eu’) mod ",
| t(eu')’ = b*X? +4(a*— b*)T mod t".
and
() g(eu”)=0 mod tleﬁ

for all g € G. Recall that we assume that ab # 0 and that two elements g and
g’ of W are in the same Calogero-Moser left (respectively two-sided) c-cell if and
only if g(q) = g’(q) mod tlfft (respectively modt,) for all g € {eu,eu,eu”, o0} (since
Q =Pleu,eu’,eu”, d)).
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The case a®*#b?*. — Assume here that a® # b%. It follows from the congruences
(&), (), (V) and (#) that the Calogero-Moser left c-cells are {1}, {s}, {tst}, {w,},
1"; ={t,st}and 1“; ={ts, sts} and that the Calogero-Moser two-sided c-cells are {1},
{s}, {rst}, {we} and T,.

The results on Calogero-Moser c-families Calogero-Moser c-cellular characters
given by Table 19.7.2 then follow from Corollary 12.2.8, from Proposition 14.4.4,
from (19.7.8) and from Corollary 19.7.17.

Let us now determine D" and I'*". Note that I"" c I®" and that, according to
the description of Calogero-Moser left c-cells, that is of I'*"-orbits, this forces the
equality. On the other hand, since ¥, = t+§.R, we have D*" c D", Since the
D!-orbits are contained in the Calogero-Moser two-sided c-cells, the description
of these last ones forces again the equality. We show similarly that D, = D = W, and
that I, =T1=W,.

The case where a =b. — In this case, the last congruence of (©) becomes
t(ew')* = b*s* mod ",

So t(ew’) = bE mod " or t(eu’)=—b% mod t**". By replacing ¢! by g(t!*"), where
g € W/ = D" exchanges ¢ and st s, we can make the following choice:

left

Choice of v

mod cleft

c

. We choose the prime ideal v so that t(eu’)=—bX

The family of congruences (&), (), (©) and (#) show that the Calogero-Moser left
c-cells are {1}, {w,}, I, ={s,ts,sts} and I, ={z, st, t st} and that the Calogero-Moser
two-sided c-cells are {1}, {w,} and W \ {1, w,}.

As previously, the results on Calogero-Moser c-families and Calogero-Moser c-
cellular characters given by Table 19.7.2 follow from Corollary 12.2.8, from Propo-
sition 14.4.4, from (19.7.8) and from Corollary 19.7.17.

Let us conclude by the description of D', I'*", D, and I,. First of all, I'*" has two
orbits of length 3 (Ty and I,) so its order is divisible by 3. Moreover, it contains I'*t
which has order 2. So its order is divisible by 6. The description of left c-cells then
allows to conclude that I'®" = &;. On the other hand, D" permutes the left c-cells
which have the same associated c-cellular character. So D' stabilizes I and T,.
This forces the equality D" = [ = &,.

On the two-sided cells side, recall that D, = I, because D, /I, is a quotient of D/I.
Moreover, the inclusions W, c I, and I'*" c I, show that W, c I.. The equality
I. = W, becomes obvious.
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19.8. Complement: fixed points

As announced in Example 16.2.2, we will show that Conjecture FIX holds when
W is of type B, and 7 is a root of unity. If 7 is not of order dividing 4, then Z* =
%" is a union of affine spaces isomorphism %, so this case is easy. If T has order
dividing 2, then Z* = %, and there is again nothing to prove.

Assumption. We assume in this section that k = C and we fix a
primitive 4-th root of unity .

We identify % with the set of (a, b, s,S,p,P,e,e’,e”,d) € A'(C) satisfying the rela-
tions (Z1), (Z2),...,(Z9)in (19.4.2), with A, B, 0, %, , I, eu, eu’, eu” and 6 replaced
bya,b,s,S, p,P,e, e, e” and d respectively. Then

g)f:{(a,b;S,S,p,P,e,e/,e”,d)Ef| S:S:e/:e”:()}.
Therefore,
d>=e*+pP
p(dd —e?+4a*—4b?
ffﬁ{(a,b,p,P,e,d)EAﬁ((CH ] P(4d—€2+4a2—4b2
d(4d —e*+4a*—4b?)
|e(4d —e® +4a’—4Db?)

)=0
)=0 }
=0
0

This shows that Z* has two irreducible components 2" and %'y, where
% ={(a,b,p,Pe,d)€A’(C) | d*=e*+pP and 4d — e* +4a*—4b* =0}

and Zo={a,b,p,Pe,d)eA’(C)|p=P=d=e=0}},

Note that the intersection of " and &', is not empty.

So X'y~ 6 ~ptx, 6 and Conjecture FIX holds for this easy irreducible compo-
nent. On the other hand,
% =~ {(a,b,p,P,e)eA’(C)|(e*—4a*+4b*)*=16(e*+ pP)}

= {(a,b,p,Pe)eA’(C)|(e—2(a+b))e—2(a—b))e+2(a+b))e+2(a—b))=pP}.
Let V' be the 7-eigenspace of w and take W’ = (w). Then (V’,W’) is a reflection
subquotient of (V, W), with dim¢ V' = 1. We now use the description of Z(V’, W’)
given in Theorem 18.2.4:
Z(V W) ~ {(ky, ki, ko ks, e, x, y) EA'(C) | (e —4ky)(e —4k,)(e —4ky)(e —4ks)=xy
and ko + kl + k2 + k3 == 0},
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where the k;’s are the coordinates in ¢(V’, W’). So, if we set ¢ : € — €(V', W),
(a,b)— %(a +b,a—b,—a—b,—a+ b), then ¢ is linear and

(1981) X ~ &”(V’, W/) XV, W) 6.

Note that ¢ is well-defined only up to permutation of the four coordinates in ¢ (V’, W’).






CHAPTER 20

LEFT CELLS IN SMALL DIHEDRAL GROUPS

We illustrate here the topological version of the construction of Calogero-Moser
cells (see Theorem 13.4.2) in the special case of dihedral groups. In particular, the
figures drawn in this chapter give evidence that Conjecture L holds for dihedral
groups of order <10 (similar computations and drawings can be done for larger
groups and they give evidence that Conjecture L holds for dihedral groups of order
< 20). The underlying computations have been done using MAGMA [Magma] and
SAGE [Sage].

Hypothesis and notation. We assume in this chapter, and only in
this chapter, that W is a Coxeter group, that V has dimension 2 and
is irreducible as a CW-module. Write S = {s, t} and let m denote
the order of st. We denote by © € A the unique element of order 2
such that st =t and 1(Cg) = Cg and we assume that vg € Cg is
chosen so that T(vg) = vg. We also fix ¢ € 6(R), we set a = k, and
b =k, and we assume that a, b = 0.

Note that the above conditions imply that m > 3, and determine vi up to multi-
plication by an element of R.,. Note also that, if m is odd, then a = b. We denote
by 7. :[0,1]— €(R) x Cg x C; the path defined by

?c(t): (tC, U]R»(l_ t)l}];)

and we define 7, as the image of 7, in ‘¢ xV/W x V*/W. In all cases we encounter in
this chapter, it turns out that the image of 7.([0, 1[) in ¢ x V/W x V*/W does not meet
the ramification locus of Y: since 7.(1) =(c, vg,0), we can define left Calogero-Moser
c-cells using the path y. as in §13.4. We aim here to show pictures of the paths
(Pw)wew In Vg constructed in Theorems 13.4.1 and 13.4.2 for 3 < m <6, and explain
how this describes left Calogero-Moser c-cells. This gives evidence for Conjecture L
in those cases. To be more precise, the full paths have not been calculated, but only
an approximation of them and we have drawn only the points corresponding to the
values t = j/15, for 0 < j < 15.
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Before explaining how to read these pictures, we need to introduce more nota-
tions. When m is even, we denote by ¢ (resp. ¢,) the unique non-trivial linear
character of W such that £,(z) =1 (resp. ¢,(s) =1). Note that £;¢, = ¢. We denote by
x the character of the reflection representation V' and, when m € {5,6}, we denote
by y’ the unique irreducible character of W of degree 2 different from y. Recall that

{1,672} if m=3,
(W) = {1,6,¢,,€,, 1} if m=4,
B {1)8)X)X/} lfm:5,

{1,6,€.,€, 7,7’} if m=6.

We will provide pictures for 3 < m <6, noting that, if m € {3,5}, then a = b (and
only one picture will be shown) and, if m € {4,6}, only some pictures for a > b > 1
will be shown (since the automorphism 7 exchanges s and ¢ and the roles of a and
b). Then the pictures must be read as follows:

¢ The plane of the page represents V.

e The large black dots are the elements (w ™' (v%)) yew. The element of w is written
next to the point (here, w, stands for the longest element).

e For 1< j <14, there are |W|=2m elements A(lj ),. .., /1(2];2 of V* such that, for any
y € V, the eigenvalues of the Gaudin operator Dy?f(f/ 15 are ((y,l(j];)))l <jr<oms
counted with multiplicity. The small black dots represent the full collection

(Z(j];)) 1<j<14.
1</ <2m
From this collection, the reader can get an idea from the pictures what the

paths p,,’s look like.

e The large red dots correspond to the elements A,,..., A, of V*such that, for any
y € V, the eigenvalues of the Gaudin operator Dyfc(” = DyC'”R'0 are ((y, A1) < jr<r-
To each such large red dot is associated a Calogero-Moser cellular character as
in §8.3.C. The corresponding cellular character is written in red next to that
dot.

e Two elements w and w’ of W are in the same c-cell if and only if the two paths
starting at the large black dots named w and w’ end at the same large red
dot. One can then check (using for instance [Bon5, Theorem 21.3.1 and Corol-
lary 21.3.4] for a description of left Kazhdan-Lusztig cells and the Kazhdan-
Lusztig cellular characters) that Conjecture L holds for 3 < m <6 and the given
values of (a, b). Note that similar figures can be reproduced for many values
of (a, b) and for m up to 12 using a standard computer.
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APPENDIX A

FILTRATIONS

A.1. Filtered modules

Let R be a commutative ring. A filtered R-module is an R-module M together with
R-submodules M <! for i € Z such that
MSicMS™' foriez, MS'=0 for i<<0andM:UM<i.
i€Z
Given M a filtered R-module, the associated Z-graded R-module gr M is given by
(ng)i :M< i/M< i—l.

The principal symbol map & : M — gr M is defined by &(m)=m mod M ="' € (grM);,
where i is minimal such that m € M <'. The principal symbol map is injective but
not additive.

The Rees module associated with M is the R[#i]-submodule Rees(M)=>_,_, i’ M <!
of R[A*']®z M. We have R[I™'] ®g; Rees(M) = R[A™']®; M. In particular, given
t € R*, we have an isomorphism of R-modules

(RIA]/(n—1)) ®pm Rees(M)— M, 1@ h'm — t'm.
There is an isomorphism of R-modules

0 ifmeM<i

Rees(M)—grM, 1@ h'm —
R[N/ (1) ®p(m Rees(M) — gr ®Tm {g(m) otherwise.

A.2. Filtered algebras

Let Abe an R-algebra. A filtration on Ais the data of a filtered R-module structure
on A such that
1€AS%and AS'-AS/ c AS™ forall i, j € Z.
We fix a filtration on A. The associated graded R-module grA is a graded R-algebra.
The Rees module associated with A is an R[#]-algebra.
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Lemma A.2.1. — If gr A has no zero divisors, then the principal symbol map &: A — grA
is multiplicative and A has no zero divisors.

Proof. — Let a,b € A be two non-zero elements and let 7, j be minimal such that
a€As? and b € AS/. Since grA has no zero divisors, it follows that &(a)&(b) # 0,
hence abgA<"*/. This shows that &(ab)=&(a)é(b), and that ab #0. d

Let us recall some facts of commutative algebra (cf. [Mat, Exercises 9.4-9.5]). Let
R’ be a commutative domain with field of fractions K. An element x € K is said to
be almost integral over R’ if there exists a € R’, a # 0, such that for all n > 0, we have
ax" € R'. If x is integral over R’, then x is almost integral over R’, and the converse
holds if R’ is noetherian.

We say that R’ is completely integrally closed if the elements of K that are almost
integral over R’ are in R’.

Lemma A.2.2. — Assume A is a commutative ring. If gr A is a completely integrally closed
domain, then A is a completely integrally closed domain.

Proof. — Lemma A.2.1 shows that A is a domain. Let K be its field of fractions. Let
X € K be a non-zero element that is almost integral over A. Let c¢,d € A such that
x=c/d. Let i (resp. j)be minimal such that c € AS? (resp. d € AS/). We show by
induction on i that x € A.

LetacA,a#0,suchthatax"€Aforalln>0. Leta,=ax". Wehaved"a,=ac",
hence &(d)"E(a,) =E&(a)é(c)" (cf. Lemma A.2.1). It follows that £ is an element of

<(d)
the field of fractions of grA that is almost integral over grA. Consequently, it is in

grA. Since gr A has no zero divisors, it follows that it is homogeneous of degree i —j.
Let u € A with &(u) = £, Let x'=x—u =“4“. We have c —ud € AS"' and x’ is
almost integral over A. It follows by induction that x” € A, hence x € A. O

Lemma A.2.3. — If gr A is noetherian, then A is noetherian.

Assume grA is notherian and AS'/AS'"' is a flat R-module for every i € Z. If grA
has finite projective dimension as a (gr A ®g (gr A)°PP)-module, then A has finite projective
dimension as an (A®p A°PP)-module.

Proof. — The first statement is [NaVa, Proposition IV.6].

Let us prove the second statement. We consider the product filtration on A®z A,
so that there is a canonical isomorphism gr(A ®y A°PP) > grA®(grA)°P. The (grA®
(gr A)°PP)-module grA has finite projective dimension, hence finite Tor dimension.
It follows that A has finite Tor dimension as an (A ® A°’?)-module by [Bj, Ch. 2,
Proposition 3.12]. We deduce from [Weil, Theorem 3.2.7 and Lemma 4.1.6] that A
has finite projective dimension as an (A®p A°PP)-module. O
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A.3. Filtered modules over filtered algebras

A filtered A-module is an A-module M together with a structure of filtered R-
module such that
AST.MSTc M forall i, jeZ.
Given M and N two filtered A-modules, a filtered morphism of A-modules is a mor-
phism of A-modules f: M — N such that f(M<")c N<' for all i € Z.

Lemma A.3.1. — Let f : M — N be a filtered morphism of A-modules. If gr f is surjective
(resp. injective), then f is surjective (resp. injective).

Proof. — Assume gr f is surjective. We have NS/ = f(M<')+ N<""!. Since N<' =0
for i <0, it follows by induction that N <’ = f(M <), hence f is surjective.

Assume gr f is injective. Let m € M — {0} and let i be minimal such me M <'. We
have f(m)¢ N <!, hence f(m)#0. O

Lemma A.3.2. — Let M be a filtered A-module and let E be a subset of M. If E(E) gener-
ates gr M as a gr A-module, then E generates M as an A-module.

Let F be a subset of A. If £(F) generates grA as an R-algebra, then F generates A as an
R-algebra.

Proof. — We have a canonical morphism of A-modules f : A¥) — M. Let us en-
dow A®) with the following filtration: (A®))</ = f=1(M<%). By assumption, grf is
surjective, hence f is surjective by lemma A.3.1.

The second assertion follows from the first one by taking A=R, M = A and E the
set of elements of A that are products of elements of F. O

Let M and N be two filtered A-modules. Assume M is a finitely generated A-
module. We endow the R-module Hom,(M, N) with the filtration given by

Hom,(M,N)S'={f eHom,(M,N)| f(MS/)c NS V¥jez}.

A map f €eHom,(M,N)<"\Hom,(M,N)< " induces a morphism of (gr A)-modules
E(f):grM — gr N, homogeneous of degree i.

Lemma A.3.3. — The construction above provides an injective morphism of graded R-
modules

gr Hom,(M, N) — Homg, ,(gr M, gr N).

Lemma A.3.4. — Let e be an idempotent of A<°. Then gr A-&(e) is a progenerator for gr A
if and only if Ae is a progenerator for A.
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Proof. — Note that £(e) is an idempotent of gr A. The A-module Ae is a progenerator
if and only if e generates A as an (A4, A)-bimodule. The lemma follows from Lemma
A3.2. O

A.4. Symmetric algebras

Let us recall some basic facts about symmetric algebras (cf. for example [Brol,
§2, 3]). A symmetric R-algebra is an R-algebra A, finitely generated and projective as
an R-module, and endowed with an R-linear map 7,: A — R such that

— t4(ab)=7 (ba)foralla,beA(ie., 7, 1is a trace) and

— the morphism of (A4, A)-bimodules

T4:A—Homg(AR), a— (b — t(ab))
is an isomorphism.

Such a form 7, is called a symmetrizing form for A.

Consider the sequence of isomorphisms

toi (b f (b
A®p A Homp(A, R) @y A L2200, b d(A).

~

The Casimir element is the inverse image of id, through the composition of maps
above. The central Casimir element cas, is its image in A by the multiplication map
A®r A— A. Itis an element of Z(A).

Assume A is free over R, with R-basis % and dual basis (b"),c4 for the bilinear
form A®, A— R, a®a’— t(aa’). Wehave cas,=>,_, bb".

Lemma A.4.1. — Let (A, 7 4) be a symmetric R-algebra and G a finite group acting on the
R-algebra A and such that © 4(g(a))= 7 4(a) for all g € G and a € A.

Let B=Ax G and define an R-linear form T5: B — R by T5(a®g) =7 ,(a)d, ¢ forac A
and g €G.

The form 7 g is symmetrizing for B.

Proof. — We have

Th(a®g)a’®g))=1ag(a))b, o =Taa’'g 7 (a))by 1, =75(a’'®g)Na®g)).
Given g € G, let B, = A® Rg and C, = Homg(B,, R). We have B = P, B; and
Homg(B, R)=@, C,. Given g € G and a,a’ € A, we have
(tala®@g))a ®g™)=(ta(g™ (@)@,
It follows that the restriction of % to B, is an isomorphism B, — C,+ with inverse
fglt)l@—fla'eg))eg. O
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Let now A be a filtered R-algebra with A<™1=0, A<97'# A and A<“ = A for some
d > 0. Denote by p; : AS" — (grA); the canonical projection. Let 7 : (grA); — R be an
R-linear form. We extend it to an R-linear form on grA by setting it to 0 on (grA);
for i < d. We define an R-linear form 7 on A as the composition

T :Aﬂ(grA)diR.

Let x € A and y € ASJ/. We have 1(xy) = T(ps(xy)). We have p,(xy) = 0 if
i+j<d.Ifi+j=d, wehave p,(xy)=p(x)p;(y), hence 7(xy)=T(p;,(x)p;(y)). The
R-module Homp(A, R) is filtered with Hom (A R)S!=Hompg(A/AS4 71 R)and 7 is
a morphism of filtered R-modules with gr(7)=

Lemma A.4.2. — Let L be an R-submodule of A<! such that A= AS°(R+L)?, L™ c A<¢
and ASL=LA<0.
If T is a trace, then 7T is a trace.

Proof. — Note that A=A<°L94+A<4. Wehave p (AS°LYL) c p;(A<?)=0and p,(LAS°L?) =
pa(ASOLLY) =0. It follows that 7(al)=1(la)=0 for a € AS°L? and [ € L. The con-
siderations above show that t(al)=1(la) for a € A<¢ and | € L, hence t(al)=1(la)
forallae Aand [ € L. Since t(aa’)=1(a’a) for all a € A and a’ € AS?, we deduce
that 7 is a trace. O

The next proposition is inspired by a result of Brundan and Kleshchev on degen-
erate cyclotomic Hecke algebras [BrKIl, Theorem A.2].

Proposition A.4.3. — Assume grA is projective and finitely generated as an R-module
and assume T and T are traces.
If T is a symmetrizing form for gr A, then v is a symmetrizing form for A.

Proof. — Note that A is a finitely generated projective R-module. Since 7 is an
isomorphism, it follows that 7 is an isomorphism (Lemma A.3.1). O

A.5. Weyl algebras

Let V be a finite dimensional vector space over a field k of characteristic 0. Let
9(V) = H,, be the Weyl algebra of V. This is the quotient of the tensor algebra
Ti(V ® V*) by the relations

[x,x']=[y,y'1=0, [y, x]=(y, x) for x,x’€eV* and y,y € V.

There is an isomorphism of k-modules given by multiplication: k[V]® k[V*] -
(V).
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The k-algebra 2(V) is filtered, with 2(V)<1=0, 2(V)<°=k[V], 2(V)s'=k[V]e®
k[V]®Vand 2°'=(2<") for i > 2. The associated graded algebra gr2(V) is k[V x
V*]. The associated Rees algebra 2,(V) is the quotient of k[7] ® Ty(V ® V*) by the
relations

[x,x'1=1y,¥1=0, [y, x]=0(y,x) for x,x’€e V* and y,y € V.

Consider the induced 2(V)-module 2(V)®y. k, where k[ V*] acts on k by evalu-
ation at 0. Via the canonical isomorphism k[ V] = 2(V)®yy+k, a— a®1, we obtain
the faithful action of 2(V') by polynomial differential operators on k[ V]: an element
x € V* acts by multiplication, while y € V acts by 9, = f—y. As a consequence of the
faithfulness of the action, the centralizer of k[V]in 2(V)is k[ V].

Note that there is an injective morphism of k[7i]-algebras
2,(V)=Khle2(V), VIsx—x, Vey—hy.

This provides by restriction k[71]®k[ V] with the structure of a faithful representation
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GALOIS THEORY AND RAMIFICATION

B.1. Setting

Let R be a commutative ring, G a finite group acting on R and H a subgroup of
G. We set Q =R and P = RY, so that P c Q C R. Let t be a prime ideal of R. We
denote by kg(t) the fraction field of R/t (that is, the quotient R,/tR,) and by G” the
stabilizer of v in G. This subgroup of G acts on R/t and we denote by G/ the kernel
of this action. In other words,

G/'={geG|VreR, g(r)=r modt}.

The group GP (respectively G/) is called the decomposition group (respectively the
inertia group) of G at .
We fix in this chapter a prime ideal v of R and we set q=tNQ and p=tNP =qNP:

v - R
q - Q
P C p

We also set

Pc :SpecR — Spec P,

Pr:SpecR — SpecQ

and T : SpecQ — Spec P
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the maps respectively induced by the inclusions P ¢ R, Q ¢ R and P ¢ Q. We have
Pc =Topy: in other words, the diagram

Pu

SpecR SpecQ Spec P
Pc

is commutative. For instance,

Pc(t)=p, Put)=q and Y(q)=p.
Finally, we set
D=GP and I=G .

T T

B.2. Around Dedekind’s Lemma

Recall that (R, x) is a monoid. Given M a monoid, we denote by Hom,,,,(M, R)
the set of morphisms of monoids M — (R, x), a subset of the R-module .7 (M, R) of
maps from M to R. . Given A a commutative ring, we denote by Homy;,;(A, R) the
set of morphisms of rings from A to R, a subset of Hom,,,,((4, x), R).

Dedekind’s Lemma. If R is a domain, then Hom,,,(M, R) is an R-linearly independent
subset of (M, R).

Proof. — Let ¢,,..., ¢, be a family of distinct elements of Hom,,,,(M, R) and con-
sider A,,..., A4 in R such that

(*) A1¢1+"'+Ad¢d:0.
We shall show by induction on d that A, =1, =---=21,=0. When d =1, this is clear
as p;(1)=1.

So assume that d > 2 and that there is no non-trivial R-linear relation of length
< d — 1 between distinct elements of Hom,,,,(M, R). Since ¢, # @,, there exists m; €
M such that ¢,(myg) # @,(my). It follows from (x) that

Agi(mom)+---+A,p,4(mym)=0

and SOI(mO)'(Altpl(m)'k'”‘i')td@d(m)):0

for all m € M. By subtracting the second equation to the first one, we get

d
Zli(%(”ﬂo)— ©01(my))p; =0.
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By the induction hypothesis, we have A,(p,(m,)— ¢,(m,)) =0, hence A, = 0 because
R is a domain. The induction hypothesis allows also to conclude that A, =A;=---=
}'d =0. l:‘

Corollary B.2.1. — Let A be a commutative ring and assume that R is a domain. Then
Homy,g(A, R) is an R-linearly independent subset of 7 (A, R).

Proof. — Indeed, the set Homy;,4(A, R) is a subset of the set Homy,,n((4, %), R) and the
corollary follows from Dedekind’s Lemma. ]

B.3. Decomposition group, inertia group

We recall some classical results:

Proposition B.3.1. — The ideal v is maximal if and only if p is maximal.

Proposition B.3.2. — The group G acts transitively on the fibers of pg.
Proof. — See [Bou, Chapter 5, §2, Theorem 2(i)]. O

Remark B.3.3. — The statement above can also be applied to H: the group H acts
transitively on the fibers of p;;. B

Theorem B.3.4. — The field extension kg(v)/kp(p) is normal, with Galois group D/I (=
GP/G!).

Proof. — See [Bou, Chapter 5, §2, Theorem 2(ii)]. O

Corollary B.3.5. — Let v’ be a prime ideal of R containing v and let D’ = G2 and I' = G..
Then D'/I’" is isomorphic to a subquotient of D/1I.

Proof. — By replacing R by R/t, Q by Q/q and P by P/p, the group D/I can be
identified with G (Theorem B.3.4) and the corollary follows from Theorem B.3.4. [

Theorem B.3.6. — If Q is unramified over P at q (i.e. if pQ, = qQ,), then I is contained in
H.

Proof. — See [Ray, Chapter X, Théoreme 1]. O
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B.4. On the P/p-algebra Q/pQ

B.4.A. Double classes. — The classical proposition B.4.5 below is a basic tool for
our constructions. We provide a proof for the convenience of the reader. Given
g € G, the composed morphism Q S RER /v factors through a morphism g :
Q/pQ — R/x. The following remark is obvious:

(B.4.1) Given he H and i € I, we have igh = g.

As a consequence, we have a map

(B.4.2) ING/H — Homp, .4(Q/pQ,R/x)
4. IgH — 2 .

Note that Homp ,.05(Q/pQ, R/t) =Homp_44(Q, R/t). Given ¢ € Homp ) 15(Q/pQ, R/1)
we denote by ¢ the composition Q “L0/p0Q =, R/x. This defines a map

Hom(P/p)-alg(Q/pQ» R/t) I T_l(p)

(B.4.3) p s Ker,

Since R/t is a domain, Ker ¢ is a prime ideal of Q and it is clear that Ker g € Y~ (p).
Given g € G, we have g(t)NnQ € Y }(p). Moreover, for h € H and d € D we have

hgd(t)NQ =g()NQ.
We obtain a map

D\G/H —  Y7'(p)

- DgH — g@WNQ.

Proposition B.4.5. — The map I\G/H — Homp,).5(Q/pQ, R /1) defined in (B.4.2) is
bijective, as well as the map D\G/H — Y(p) defined in (B.4.4). Moreover, the diagram

IgH — g
I\G/H = Homyp ) 414(Q/pQ, R/x)
can p—Kerg
D\G/H = T (p)

1s commutative.

Proof. — Let us start by showing that the first map is injective. Let g and g’ be two
elements of G such that § =g’. This means that

VgeQ, glg)=g'(q) modr.
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Consequently,
VreRr, Zgh(r) = Zg’h(r) mod .
heH heH
By Dedekind’s Lemma, the family of morphisms of rings R — R/t is (R/t)-linearly
independent. So there exists h € H such that

VreR, g(r)=g’h(r) modt

or, equivalently,
VreR, gh(g ' (r))=r modr.
In other words, g’hg™' €1 hence g’ IgH.

Let us now show that the first map is surjective. Let ¢ € Homp ) ,,(Q/pQ, R/t)
and let ' =Ker . Since  is (P/p)-linear, we have ¢'NP =p. Let v' be a prime ideal of
R lying over ¢'. There exists g € G such that t' = g(r). So the map go @ :Q — R/t has
q'=v'NQ for kernel and is P-linear. By Theorem B.3.4, there exists d € Gt’,) such that
go@(q)=d(q) modv forall g€ Q. Hence, 3(q)=g 'd(q) modr, thatis, o =g-1d.

Let us now show that the second map is bijective. Given ¢’ € Y!(p), there exists
v € SpecR such that ¢'NQ ='. Also, NP =q'NP =p and so, by Proposition B.3.2,
there exists g € G such that v/ = g(r). This shows that the bottom horizontal row
is surjective. The injectivity follows again from Proposition B.3.2 (applied to the
extension R/Q).

The commutativity of the diagram follows from the previous arguments. O

B.4.B. Residue fields. — Let g € G. We put q; =tNg(Q). Note that g,NP =p and
that we obtain a sequence of morphisms of rings P/p — g(Q)/q, = R/t. So we
have a sequence of inclusions of fields

kP(p) - kg(Q)(qg) c kR(t)-

Lemma B.4.6. — The extension kg(t)/ kg(o)(d,) is normal with Galois group (DNEH)/(IN
8H).

Proof. — This follows from the fact that g(Q) = R*" and from Theorem B.3.4. O

Corollary B.4.7. — Assume that for all prime ideals ¢’ € Y~'(p) we have kq(q") = kp(p).
Then D\G/H =I\G/H.
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Proof. — By Lemma B.4.6 and Theorem B.3.4, it follows from the assumption that,
for all g € G, we have (DN&H)/(IN8H)~ D/I. In other words,

VgeG, D=I-(DNEH).

Now let g € G and d € D. Then there exists i € I and h € H such that d =ighg™,
thatis dg =igh. We deduce that DgH =1gH. O

Lemma B.4.8. — Assume that Q is unramified over P at all prime ideals in Y~'(p). Then
I[Ny ®H.

Proof. — Let g € G. Since g(r)NQ € Y (p) it follows from Theorem B.3.6 that 8 c H
(since 81 is the inertia group of g(v)). Hence, I C §'H. O

Proposition B4.9. — If I = ﬂgec 8H =1 and if the extension kg(t)/kp(p) is separa-
ble, then kg(v)/kp(p) is a Galois closure of the family of extensions kso(g(q))/kp(p) for
g<€[G/H].

REMARK - If R is a domain (which implies that P and Q are domains) and if G acts
faithfully on R, then the assumption ("), #H =1 is equivalent to the fact that the
extension Frac(R)/Frac(P) is a Galois closure of Frac(Q)/Frac(P).

Note also that the assumption I =1 implies that G acts faithfully. m

Proof. — By Theorem B.3.4, the extension kg(t)/kp(p) is normal with Galois group
D. By Lemma B.4.6, the extension kg(t)/ kg(q)(qg) is normal with Galois group DN8H.

Let k be a normal closure of the family of extensions kgo)(q,)/kp(p), § € [G/D].
The Galois group Gal(kg(r)/k) is the intersection of the D-conjugates of the groups
DnNé&H, for g running in [G/D]. So

Gal(kg(r)/ k) = ﬂ d(DngH)zﬂ(DmgH)zpmﬂgﬂzl.

gechéD] geG geG
€

The proposition follows. O
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B.4.C. The case of fields. — The discussion above simplifies considerably when
R is a field.

Assumption. In this subsection, and only in this subsection, we
assume that R is a field: it will be denoted by M. We set L =Q = M*"
and K = P = M“. We also assume that G acts faithfully on M.
Hence, M /K is a Galois extension with Galois group G and M /L is
a Galois extension with Galois group H.

It follows from the assumption that p =q=t=0and that D =G and I =1. Hence
Proposition B.4.5 provides a bijective map

G/H — Homy_,(L, M).

Given g € G, the morphism of K-algebras L — M, g — g(q), extends to a morphism

of M-algebras
gL T M ®K L — M
megl — mg(l).

Proposition B.4.10. — The morphism of M-algebras
Y giMexl— P M
g€lG/H) gelG/H]

is an isomorphism.

Proof. — Since L is a K-vector space of dimension |G/H], it follows that M ®y L
is an M-vector space of dimension |G/H]|. It is enough to show that Y. ;8. is
injective, which is equivalent to the M-linear independence of the family of maps
L— M, q— g(q), where g runs over [G/H]. Corollary B.2.1 provides the conclusion.

U

B.5. Integral closure

Proposition B.5.1. — Let f € P[t], let P’ be a P-algebra containing P and let g € P'[t].
Assume that f and g are monic and that g divides f (in P’[t]). Then the coefficients of g
are integral over P.

Proof. — See [Bou, Chapter 5, §1, Proposition 11]. O

Corollary B.5.2. — If P is integral and integrally closed, with fraction field K, if A is a
K-algebra and if x € A is integral over P, then the minimal polynomial of x over K belongs
to P[t].

Proof. — See [Bou, Chapter 5, §1, Corollary of Proposition 11]. O
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Proposition B.5.3. — If P is a domain and if f € P[t,t"'] is integral over P, then f € P.

Proof. — Letd >1 and let py, py,..., ps_1 be elements of P such that py+p, f +---+
Pa_1f9 = f?. Let & be the t-valuation of f and &’ its degree. Since P is a domain,
the degree of f¢ is d§’, and so the above equality can hold only if 6’ = 0. Similarly,
0 =0. So f is constant. O

B.6. On the calculation of Galois groups

Let K be a field and let f(t) =t + a, t* ' +---+ a,t+ a, € K[t] be a separable
polynomial. We denote by M a splitting field of f (over K) and we put

Galg(f)=Gal(M/K).

The group Galg(f) is the Galois group of f over K.
Let ¢,..., t; be elements of M such that
d

=] |t=1)

i=1
so that
M:K[tl,..., td]:K(tl""’ td).

This provides an injective morphism of groups
Galg(f) — 6,.

Assume now that P is an integrally closed domain with field of fractions K and
that f € P[t]. Let R denote the integral closure of P in M and let G = Gal(M/K).
Since P is integrally closed we have P = R®. Given r € R, we denote by 7 its image

in R/t. Write
I
=11
j=1

where f; € kp(p)[t] is an irreducible polynomial. We have D /I = Gal(kg(tr)/kp(p)) by
Theorem B.3.4. Since R contains t,,..., t; we have

d
fo=] Ja-2.
i=1
We denote by Q; the subset of {1,2,...,d} such that
o= Je-2).

ter
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Let k; = lcp(p)((fl-),-eﬂj): it is a splitting field of f; over ky(p). Let G; = Gal(k;/kp(p)) =
Gal( fj). Then
(B.6.1)

the canonical morphism D /1 = Gal(kg(v)/kp(p)) — Gal(k;/kp(p)) = G; is surjective

for all j. Since G; acts transitively on £2;, we obtain in particular that

(B.6.2) 12| divides |G| for all j.

B.7. Some facts on discriminants

Let f(t) € P[t] be a monic polynomial of degree d. We denote by disc(f) its dis-
criminant. We have

(B.7.1) disc(f(t2) = (—4) disc(f)? - £(0).

Proof. — By easy specialization arguments, we may assume that P is an algebraically
closed field. Let E,,..., E; be the elements of P such that

d
ro=] Je-g.
i=1
We fix a square root e; of E; in P. So

f@=[] t-ze)
1<i<d
ee{l,—1}
and the discriminant of f(t?) is then equal to

d

discF@)=( [] (eei—e'e;?)-] Jter—(—e.
il 5
In other words,
d
disc(f()=4"-( [] E-E)")-[[E=4disclf}- 1) f(0),
1<i<j<d i=1

as expected. O

Let us conclude with another easy result:

(B.7.2) disc(tf (1)) = disc(f)- f(0)*.
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Proof. — As in the previous proof, we may assume that P is an algebraically closed
field, and we denote by Ej,..., E; the elements of P such that

f= ﬁ(t_ E;).

Then .
disctf@)=( [] E—-EY)]Jo-EY.
1<i<j<d i=1

Whence the result. ]

B.8. Topological version

Let Y be a locally simply connected separated topological space endowed with a
faithful left action of a finite group G. Let X = G\Y and let 7 : Y — X be the quotient
map.

Let Y™ ={y € Y|Stabs(y) = 1} be the complement of the ramification locus and
let X" =mn(Y™). Fix y, € Y™ and let F = G - . We define a right action of G on F by
(8- 1)-8'=88" Y-

Let y, be a point of Y in the closure of the connected component of Y™ that
contains ). Let I = Stabgs(y;). The right action of I on F can be described in terms
of lifting of paths, as we recall below.

Fix a path 7:[0,1]— Y with ¥([0,1)) C Y™, ¥(0)= y, and 7(1) = y;. Let y = n(¥).

Lemma B.8.1. — Given y € F, there is a unique path ¥, in Y starting at y and lifting y.
Given y’,y" € F, we have y” € y’- 1 if and only if ¥,,(1)=7,.(1).

Proof. — Let E =n"'(r([0,1])). We have

E= ] | (U «#(0,11)

QeG/I wen

where the  J, ., @(7([0,1])) are the connected components of E and the w(f([0,1))) are
the connected components of E \ (G - y;).

Let y € F. There is a unique element g € G such that y = g - y,. The restricted path
g(7)0,1) is the unique lift of y, ) starting at y. It follows from the description of E
that g(7) is the unique lift of y starting at y. The lemma follows. O

We consider now the case of a non-Galois covering. Let H be a subgroup of G
and let Y =H \ Y. We denote by ¢ : Y — Y the quotient map and by ¢ : Y — X the
map such that =1 o¢. Let F = ¢(F). The right action of I on F induces a right
action on F. We have a bijection H\ G — F, Hg — ¢(g - ) and the right action of I
on F corresponds to the right action on H \ G by right multiplication.
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Lemma B.8.2. — Given y € F, there is a unique path 7; in Y starting at y and lifting .
Given y',y" € F, we have y” € y’- I if and only if 73,(1) = 7;.(1).

Proof. — There is an element g € G such that y = ¢(g - ), and Hg is uniquely
determined by y. The path ¢(g(f)) is the unique lift of y starting at y. The lemma
follows. O

We assume now that R is a finitely generated commutative reduced C-algebra
and Y is the topological space (Spec R)(C), for the classical topology. We have Y =
(Spec Q)(C) and X =(Spec P)(C).

The prime ideal ¢ of R corresponds to an irreducible subvariety Z of SpecR. There
is a non-empty Zariski open subset U of Z such that given y € U(C), we have
Stabg(y)=G/.

Fix a point y; € U(C). We have I = G!. Lemma B.8.2 provides a topological
description of the orbits of I on the fibers of y.






APPENDIX C

GRADINGS AND INTEGRAL EXTENSIONS

C.1. Idempotents, radical

Let I be a monoid. Denote by A : Z[I'] — Z[T'|®; Z[I'], y — y®Y the comultiplication.
Let A be aring. Let us recall the equivalence between the notion of a I'-grading on
A and that of a coaction of Z[T'] on A.

Put A[T']= A®, Z[T]. Given A=(D,r A, a I-graded ring structure on A, we have a
morphism of rings

pu=us:A—Al], A,2a—a®y

such that

(C.1.1) { u®ld: A®,Z[I1— All], a®y — u(a)y is an isomorphism and

(1®A)ou=(ueld)ou:A— A®, Z[I'|®, Z[I'].

Conversely, consider a morphism of rings u : A — A[I'] satisfying the two prop-
erties (C.1.1) above. Let A, = u,'(A® 7). Note that given a € A, and a’ € A,,, we
have aa’€ A,,,. Let a € A and write u(a)=>Y" a;®y; with ;€ Aand y; €T. We
have (1®A)ou(a)=(u®Id)ou(a), hence > ;a,®y,;®y;=.. u(a;)®7;. It follows that
u(a;) = a; ®;, hence a; € A,,. We deduce that A = Zr A,. The first property shows
that u is injective, hence A =¢P, A,: we have obtained a I'-graded ring structure on
A.

Given f :T —I” a morphism of monoids and given a I'-grading on A, we have a

I"-grading on A given by A7, = @yc 1) Ay

Proposition C.1.2. — Assume that A is commutative and T is a torsion-free abelian group.
Let e be an idempotent of A. Then e € A,.

Proof. — Replacing A by the ring generated by the homogeneous components of
e, we may assume that A is noetherian and I' is finitely generated. Given d > 0,
consider the ring morphism m, : A[l] — A[T], a®y — a®y?. Note that m,(u(e))
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is an idempotent of A[T]. If e¢A,, then u(e)¢ A, hence the m,(u(e)) are distinct for
different d. Since A is commutative and noetherian, A[T'] is also commutative and
noetherian, and so contains only finitely many idempotents. We deduce that e
A,. O

Let us recall a basis result on the homegeneity of the radical [Row, Theorem
2.5.40].

Proposition C.1.3. — If T is a free abelian group, then Rad(A) is a homogeneous ideal of
A.

Proof. — Let r € Rad(A). Write r =), _,_,1; with r; € A, for some y; € T with
vi #vjfor i #j. Fixie{l,...,d}. Fix a group morphism p : T — Z such that
p(r)#p(r:) for j#i.

Let n be a positive integer with n > |p(y;)—p(r;)l for all j#i. Let " =Z/nZ and
write { for its generator 1, so that A[I"] = A®z; Z[{]. We have Rad(A) =Rad(A[I"])N A.
Consider the group morphism 6, : T — I", y — ¢ and denote by 6, again the
induced ring morphism A[I'] — A[I"]. We have

n

ZC"’W"”&(M(HF Z . Z FHetr =Pl = gy

=1 1<j<d 1<Ii<n

Since 0,0y is a morphism of rings, it follows that nr; € Rad(A[I"]), hence nr; € Rad(A).
Similarly, we obtain (n+1)r; € Rad(A), hence r; € Rad(A). So, Rad(A) is a homogeneous
ideal. O

We assume for the remainder of §C.1 that I'=Z. Let B be a ring containing A and
let & € B* commuting with A. There exists a unique morphism of rings

,ui :A— B
such that ,ui(a) =af' for a € A;. Note that, if Ais N-graded (thatis, if A; =0 for i <0),

then 5, can be defined also when & is not invertible. Given t an indeterminate over
A, then

pltA— Al ]

is a morphism of rings. Denote by ev5 : Alt,t™!] — B the evaluation morphism at &.
We have

(C.1.4) us =evsoul,.
In particular, if B=A and & =1, then
(C.1.5) uh=1d, and  eviou' =1d,.
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On the other hand, the morphism u’ : A— B can be extended to a Z[t,t"']-linear
morphism ,uf1 (Alt,t7']— B[t,t"!] and

(C.1.6) o pt =i

As particular cases, one can take B = Alu,u™!] and £ =u, where u is another indeter-
minate, or take B = A[t,t"'] and £ =t~'. We obtain the following equalities:

(C.1.7) Wop' =pt and W, ou'(a)=acAltt]
for all a € A. Finally, note that
(C.1.8) eviou =ev!

Ar

C.2. Extension of gradings

Notation. We fix in this section a finitely generated free abelian
group T and a commutative T-graded domain P. Let Q be a domain
containing P and integral over P.

The aim of this section is to study the gradings on Q which extend the one on P.
We first start with the uniqueness problem.

Lemma C.2.1. — If Q =D,er Q, = D, er Qy are two gradings on Q extending the one of
P (thatis, P,=Q,NP =Q,NP forall y €T), then Q, = Q, for all y T.

Proof. — As in § C.1 (from which we keep the notation), the gradings Q =@, Q,
and @, er Qy correspond to ring morphisms fi : Q — Q[I'l and f, : Q — Q[I'] extend-
ing up : P — P[T']. Consider the morphism of rings  : Q[I'1— Q[I'], g ®y — fo(q)r™
and let a = ojip : Q — Q[I'l. Then « is a morphism of rings and a(p) = p for all
p € P by (C.1.1). Therefore, if g € Q, then a(g) € Q[I'] is integral over P, hence over
Q. Since Q is a domain, this implies that a(q) € Q (Proposition B.5.3). On the other
hand, (C.1.1) shows that the composition

Q-5 QIr+5Q
is the identity, hence a(q) = g for all g € Q. It follows that o i = B o i, hence
fio = fig since B is an isomorphism (C.1.1). O

Corollary C.2.2. — If Q =D, Q, is a grading on Q extending the one on P and if G is
a group acting on Q, stabilizing P and its homogeneous components, then G stabilizes the
homogeneous components of Q.
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Proof. — Indeed, if g € G, then Q =P, g(Q,) is a grading on Q extending the one
on P. According to Lemma C.2.1, we have g(Q,)=Q, for all . ]

Counter-example C.2.3. — The assumption that Q is a domain is necessary in Lemma C.2.1.
Indeed, if P = Py and if Q = P & P¢ with ¢* =0, then we can endow Q with infinitely

many gradings extending the one on P: ¢ can be made homogeneous of any de-

gree.

Proposition C.2.4. — Assume Q =D, Q, is a grading on Q extending the one on P. If
I is endowed with a structure of totally ordered group such that P, = 0 for all y <0, then
Q,=0forall y <O0.

Proof. — See [Bou, Chapter 5, §1, Proposition 20 and Exercise 25]. O

We will now be interested in the question of the existence of a grading on Q
extending the one on P. For this, let K = Frac(P), L =Frac(Q) and we assume that
the field extension L/K is finite.

Lemma C.2.5. — The grading on P extends to a grading of its integral closure in K.
Proof. — See [Bou, Chapter 5, §1, Proposition 21 and Exercise 25]. O

We will now show how the question of the existence can be read on a normal clo-
sure of the field extension L/K. Let M denote a normal closure of the field extension
L/K and let R be the integral closure of P in M.

Lemma C.2.6. — Let y € I. Define a grading on P[X] extending the grading on P by
giving x the degree y. Let F € P[x] be a monic polynomial, which is homogeneous for this
grading. If F = F, --- F,, with F, € P[X] monic, then F; is homogeneous for all i.

Proof. — We have upy(xa)=xup(a)y for a € P. Let yr €T denote the total degree of
F. We have

Upi(F)=FYp=tpp(F) - pp(Fr).
Since P[x] is a domain with fraction field K(x) the fact that K(x)[I'] is a unique fac-

torization domain implies that there exists G,..., G, € K(x) and 74,..., 7, €T such
that

Upx(E) = Gy;
for all i. This forces F; to be homogeneous of degree y;, and F, = G;. O



263

Corollary C.2.7. — Let y €. Define a grading on P[x] extending the grading on P by
giving x the degree y € I. Let F € P[x] be a monic polynomial, which is homogeneous for
this grading. We assume that M is the splitting field of F over K. Then R admits a grading
extending the one on P.

Proof. — By Lemma C.2.5, we may assume that P is integrally closed. Let 6 denote
the degree of F in the variable x. We shall show the result by induction on 0, the case
where 0 =1 being trivial (because P = R in this case).

So assume that 6 > 2 and let F; be a monic irreducible polynomial of K[x] dividing
F. By Proposition B.5.1, we have F € P[x]. Set K’ = K[x]/ < F{ > and let x be the
image of xin K’. Then K’ is a field which contains the ring P’ = P[x]/ < F >. In fact,
K’ is the fraction field of P’. Since F is homogeneous by Lemma C.2.6, P’ is graded
(with x homogeneous of degree y). By Lemma C.2.5, the integral closure P” of P’
in K’ inherits a grading. On the other hand, K’ ¢ M and M is the splitting field of
F over K’. In P”[x], we have

F(x)=(x—x)F(x),

where Fy(x) € P”[x] is homogeneous with degree in the variable x is equal to 6 —1.
Since the splitting field of F over K is equal to the splitting field of F, over K’, the
result follows from the induction hypothesis. O

Proposition C.2.8. — Assume that P and Q are integrally closed. If the grading on P
extends to a grading on Q, then this grading also extends to a grading on R.

Proof. — Let qy,..., q, be elements of Q, homogeneous of respective degrees 7;,...,
v, and such that L = K|[q,,...,q,]. We denote by F; € K[t] the minimal polynomial
of g; over K: in fact, F; € P[t] according to Corollary B.5.2. Then M is the splitting
field of F ---F,. By an easy induction argument, we may assume that r = 1: we then
write g =¢q,, y=7,and F=F.

If we give the variable t the degree 7, then we check easily that F becomes homo-
geneous (for the total degree on P[t]). The existence of an extension of the grading
follows from Corollary C.2.7. O

Lemma C.2.9. — Let p be a prime ideal of P and let p be the maximal homogeneous ideal
of P contained in p (that is p = P,er p N P,). Then p is prime.

Proof. — Indeed, (P/p)[I']is a domain and j is the kernel of the morphism obtained

can

by composition P L, P[T]— (P/p)I]. O
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Lemma C.2.10. — Let q be a prime ideal of Q and let p=qnN P. Assume that the grading
on P extends to a grading on Q. Then p is homogeneous if and only if q is homogeneous.

Proof. — 1If q is homogeneous, then p is clearly homogeneous. Conversely, assume
that p is homogeneous. Let ' = @,(qN Q,). Then ¢’ is a homogeneous ideal of Q
contained in g and ¢'NP =p=qnP. By Lemma C.2.9, ¢’ is a prime ideal, so q' = ¢
since Q is integral over P. U

Lemma C.2.11. — Assume T = Z. Let p be a homogeneous prime ideal of P and q be a
homegeneous prime ideal of Q. Assume P /(P Nq) is N-graded and P_.y+ P, C p C q+
<Q>0r Q<0>-

Then q+{Q¢, Q<o) is a prime ideal of Q and it is the unique prime ideal of Q lying over
p and containing q.

Proof. — Let I =(Q.¢,Q) and Iy =INQ, = QyN(Q- Q). Since Q/q is an integral
extension of P/(P Nq) and P/(P Ngq) is N-graded, it follows that Q/q is N-graded
(Proposition C.2.4). It follows that Q., C q, hence I, C q. Since I and q are homo-
geneous, we have QyN(I +q)=I)+(QyNq)= QyNgq, a prime ideal of Q,. We have
Q/(q+1)~Qy/(QuN(I+q)), hence q+1I is a prime ideal of Q.

Let g’ be a prime ideal of Q lying over p and containing (Qs¢, Q). Since p is
homegeneous, it follows that ¢’ is homegeneous (Corollary C.2.10). The extension
Q/q’ of P/p is integral and, since P /p has its Z-grading concentrated in degree 0, it
follows that the Z-grading of Q/q’ is concentrated in degree 0. It follows that I C ¢,
hence q+1 cq’. Wehavepcq+1I and PNng =p, hence PN(q+1)=p.So,q+I=q". O

Lemma C.2.12. — Assume I = Z. Let p be a prime ideal of P and let P’ be the largest
graded subring of P,. Assume that the composition P/ C B, =% P/yp is bijective for all i € Z.

Let q be a homogeneous element of Q and let F € P[X] be its minimal polynomial. Then
the image of F in (P /p)[X] is the minimal polynomial of q®1€Q ®p P /p.

Proof. — Let F/ =" a;X' € (P/p)[X] be the minimal polynomial of g ® 1, with
a, =1. Note that deg F’ < degF.

Let d be the homogeneous degree of g and let G = Z?:o f d_(}i_i)(a,-) € P’'[X], where
fi: Pj’ — P/p is the canonical bijection. We have G(q) € P; NpB, =0. It follows that

G=F. U

We conclude this section with some results about the homogeneization of prime
ideals of P or Q.
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Corollary C.2.13. — Assume that the grading on P extends to Q. Let q be a prime ideal
of Q and let p = qNP. Let p (respectively §) be the maximal homogeneous ideal of P
(respectively Q) contained in p (respectively q). Then p=gnNP.

Proof. — This follows from the proof of Lemma C.2.10 and from the fact that the
diagram
up

P
£ Hq can

— Q[T — (Q/q)[I]

is commutative. [l

P[T]—= (P /p)IT]

Corollary C.2.14. — Assume that the grading on P extends to Q and that there exists a
finite group G acting on Q, stabilizing P and preserving the grading. Let q be a prime ideal
of Q and let § be the maximal homogeneous ideal of Q contained in q. Let D, (respectively
D;) be the decomposition group of q (respectively §) in G and I, (respectively I;) be the
inertia group of q (respectively §) in G. Then

Dq C Da and Iq = Ia.

Proof. — The first inclusion is immediate, since G preserves the grading (see Corol-
lary C.2.2). Moreover, Q/q is a quotient of Q/§, so I; C I,. Conversely, if g€ I, c D, C
D; and if g €qNQ,, then g(q)—g€qnQ, C§. So g € I;. O

C.3. Gradings and reflection groups

Notation. In this section, we fix a field k of characteristic zero
and a commutative N-graded k-algebra R = @, R;. We assume
moreover that R is a domain, that Ry = k and R is a finitely gen-
erated k-algebra. We also fix a finite group G acting faithfully on
R by automorphisms of graded k-algebras and we set P = R®. Let
R, = ;. R;: it is the unique graded maximal ideal of R. We fix
a G-stable graded vector subspace E* of R such that R, = R? ® E*
(such a subspace exists because kG is semisimple) and we denote by
E the k-dual of E*.

The group G acts on the vector space E and the aim of this section is to give some
criterion allowing to determine whether G is a reflection subgroup of GLi(E). Our
results are inspired by [BBR].

First of all, the grading on E* induces a grading on E and a grading on k[E],
the algebra of polynomial functions on E (that is, the symmetric algebra of E*).
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Similarly, k[E] inherits an action of G, which preserves the grading. We denote by
k[E]; the unique graded maximal ideal of k[E]. The inclusion E* — R induces a
G-equivariant morphism of graded k-algebras

m:k[E]— R.
It is easily checked that
(C3.1) the minimal number of generators of the k-algebra R is dim; E
(see for instance [BBR, Lemme 2.1]). We put
I =Kerm,
so that
(C3.2) R~k[E]/I.

In particular, G acts faithfully on E. Since I is homogeneous, it follows from the
graded Nakayama Lemma that

(C.3.3) the minimal number of generators of the ideal I is dim; I/k[E], I
Moreover, it is also easy to check that

(C34) I =K[E]IC ifand only if G acts trivially on I/k[E],I.

(see for instance [BBR, Lemme 3.1]). Finally, since kG is semisimple, we have
(C.3.5) P~Kk[E]°/IC.

We will also need the next lemma.

Lemma C.3.6. — If R is a free P-module, then the rank of the P-module R is |G|.

Proof. — Let d be the P-rank of R. Since R is a domain, P is also a domain and, if
we set K =Frac(P) and M = Frac(R), then K =L¢ (andso[L: K]=|G|)and L=K®,R
(and so [L: K]=d). Therefore, d =|G|. O

The main result of this section is the following (compare with [BBR, Théoreme 3.2],
from which we borrow the proof).

Proposition C.3.7. — Assume that P is regular and that R is a free P-module. Then the
following are equivalent:

(1) R is complete intersection and G acts trivially on 1/k[E], 1.
(2) G is a subgroup of GLi(E) generated by reflections.

Remark C.3.8. — If P is regular and since we are working with graded objects, the
following statements are equivalent:

e R is a free P-module.
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e Risa flat P-module.
¢ R is Cohen-Macaulay.

Moreover, if R is complete intersection, then R is Cohen-Macaulay.

Proof. — Let e =dim; E, let i =dim, I /k[E], I and let d denote the Krull dimension
of R (which is also the one of P). Moreover, e is the Krull dimension of k[E] and of
k[E]C.

Let us first show (1) = (2). So assume that R is complete intersection and that G
acts trivially on I/k[E],I. Since R is complete intersection, (C.3.2) and (C.3.3) show
that

d=e—i.

Moreover, since G acts trivially on I/k[E], I, the ideal I of k[E] can be generated by
i homogeneous G-invariant elements fi,.. ., f; and so the ideal I¢ of k[E]° is gener-
ated by fi,..., f;. Since P is regular of Krull dimension d, the algebra P = k[E]® /1€
can be generated by d elements 7(g,),..., n(g,) where g; € k[E ] is homogeneous.
Therefore, the k-algebra k[E]° is generated by fi,..., fi, &,--., 84, that is, it is gen-
erated by i + d = e elements. Since the Krull dimension of k[E]° is also equal to e,
this shows that k[E]° is a polynomial algebra, and so G is a reflection subgroup of
GL(E) by Theorem 2.2.1.

Conversely, let us now show (2) = (1). So assume that G is a reflection subgroup
of GLi(E). Then k[E] is a free k[E]°-module of rank |G| (by Theorem 2.2.1) hence
(K[E]®/I°)®g1c k[ E] is a free P-module of rank |G| (see (C.3.5)). Moreover, k[E]/I =
R is a free P-module of rank |G| (see Lemma C.3.6). So the canonical surjection
(K[E]®/IC)®ig1c KIE]—> k[E]/I (between two free P-modules of the same rank) is
an isomorphism, hence I is generated by I¢. We deduce that G acts trivially on
I/k[E] I (by (C.3.4)).

On the other hand, since k[E]¢ and k[E]°/I® = P are both polynomial algebras
(see Theorem 2.2.1 for k[E]“), P is complete intersection and so I¢ can be gener-
ated by e —d elements. We deduce from (C.3.3) and (C.3.4) that i <e—d and so
necessarily i = e —d and R is complete intersection. O






APPENDIX D

BLOCKS, DECOMPOSITION MAPS

Assumption and notation. We fix in this appendix a commuta-
tive ring R, which will be assumed noetherian, integral and in-
tegrally closed. Let v denote a prime ideal of R. We also fix an
R-algebra ¢ which will be assumed to be finitely generated and
free as an R-module. We denote by Z(7€) the center of . We set
k =Frac(R/t) = kg(r) and K = Frac(R) = kz(0). Finally, the image
of an element h € 5 in k¢ will be denoted by h.

D.1. Blocks of k. #

If A is a ring (not necessarily commutative), we denote by Idem,,(A) the set of
its primitive idempotents. For instance, Idem,,.(Z(¢)) is the set of primitive central
idempotents of /. Since Z(¢) is noetherian,

(D.1.1) 1= > e

ecldemy, (Z())
Moreover, the morphism # — k. induces a morphism 7, : kZ() — Z(k)
(which might be neither injective nor surjective). However, the following result
has been proven by Miiller [Miil, Theorem 3.7]:

Proposition D.1.2 (Miiller). — (a) If e eIdem,,(kZ(¢)), then 1t;(e) € Idem,,(Z(k.7¢)).
(b) The map 1dem,, (kZ(¢)) — Idem,,(Z(k¢)), e — 1,(e) is bijective.

In a finite dimensional commutative k-algebra .¢/ (for instance, Z(k 7€) or kZ(¢)),
the prime ideals are maximal and are in one-to-one correspondence with the set of
primitive idempotents of .¢/: if m € Spec.«/ and e € Idem,,(.</), then e and m are
associated through this bijective map if and only if e ¢ m (that is, if and only if
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m = Rad(.¢/e)+ (1 —e).</). The Proposition D.1.2 shows that Spec kZ(#) is in one-
to-one correspondence with Idem,,(Z(k2¢)), that is, with the set of primitive central
idempotents of k7.

Moreover, the natural (and injective) morphism R <« Z(¢’) induces a morphism
Y : SpecZ(#) — SpecR. The map Z(#) — kZ() induces a bijective map between
the sets Spec kZ(¢) and Y~!(x). Recall that

Y '(v)={3€SpecZ(A#) | 3NR =t}.
Finally, we obtain a bijective map
(D.1.3) =, : Idem,,(Z(k) — T7'(¢)

which is characterized by the following property:

Lemma D.1.4. — If e € Idem,,(Z(k.7)) and if 3 € Y~'(v), then the following are equiva-
lent:

(1) 3=E(e).
(2) e & my(ks).
(3) 3 is the preimage, in Z(A), of m,'(Rad(Z(k)e)+(1—e)Z(k ).

Now, by localization at r, T~'(t) is in one-to-one correspondence with Y '(xtR,),
where 7Y, : Spec R.Z(¢) — SpecR, is the map induced by the inclusion R, < R.Z(¢).
The bijective maps, in both directions, between Y~'(t) and Y '(tR,) are given by

T'(t) — Y '(R)
3 — R

T(R) — T

and N )

The center of the algebra R..# is equal to R.Z(¢) and the canonical morphism  —
k. extends to a morphism R.# — k., which will still be denoted by h — h.
Finally, we denote by R.Z(5) — kZ(7¢), z — Z, the canonical morphism (so that
z=my(2)if z € RZ()).

To summarize, we obtain a diagram of natural bijective maps
(D.1.5)

T(v)

~

Spec kZ(.#) = SpecZ(k.#)

T '(tR,)

~

Idem,, (kZ())

Idem,, (Z(k#)).
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D.2. Blocks of R,.#

Assumption. From now on, and until the end of this Appendix, we
will assume that the K-algebra K 7€ is split.

The question of lifting idempotents whenever the ring R, is complete for the t-
adic topology is classical. We propose here another version, valid only whenever
the K-algebra K ¢ is split (we only need that R is integrally closed: no assumption
on the Krull dimension of R or on its completeness is necessary).

D.2.A. Central characters. — If V is a simple K ##-module, and if z € KZ(¢), then
z acts on V by multiplication by a scalar wy(z) € K (indeed, since K. is split, we
have Endg (V)= K). This defines a morphism of K-algebras

wy: KZ(#)— K

whose restriction to Z(¢) has valued in R (since Z(¢) is integral over R and R is
integrally closed). Hence, this defines a morphism of R-algebras

wy  Z(#)— R.
By composition with the canonical projection R — R/t, we obtain a morphism of
R-algebras
w), 1 Z(A)— R/x.
Since wy(1)=1and R/vis integral, Ker wy is a prime ideal of Z(.#¢) such that Ker wyN
R =t. So
(D.2.1) Kerow!, € Y'(v).

This defines a map
Her,: Irr(KoA) — YT7l(x)
%4 — Kerwj, °

Definition D.2.2. — The fibers of the map er, are called the t-blocks of .

The v-blocks of # are subsets of Irr(K ), of which they form a partition. Note
that, since Z(2¢) = R +Ker(w},), the central character w}, is determined by its kernel.
Hence, two simple K -modules V and V’ belong to the same t-block if and only
if 0}, = w},,.
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D.2.B. Lifting idempotents. — The main result of this section is the following;:

Proposition D.2.3. — We have:

(a) If e eIdem,,(R.Z(%)), then é € Idem,, (kZ()).
(b) The map 1dem,,(R.Z(¢)) — Idem,,(kZ(¢)), e — é is bijective.

Proof. — Let
Q: RZ(H) — HVGIrr(K,%E) R
z — (wV(Z))VGIrr(K,%F)'

Then Q is a morphism of R,-algebras, whose kernel I is equal to R.Z()NRad(K )
and whose image will be denoted by A.

Consequently, I is nilpotent and so Q2 induces a bijective map Idem,(R.Z(#)) ——
Idem,,(A). Moreover, by Corollary D.4.3 (which will be proven in § D.4), the reduc-
tion modulo t induces a bijective map Idem,,(A) — Idem,,(kA). It then remains to

show that the kernel of the natural map kZ(#) —» kA is nilpotent: it is obvious as
it is the image of I in kZ(¢). O

Corollary D.2.4. — The map Her, : Irr(K #) — Y (x) is surjective. Its fibers are of the
form Ire(K € e), where e € Idem,,(R.Z(¢)).

Proof. — The first statement follows from (D.4.4) below and the second from the
proof of Proposition D.2.3. O

By combining Propositions D.1.2 and D.2.3, we get the next corollary:

Corollary D.2.5. — We have:

(a) If e eIdem,,(R.Z(7)), then & € Idem,,(Z(k ).
(b) The map 1dem,, (R.Z(¢)) — Idem,, (Z(k.5¢)), e — e is bijective.

Therefore, we get a bijective map
(D.2.6) YT (r) < Idem,,(R.Z(H)).
If 3 € Y7'(¢R,) and if e € Idem,,(R.Z(.%)), then

(D.2.7) e and 3 are associated through this bijective map if and only if e & R.3.
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To summarize, we obtain a diagram of natural bijective maps

(D.2.8)
YT (v) = T '(¢R,) = Spec kZ(£) = SpecZ(k£)
A A
h N Y I
N : b4 2 2

N
N [
N
8y

Idem,(R.Z()) < - — — - = Idem,,(kZ(#))

Idem,,,(Z(k.)),

where the maps with dashed arrows exist only whenever the K-algebra K. is
split.

Let
T'(t) — Idem,,(R.Z())

3 — &
denote the bijective map of diagram D.2.8. We get a partition of Irr(K ) thanks to
the action of the central idempotents e;:

(D.2.9) Irr(K ) = U Irr(K A ey).

3€T71(v)

The subsets Irr(K s ¢,) are the t-blocks of 2.

Example D.2.10. — Whenever tis the zero ideal, then R, = k = K, T~!(r) ~ Spec KZ(¢),
Idem,,(R,.) = Idem,, (K ) and w}, =w,. R

D.2.C. Ramification locus. — The following proposition is certainly classical (but
is valid because R is integrally closed):

Proposition D.2.11. — Assume that the algebra K 7€ is split. Then there exists a (unique)
radical ideal a of R satisfying the following two properties:
(1) Spec(R/a) is empty or purely of codimension 1 in Spec(R);
(2) If vis a prime ideal of R, then 1dem,,(R.Z(5¢)) =1dem, (KZ(¢)) if and only if a ¢ ©.
Let v be a prime ideal of R containing a. A subset of Irr(K ) is an v-block if and only if
it is minimal for the property of being a p-block for all height one prime ideals p of R with
acpcr.

Proof. — Let (by,..., b,) be an R-basis of # and let Idem,,,(KZ())={e,, ..., ¢;} with
I = [Idemy, (KZ(¢))|. We write
e,- = Z kl] b]
=1

with k;; € K.
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Let us now fix a prime ideal v of R. Then Idem,,(R.Z(¢)) = Idem,, (K Z(.¢)) if and
only if

(%) VI1<i<Il,V1<j<n, k;;€R.
J j

If ke K,weseta,={r €R|rke€R}. Then a; is anideal of R and, if v is a prime ideal
of R, then k € R, if and only if a; ¢ t. Define a to be the radical of

| | Clkij.

1<i<!
1<j<n

NN
VN

Now (x) becomes equivalent to a ¢ v. This proves the statement (2).

Let us now show that Spec(R/a) is empty or purely of codimension 1 in Spec(R).
For this, it is sufficient to prove that Spec(R/a;) is empty or purely of codimension
1 in Spec(R). If k € R, then a; = R and Spec(R/qa;) is empty. Assume that k € R, let us
show that Spec(R/a,) is then purely of codimension 1 in Spec(R). Let p be a minimal
prime ideal of R containing a,. Then k ¢ R,. We need to prove that p has height
1. But, since R is integrally closed, the same holds for R,: so R, is the intersection
of the localized rings R,, where p’ runs over the set of prime ideals of height 1 of
R contained in p (see [Mat, Theorem 11.5]). So there exists a prime ideal p’ of R of
height 1 contained in p and such that k ¢ R,. Hence a; C p’ C p and the minimality
of p implies that p =p’, which implies that p has height 1.

Assume now a C t. Let I be a subset of Irr(K 2#) that is a union of p-blocks for all
height one prime ideals p of R with a Cp Ct. There is an idempotent e of KZ()
such that given V e Irr(K %), we have eV # 0 if and only if V € I. The coefficients
of e in the K-basis (b, ..., b,) of K. are in R, for all height one prime ideals p of R
withacpcCr.

The discussion above shows that e € R,Z(>¢) for all height one prime ideals p of
R that do not contain a. So, the coefficients of e in the K-basis (b, ..., b,) of K are
in (), R,, where p runs over all height one prime ideals of R contained in t. Since
that intersection is R,, we deduce that e € R.Z(.#). This shows that I is a union of
t-blocks. O

D.3. Decomposition maps

Let R, be a commutative R-algebra and let v; be a prime ideal of R,. We set
R, =R, /vy, K, =Frac(R,) and K, =Frac(R,) = kg, (v,). Let Z(¢, K,[t]) denote the set of
maps # — Ki[t]. If V is a K;#-module of finite type and if h € 2, we denote by
Charl‘g(h) the characteristic polynomial of h for its action on the finite dimensional
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K,-vector space V. Therefore, Charl‘g € Z (A, K [t]). Also, Charl‘g1 depends only on
the class of V in the Grothendieck group Ky(K;¢). This defines a map

Chary, : K, (K, ) — F (¢, K [t]),

where K (K, .7¢) denotes the submonoid of K,(K;.7¢) consisting of the isomorphism
classes of K;.7¢-modules of finite type. It is well-known that Chary, is injective [GeRo,
proposition 2.5].
We will say that the pair (R, ;) satisfies the property (Zec) if the following three
statements are fulfilled:
(D1) R, if noetherian and integral.
(D2) If h € RiH and if V is a simple K;H-module, then Charl‘g(h) €
Ri[t] (note that this property is automatically satisfied if R; is
integrally closed).
(D3) The algebras K;H and K,H are split.
Let red,, : (€, R\[t]) — Z (S, R,[t]) denote the reduction modulo ;. By assump-
tion (D3), if K, is an extension of K;, the scalar extension induces an isomorphism
Ky(K, ) — Ky(K, 7€), and we will identified these two Grothendieck groups.

Proposition D.3.1 (Geck-Rouquier). — If (Ry,t,) satisfies (Yec), then there exists a
unique map decf” : Ky( Ky 4) — Ko( Ky ) which makes the following diagram

Ry A
Charg,
Ky(K, ) F (A, Ry[t])
decy % red,,
Chary,
Ko(Ky ) F (A, K[t])

commutative. If O, is a subring of K, containing R,, if m, is a prime ideal of O, such that
my N Ry =vy, and if £ is an O,.7¢-module which is free of finite rank over 0y, then kg (m,)
is an extension of K, and

dec%:ﬁ[Klg]Klﬂ’ :[kﬁl(m1)$]k01(ml)ﬂ-

Proof. — This proposition is proven in [GeRo, Proposition 2.11] whenever R; is
integrally closed. We will show how to deduce our proposition from this case. If
we assume only that (D2) holds, let R; denote the integral closure of R, in K;. Since
R| is integral over Ry, there exists a prime ideal v} of R such that v N R, =1,. Set R) =
R{/v|. Then kg (r]) is an extension of kg (v;) so kg/(v,)# is split, which means that,

by [GeRo, Proposition 2.11], deciif; : Ko(Ky ) — Ko(kg(v))€) is well-defined and

R

satisfies the desired properties. We then define decy,

by using the isomorphism
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Ko(kg(v})7) ~ Ko(K; 7€) and it is easy to check that this map satisfies the expected
properties. U

It then follows a transitivity property [GeRo, proposition 2.12]:

Corollary D.3.2 (Geck-Rouquier). — Let R, be an R-algebra, let v, be a prime ideal of
R, and let ¢, be a prime ideal of R, = R, /t,. We assume that (R, ;) and (R,,,) both satisfy
(Zec) and we set Ry = R,/t,. Then

R _ R, Ry
dec R = dec R © dec Rkt

D.4. Idempotents and central characters

The aim of this section is to complete the proof of Corollary D.2.4. Let 0 be alocal
noetherian ring and let A be a 0-subalgebra of 09 = 0 x 0 x---x 0 (d times). Let
m=Rad(0), k=0/mand, if r € 0, let 7 denote its image in k.

If1<i<d,letn;:0%— 0 denote the i-th projection and

w;i:A— 0

denotes the restriction of 7; to A. We set

w;: A — k
a — w;a).

On the set {1,2,...,d}, we denote by — the equivalence relation defined by
i—j ifandonlyif @;,=a;.
Finally, we set
e;=(0,...,0, _1 ,0,...,00e 0°.

~—
i-th position
Then:
Lemma D.4.1. — Let I €{1,2,...,d}/ —. Then > _._, ;€ A.
Proof. — By reordering if necessary the idempotents, we may assume that I =

{1,2,...,d'} with d’ < d. We proceed in several steps:

(%) Ifieland j¢I,then there exists a;; € A such that w;(a;;)=1 and w;(a;;)=0.
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Proof of (). Since i £ j, there exists a € A such that w;(a) # & ;(a). Let
r=wj(a)and u = w;(a)—w;(a). Then u € 0* because 0 is local and
a;;j=u""'(a—r-1,) € A satisfies the two conditions. m

There exists a, € A such that w,(a,)=1and w;(a,)=0if j& 1.

Proof of (&). By (&), there exists, for all i € I and j ¢ I, a;; € A such
that w;(a;;) =1 and w;(a;;) = 0. Note that, if i’ € I, then w;(a;;) =1
mod m because &; = @;. Set a =[], ;s ai;- Then it is clear that
w;i(a)=0if j¢I and w;(a)=1 modm if i € I. It is then sufficient to
take a; = w,(a)'a. m

We then define by induction the sequence (a;), < ; < 4 as follows:

Ay = (1+0)z+1( ) (1—a 2))

We will show by induction on i €{1,2,...,d’} the following two facts:

(@)

(o)

Therefore, a, =,

The element a; is well-defined and belongs to A.

If1<i'<iand j¢1I, then w;,(a;)=1and w;(a;)=0.

Proof of (V;) and (#;). This is obvious if i =1. Let us now assume that
(©;) and (#;) hold (for some i < d’—1). Let us prove that this implies
that (©,,;) and (#;,,) also hold.

Then i — i+ 1 and so w;,(a;) = w;(a;) =1 modm. So w;,(a;) is
invertible and so a;,, is well-defined and belongs to A (this is exactly
(i)

Now, let us set r = w;,1(a;) for simplifying. Then:

oIf1<i’<i,wehave w,(a;,;)=1-(1+r?1-1%)=1.

°ew;y(a z+1)— rPl+r?(1-r?))=1.

oIf j &I, then w;(a;,)=0-(1+r?1—-0%)=0.

So (#;,;) holds. m

i1 € EA.

Corollary D.4.2. — The map

{1,2,...,d}/ — — Idem(A)

I L— e;

iel

is well-defined and bijective.
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Proof. — The Lemma D.4.1 shows that, if I € {1,2,...,d}/ —, then e; = Ziel e; € A.
If e; is not primitive, this means that, since 0 is local, there exists two non-empty
subsets I, and I, of I such that e;, e, €A, and I =1, [ [ L. But, if i, € I, and i, € I,
then @, (e;,)=1# 0= ®,,(e;,), which is impossible because i; — i,. So the map I — e,
is well-defined. It is now clear that it is bijective. O

If a € A, let d denote its image in kA=k ®, A.

Corollary D.4.3. — With this notation, we have:

(a) If e eIdem,,(A), then é € Idem,,(kA).
(b) The map 1dem,,(A) — Idem,, (kA), e — & is bijective.

Proof. — (a) Let e € Idem,,(A) and assume that é = e, + e,, where ¢, and e, are two
orthogonal idempotents of kA. The ring ¢ being noetherian, kA is a finite dimen-
sional commutative k-algebra. So there exists two morphisms of k-algebras p,,
p2:kA— k' (where k' is a finite extension of k) such that p;(e;)=6; ;. Let p; denote
the composition A — kA LK.

Set a; = Ker(p;). The image of p; being a subfield k’, a; is a maximal ideal of A.
Since 0 is integral over A, there exists a maximal ideal m; of 07 such that a; = m;NA.
Since 0 is local, m; is of the form 0 x---x 0 xmx 0 x---x 0, where m is in t;-th position
(for some t; €{1,2,...,d}), which implies that p, = @&,,.

Since p, # p, and p;(e;) = 0;;, we get &, # &, and @,(e) = p,(e;+e)=1=
p2(e +e)=w,(e). This contradicts Corollary D.4.2. O

During this proof, the following result has been proven: if k’ is a finite extension
of k and if p : kA — k' is a morphism of k-algebras, then

(D.4.4) there exists i € {1,2,...,d} such that p(d) = @;(a) for all a € A.



APPENDIX E

INVARIANT RINGS

Let k be a field. Let R be a k-algebra acted on by a finite group G whose order
is invertible in k. Let e = ;> ¢ec 8, a central idempotent of kG. Let A= RxG.
The aim of this appendix is to relate representations of A and of R®. We are mainly
interested in the case where R is commutative.

E.1. Morita equivalence

The natural action of G on R and the action of R by left multiplication on R induce
a structure of A-module on R.

The following lemma is classical.
Lemma E.1.1. — The restriction to R of a semisimple A-module is semisimple.

Proof. — Let S be a simple A-module. Since Res(S) is finitely generated, it admits
a maximal submodule M. Since (),; §(M) is a proper A-submodule of S, it is zero.
Consequently, the canonical morphism of R-modules S — P, S/g(M) is injective.
Since S/g(M) is a simple R-module for all g € G, it follows that S is a semisimple
R-module. O

The following lemma is clear.

Lemma E.1.2. — There is an isomorphism of A-modules R — Ae, r — re that restricts
to an isomorphism of k-algebras R® — e Ae.

Let M be an R-module whose isomorphism class is stable under the action of
a subgroup H of G. There are isomorphisms of A-modules ¢, : h*(M) — M for
h € H, unique up to left multiplication by Autz(M). Consequently, the elements
@1 € Naut,o (v)(Autg(M)) define a morphism of groups H — Autgs(M)/ Autg(M).

Proposition E.1.3. — The following assertions are equivalent:
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(1) Ae is a progenerator for A

(2) Ae induces a Morita equivalence between A and R

(3) A=AeA

(4) for every simple A-module S, we have S®# 0.

(5) for every simple R-module T whose isomorphism class is stable under the action of
a subgroup H of G and for every non-zero direct summand U of Indi "' T, we have

UH #£0.

Proof. — Note that Ae is a direct summand of A, as a left A-module, hence Ae is a
finitely generated projective A-module. The equivalence between (1) and (2) follows
from Lemma E.1.2.

If Ae is a progenerator, then A is isomorphic to a quotient of a multiple of Ae.
Since the image of a morphism of A-modules Ae — A is contained in AeA, we de-
duce that if (1) holds, then (3) holds. Conversely, assume (3). There are a;,...,a, € A
such that 1 € Aea, +---+ Aea,, hence the morphism (Ae)" — A, (r,...,1,) — na; +
---+r,a, is surjective and (1) follows.

We have A/AeA =0 if and only if A/AeA has no simple module, hence if and only
if e does not act by 0 on any simple A-module. This shows the equivalence of (3)
and (4).

Assume (4). Let S be a simple A-module that is a direct summand of Indf}X »(U).
We have S #0, hence U #0. So (5) holds.

Assume (5). Let S be a simple A-module. Let T be a simple R-module that is
a direct summand of the semisimple module Res%(S). Let H be the stabilizer of
the isomorphism class of T. There is a simple (R x H)-module U that is a direct
summand of Ind}*”(T) such that S = Ind%, ,,(U). Since U # 0, we deduce that

RxH

S¢ #0. This shows (4). O

Corollary E.1.4. — If AeA= A, then Z(A)=Z(RC).

Proof. — By Proposition E.1.3, the rings A and eAe ~ R are Morita equivalent via
the bimodule Ae. This provides an isomorphism Z(A) = Z(RY), the isomorphism
being given by the action on the bimodule Ae (Lemma E.1.5 below). The result
follows. O

Lemma E.1.5. — Let A and B be two rings and M an (A, B)-bimodule such that the canon-
ical maps give isomorphisms B — End,,(M) and A— End gop(M)°PP. Then we have an
isomorphism Z(A)— Z(B).

In particular, if e is an idempotent of a ring A and if left multiplication gives an isomor-
phism A—— End, seym(Ae)°PP, then there is an isomorphism Z(A)— Z(eAe), a— ae.
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Proof. — The left multiplication on M induces a ring morphism « : Z(A) — Z(B)
such that zm = ma(z) for all z € Z(A) and m € M. Similarly, the right multiplication
induces a ring morphism f : Z(B) — Z(A) such that mz = B(z)m for all z € Z(B) and
m € M. Hence, if z € Z(A) and m € M, then zm = (a(z))m, and so f o a =1dy,, since
the action of A on M is faithful by assumption. Similarly a o =Idy . O

E.2. Geometric setting

We assume now that R = k[X], where X is an affine scheme of finite type over
k, i.e, R is a finitely generated commutative k-algebra. Proposition E.1.3 has the
following consequence.

Corollary E.2.1. — If G acts freely on X, then Ae induces a Morita equivalence between
Aand RC.

Let X™8 ={x € X|Stab;(x) =1} and let A™8 =k[X"™8] x G. We assume X" is dense
in X, i.e., the pointwise stabilizer of an irreducible component of X is trivial. The
following proposition gives a sufficient condition for a double centralizer theorem.

Proposition E.2.2. — Assume that X is a normal variety, i.e., all localizations of A at
prime ideals are integral and integrally closed.

(1) The canonical morphism of algebras A— Endpgc(R) is injective.
(2) If the codimension of X \ X™® is > 2 in each connected component of X, then the
morphism above is an isomorphism and Z(A) = RC.

Proof. — It follows from Corollary E.2.1 that given f € R such that D(f) c X",
then the canonical morphism R[f~']x G — Endge[s-1j(R[f~']) is an isomorphism. In
particular, the morphism of the proposition A — Endzs(R) is an injective morphism
of R-modules, since X™8 is dense in X.

Let K be the cokernel of the canonical morphism A — Endze)(R). We have K ®g
k[X™8] =0, hence the support of K has codimension > 2. Since A is normal, it has
depth >2, hence Ext}?(K ,R) = 0. We deduce that K is a direct summand of the
torsion free R-module Endzq)(R), hence K = 0. The last statement follows from

Lemma E.1.5. [l

The statement on the center of A can be obtained more directly.

Lemma E.2.3. — If R is an integral domain and G acts faithfully on X, then Z(A)= RC.
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Proof. — Let a = dec r.8 € Z(A) with r, € R for g € G. Given g, a non-trivial
element of G, there is x € R such that gyxg;' # x. We have
0=[x,a]l= Z(x —gxg g
geG

hence (x —gyxg,")rg, =0. Since R is integral, it follows that r, =0. We have shown
that a = r, € A. Since [a,g]=0 for all g € G, we deduce that a € R®. O

We conclude with a description of the simple A-modules when A= AeA. In this
case, using the Morita equivalence between A and R® induced by the bimodule Ae,
we obtain a bijective map

Irr(A) — Irr(RY)

(E.2.4) S

Since R is commutative, Irr(R) (respectively Irr(R)) is in one-to-one correspondence
with the set of maximal ideals of R (respectively of R%), so we obtain a bijective map

(E.2.5) Irr(R)/G «— Irr(R%)

(see Propositions B.3.1 and B.3.2). By composing the two previous bijective maps,
we obtain a third bijective map

(E.2.6) Irr(R)/ G «— Irr(R)

We will describe more concretely this last map. In order to do that, let @ be a G-orbit
of (isomorphism classes of) simple R-modules. The R-module S, = R/ NrcqAnng(T)
inherits an action of G, hence it becomes an A-module.

Proposition E.2.7. — Assume that A= AeA and that R is commutative and finitely gen-
erated.
(a) If Qelrr(R)/G, then Sy is a simple A-module.
(b) The map Irr(R)/G — Irr(A),  — S, is bijective (and coincides with the bijective
map E.2.6).
(c) If S is a simple A-module, then Resy(S) is semisimple and multiplicity-free, and two
simple R-modules occurring in Resq(S) are in the same G-orbit.
(d) If S and S’ are two simple A-modules, then S ~ S’ if and only if Resy(S) and Res%(S’)
have a common irreducible submodule.

Proof. — (a) By construction, we have a well-defined injective morphism of R-
modules Sq — @ T (here, we identify T and R/Anng(T)). Let S be a non-zero
A-submodule of S,. Its restriction to R contains a submodule isomorphic to some
T €9. Since the action of G stabilizes S, it follows that S = S, and that

(%) ResA(So)=EP T.

TN
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This proves (a).

(b) It follows from (x) that the map Irr(R)/G — Irr(R), 2 — S, is injective. Now,
let @ € Irr(R)/G, let T € @ and let m = Anng(T). Denote by H the stabilizer of m in
G (that is, the decomposition group of m). We have eS, = S§ ~ T = (R/m)". By
Theorem B.3.4, (R/m)? = R¢/(mNR®). This proves that e, is the simple R®-module
associated with the maximal ideal mN R of R or, in other words, is the simple
R¢-module associated with Q through the bijective map E.2.5. This completes the
proof of (b).

(c) and (d) now follow from (a), (b) and (x). O






APPENDIX F

HIGHEST WEIGHT CATEGORIES

We fix in Appendix F a commutative noetherian ring k.

F1. General theory

F1.A. Definitions and first properties. — We say that a poset A is locally finite if
given any D, D’ € A, then there are only finitely many D” € A such that D < D” <D’.
We say that a subset I' of A is an ideal if given D € A and D’ €T with D < D’, then
D eTl. Given D e A, wedefine A , ={D’€ A| D’ < D}, and we define similarly A_p,
Asp and A, . We say that an ideal T is finitely generated if there are D;,...,D, € A
such thatI'=A p U---UA .

Let € be a k-linear abelian category. We say that % is noetherian if all its objects
are noetherian.

Let A be a family of isomorphism classes of objects of ¢ (the standard objects). We
assume A is endowed with a locally finite poset structure.

GivenT c A, we denote by

— 6[T'] the full subcategory of ¢ of objects M such that Hom(D, M) = 0 for all
D eA\T

— €' the full subcategory of ¢ of objects M that have a filtration 0 =M, c M, C
--+CM,=M such that M;/M,_,eT for1<i<r

— i(6") the full subcategory of 6 of objects that are direct summands of objects
of €".

We extend now the definition of (split) highest weight categories over k of [Rou]

to the case of a non-necessarily finite A.

Definition F.1.1. — We say that 6, endowed with the poset of standard objects A, is a
highest weight category if

(i) forall D € A, we have End(D) =k
(ii) given Dy, D, € A such that Hom(D,, D,) # 0, we have D, < D,
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(iii) every object of 6 is the quotient of an object of €*
(iv) forall M € 6, D,D’ € A, there is a surjection R — D with kernel in 6*>1 such that
Hom(R, D’) is a finitely generated projective k-module and Ext'(R, M)=0.

Remark F1.2. — Assumption (iv) is aimed at making sense of the existence of an
approximation of a projective module, and of the requirement that objects of A are
finitely generated and projective over k. ®

We assume from now on that % is a highest weight category.

Note first that Definition F.1.1 (iv) admits a version where D is replaced by an
arbitrary object of 6. The next lemma shows that this stronger version is actually
a consequence of Definition F.1.1 (iv).

Lemma F1.3. — Let N € 62, D’ € A and M € 6. Then, there exists a surjection R - N
with kernel in €* such that Hom(R, D) is a finitely generated projective k-module and
Ext'(R, M) =0.

Proof. — Fix a filtration 0=N, C N; C---C N, = N such that N;/N, ;€ Afor1<i<r.
Given i, there exists a surjection f; : R; » N;/N;_, such that ker f; € €2, Hom(R;, D)
is a finitely generated projective k-module and Ext'(R;, N;_; ® M) = 0. So, f; lifts to
amap g : R, — N; and thesum g =) . g, : @, R, — N is surjective. Let L, = ker(g, +
-+ g;) for 1<i<r. We have a filtration 0= L, Cc L, C---C L, such that L;/L;_; ~
ker f; for 1 <i<r. It follows that L, € 2. Note finally that Ext'(; R;, M) =0 and
Hom(&p; R;, D’) is a finitely generated projective k-module. O

Lemma F1.4. — Let 0— M — L — N — 0 be an exact sequence in 6 with L, N € i(6%).
Then M € i(6%).

Proof. — It is enough to prove the lemma for L, N € 6. By Lemma F.1.3, there is a
surjection R - N with kernel N’ € 6 and with Ext'(R, M)=0. Let L’ be the kernel of
the canonical map L ® R - N. The composition of canonical maps L' L’®R — L
is surjective and its kernel is isomorphic to N’, hence L’ € 64. The kernel of the
canonical map L’ —» R is isomorphic to M. Since Ext'(R, M) =0, it follows that M is
a direct summand of L’, hence M € i(6%). O

Lemma F1.5. — Let T be an ideal of 6 and let M € 6[T']. Let D € A and let i >0. If
Ext'(D, M)#0, then there exists Dy, ...,D; €T with D =Dy < D, <---< D;.

Proof. — When i =0, we have D €T. We proceed now by induction on i > 1.

There exists M’ € 6, { € Ext!(D, M’) and & € Ext™}(M’, M) such that & 0 {#0. There
exists a surjection R —» D with kernel L in 6¢*>» such that Ext'(R,M’) = 0. So, {
factors through a map f : L — M’. Since & o {#0, it follows that & o f#0. So, there
exists D’ > D such that Ext'"}(D’, M)#£0. By induction, we deduce that there exists
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Dy,...,D! €T suchthat D'=D,/<D/<---<D/ . It follows that the lemma holds for
D, M and i. O

Lemma F1.6. — Given M,N € 6, the k-module Hom(M, N) is finitely generated.

Proof. — Recall that k is noetherian. By Definition F.1.1 (iv), the k-module Hom(M, N)
is finitely generated if M, N € A. Consequently, the lemma holds if M, N € ¢~.

Assume now M € 6°. There exists a surjection N’ - N with N’ € ¢* and we
denote by N” the kernel of that surjection. Lemma F.1.3 shows there exists a sur-
jection R - M with R € 62 and Ext'(R,N”) = 0. The canonical map Hom(R, N’) —
Hom(R, N) is surjective and Hom(R, N’) is finitely generated, hence Hom(R, N) is
finitely generated. It follows that Hom(M, N) is finitely generated.

A general M is a quotient of an object of ¢, hence Hom(M, N) is finitely gener-
ated. O

Lemma F1.7. — Let M, M’ € 6*. The k-module Ext'(M,M’) is finitely generated. If it
is non-zero and M,M’' € A, then M < M.

Proof. — Assume first M,M’ € A. Fix a surjection R -» M with kernel L € €%
such that Ext'(R,M’) = 0. Since Hom(L, M’) is a finitely generated k-module, we
deduce that Ext'(M,M’) is a finitely generated k-module. If Ext'(M,M’)#0, then
Hom(L, M’)#0, hence there is M” > M such that M” < M’. So, M < M’.

The general case follows by induction on the length of a A-filtration. O

Lemma F1.8. — Let I be a finite subset of A. Fix a total order < on I such that Ext'(D, D’) #
0 implies D < D’.

Consider M € 6 with a filtration 0 = My C M, C--- C M, = M such that M;/M; , €1
for 1<i<r. Then, M has another filtration 0 = M; C M; C --- C M/ = M such that
M!/M! el for1<i<rand M /M/<M//M forl1<i<r.

+

Proof. — We prove the result by induction on r. Take D € I maximal for < such
that D ~ M;/M;_, for some i, and consider i minimal with this property. We have
D#M;/M;_, for j < i, hence Ext'(D,M;/M;_,)=0for j <i. It follows that Ext'(D, M;_,) =
0, hence M; has a subobject L isomorphic to D such that M; = L& M;_,. The object
M /L has a filtration with (M /L); =M, for j<iand (M/L);=M;,,/L for j > i. That
filtration has length r —1, and the subquotients are in I. By induction, N = M /L
has another filtration 0 = Ny c --- c N/, = N with N//N/ €1 for 1<i < r and
N/, ,/N/ < N//N/ for 1<i < r—1. We obtain an appropriate filtration of M by
taking M| = L and M/ the inverse image of N/ , for i > 1. O

We define the partial order < on A as the one generated by D <D’ if Ext'(D, D’) #0
for some i €{0,1}.
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The following proposition shows that < is the coarsest order on A that makes
(¢,A) into a highest weight category.

Proposition F1.9. — Let < be a partial order on A. The category 6 equipped with the
poset (A, <) is a highest weight category if and only if < is finer than <.

Proof. — 1If (A, <) defines a highest weight category structure on ¢, then it follows
from Lemma F.1.7 that < is finer than <.

Assume now < is finer than <. Consider M € ¢ and D,D’ € A. There is a sur-
jection R - D with kernel N € €2>» and such that Hom(R, D’) is a finitely gener-
ated projective k-module and Ext'(R,M) = 0. By Lemma F.1.8, there is a filtration
0=RyCR,C--CR, ,CR,; =N CR, =R with subquotients in A and there is an
integer i €{1,...,r—1} such that given j€{1,...,r—1}, we have D <(R;/R;_,) if and
only if j>i.

Consider j > i and [ €{1,...,r —1} such that Extl(Rj/Rj_l,Rl/R,_l) # 0. We have
(R;j/R;-1) < (R;/R,;) # 0, hence D < (R;/R,_;). It follows that I > i. We deduce
that Ext'(R/R;, R;) =0, hence R ~ R/R; ® R;. The k-module Hom(R/R;, D’) is finitely
generated and projective and Ext'(R/R;,M) = 0. So (iv) holds for (¢,A,<). The
conditions (i)—(iii) are clear. This completes the proof of the proposition. O

F.1.B. Ideals and Serre subcategories. —

Proposition F1.10. — Let T be an ideal of A.
(i) Every object of ¢~ has a subobject in ¢*\" whose quotient is in 6".

(i) An object of 6 is in €[] if and only if it is a quotient of an object of 6.

(iii) €[T]is a Serre subcategory of 6. It is a highest weight category with poset of standard
objects T.

(iv) The inclusion functor iy : ‘6[T'] — 6 has a left adjoint Vi} sending an object M € €
to its largest quotient in G[I]. If 6 is noetherian, it has a right adjoint i sending an
object M € 6 to its largest subobject in €[I'].

(v) We have Vi (62)= 6" and Vi (Proj(€)) C Proj(6[I)).

Proof. — Statement (i) follows immediately from Lemma F.1.8.

Let f: P - M be a surjection with P € 6" and M € €. Let D € A\T. There exists
a surjection g : R - D with kernel in 62> such that Ext'(R,ker f)=0.

Consider now h:D — M and let h'=hog:R — M. The map h’ factors through a
map h”: R — P. Since R € 62\ and P € 6", we deduce that h” =0, hence h =0. So,
M € 6[I']. We have shown that every quotient of an object of 6" is in ¢[I].

Let M € 6[I']. Consider a surjection f : R - M with R € €. By (i), there is R’ <R
such that R’ € 62\ and R/R’ € 6¢". By induction on the length of the filtration, we
see that Hom(N, M) =0 for all N € 62\, In particular, Hom(R’, M) = 0. So, f factors
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through a surjection R/R’ — M, hence M is a quotient of an object of 6". This shows
(ii).

Note that ¢[I'] is closed under subobjects and extensions, while the category of
quotients of objects of 6" is closed under taking quotients. It follows that €[I'] is a
Serre subcategory.

Let M € 6[T] and D, D’ €T. We fix a surjection f : R — D as in Definition F.1.1(iv).
By (i), there is R’ <ker f such that R’ € ¢4V and ker f/R’ € ¢%». The map f factors
through a surjection R/R’— D.

We have Hom(R’, D’) = 0, hence Hom(R/R’, D) ~ Hom(R, D’) is a finitely gener-
ated projective k-module. Since Ext'(R, M)=0 and Hom(R’, M) =0, we deduce that
Ext'(R/R’,M)=0. So, the surjection R/R’ - D satisfies Definition F.1.1(iv) for 6[T].
We deduce that €¢[I'] is a highest weight category, hence (iii) holds.

Let M € 6. There exists a surjection f : R -» M with R € 6. As above, there
is R’ < R such that R’ € 62\ and R/R’ € 6'. Let M’ = f(R’). Note that M/M’ is a
quotient of R/R’, so M /M’ € 6[I']. Consider now N € ¢[I']. Since Hom(R’, N) =0, we
have Hom(M’, N) =0, hence every map M — N factors through M /M’. We deduce
that M /M’ is the largest quotient of M that is in 6[I']. The functor M — M /M’ is
left adjoint to the inclusion functor.

Assume now all objects of ¢ are noetherian. Consider now the family I of sub-
objects of M that are in ¢[I']. Since M is noetherian, the family of finite sums
of objects of I has a supremum M”. Given N € %4[I'], we have an isomorphism
Hom (N, M”) — Homg (N, M). We deduce that the inclusion functor €[[] — 6
has a right adjoint, sending an object M to M"”. This shows (iv).

Let M € 6¢2. It follows from (i) that M has a subobject M’ € ¢\ with M /M’ € 6".
Since iy is right exact, we have an exact sequence "iy(M') — Viy(M) — M /M’ — 0.
On the other hand, Hom(M’,"i(M’)) =0, hence Vi (M’) = 0. It follows that Vi (M) €
7.

The last statement of (v) is a standard property of the left adjoint of the inclusion
of a full abelian subcategory. O

Corollary F1.11. — The category 6 is the union of the full subcategories 6[T'], where T
runs over finitely generated ideals of A.

FE1.C. Projective objects. — Note first that since every object of 6 is a quotient of
an object of ¢4, it follows that every projective object of € is a direct summand of
an object of €4, that is, is an object of i(€*).

We start with a projectivity criterion.

Lemma F1.12. — Let N € 6 such that Ext'(N,D)=0 for all D € A. Then, N is projec-
tive.
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Proof. — Let M € 6. By Lemma FE.1.3, there exists a surjection f : R - N such that
ker f € ¢ and Ext'(R, M)=0. We have Ext'(N, ker f) =0, hence f is a split surjection
and Ext'(N, M)=0. It follows that N is projective. O

Lemma F.1.13. — Let D be an object of A such that A.p, is finite. Then, there is a projec-
tive object P of 6 and a surjective map P — D whose kernel is in 6>,

Proof. — Fix r 2 0 and an increasing bijection ¢ : A, = {1,2,...,7}. Let B,=D. We
construct by induction on i € {1,2,...,r} a family of objects P,...,P, in ¢ A>p and
surjections f; : P, » P,_; such that Ext'(P,, ¢ '(i)) = 0 and ker f; is a finite multiple of
(i)

Assume P, has been constructed. Since Ext'(P;, ¢ 71(i +1)) is a finitely generated k-
module (Lemma F.1.7), there exists an object P;,, of ¢ and a surjection f,; : P;;; = P;
such that the canonical map Ext'(P;, ¢ 7'(i + 1)) — Ext'(P,;, ¢ (i + 1)) vanishes and
ker f;,, is a finite multiple of ¢~!(i +1). Since Ext'(¢ (i + 1), (i + 1)) =0, it follows
that Ext'(P,,¢~'(i +1))=0.

Weput P=P, and g;=f;0---0 f,: P - P,_,. Note that kerg; € ¢¢ (1>},

Given D’ € A with D £ D’, we have also ¢~1(i) £ D’ for all i, hence Ext'(P, D’)=0.

Let i €{1,2,...,r}. We have Ext'(kerg,.;,¢~'(i)) = 0 and Ext'(P;, ¢ '(i)) = 0, hence
Ext!(P,¢~'(i)) = 0. So, Ext'(P,D’) =0 for all D’ € A. We deduce from Lemma F.1.12
that P is projective. O

Let us now provide a criterion for the existence of enough projective objects.

Proposition F1.14. — If A is finite for all D € A, then 6 has enough projective objects.
More precisely, fix Pp a projective object with quotient D for every D € A. Then, {Pp}pea
is a generating family of projective objects. Furthermore, every object of 6> has a finite
projective resolution.

Proof. — Given D € A, Lemma F.1.13 shows there is a projective object P, and a
surjection P, - D. Let M € ¢ with a filtration 0= M, c M, C ---c M, = M such that
M;/M;_, € Ator 1<i<r. Wehave a surjection Py, , = M;/M;_,. It lifts to a map
fi Py, , — M; and the sum Y. f; : @ Py y,, — M is surjective. So, every object of
6¢*, hence every object of ¢, is a quotient of a projective object. The last statement
follows from Lemma FE.1.5. O

Proposition F1.15. — Let T be an ideal of A. Given M, N € 6[T'], we have Ext!

wmM,N)=
Ext/ (M, N) forall i >0.

Proof. — Note that the statement of the proposition is clear when i < 1 since 4[] is
a Serre subcategory of ¢ (Proposition F.1.10).
* Assume first I is a finitely generated ideal.



291

e Assume further that M € ¢~ is a projective object of ¢[I']. Assume Extfg(M ,N)#
0 for some i > 1. There is N’ € ¢ and { € Ext, (M,N’) and & € Ext.'(N’, N) with
£o{ #0. By Lemma E1.3, there exists a surjection f : P -» M with P € 6 such
that Ext'(P,N’) = 0. By Proposition F.1.10(i), there exists P’ < P such that P’ € €2V
and P/P’ € 6¢"*. Since Hom(P’, M) =0, we deduce that f factors through a surjection
P/P’— M. As M is projective in ¢[I'], that last surjection splits, hence there is P < P
such that f restricts to a surjection g : P - M with kernel P’. Since the composition
{o f vanishes, we deduce that { o g vanishes, hence { factors through a map h: P’ —
N’ and &oh #0. By Lemma F.1.5, we have Ext""!(P’,N) =0, hence a contradiction.
So, Extl,(M,N)=0 for all i > 0.

¢ Consider now an arbitrary M € 6/[I']. Since A is locally finite, the sets A.,NI" are
finite for all D €T. By Proposition F.1.14, there exist P € Proj(6[I']) and a surjection
f:P—-»M. Given i > 1, there are isomorphisms Extfg_ (ker f,N) = Extfg(M ,N) (by
the discussion above) and Extfg_[lr](ker f,N)= Extfgm(M ,N). By induction on i, we
have Extfg_[lr](ker f,N)=Ext.'(ker f,N). It follows that Extfgm(M ,N)=Ext (M,N).
* Consider finally the case of an arbitrary ideal I. There exists a finitely gener-
ated ideal I” contained in I' and such that M, N € €¢[I']. We have Extfg[r,](M ,N) =
Extfgm(M ,N) by what we have proven already in the case of ¢[I'] and I". Since
Extfg[r/](M ,N)=Ext, (M, N), the proposition follows. ]

Lemma F.1.16. — Let M,N € 6.
(i) If M €Proj(€) and N € €4, then the k-module Hom(M, N) is projective.
(i) Given i >0, the k-module Ext'(M, N) is finitely generated.
(iii) If M € 6*, then Ext'(M,N)=0 for i > 0.
(iv) Let T be an ideal of A such that M € 6[T]. IfExt'(D, M) # 0 for some D € Aand i > 0,
then D €T.

Proof. — Assume M € Proj(6) and N € A. By Lemma F1.3, there exists a surjec-
tion R - M such that Hom(R, N) is a finitely generated projective k-module. Since
Hom(M, N) is a direct summand of Hom(R, N), we deduce that it is a finitely gener-
ated projective k-module as well.

When M € Proj(6¢)and N € ¢4, it follows by induction on the length of a filtration
of N that Hom(M, N) is a finitely generated projective k-module. This shows (i).

When M € Proj(¢) and N € €, there exists N’ € ¢ such that N is a quotient of
N’. We deduce that Hom(M, N) is a finitely generated k-module.

Let us now prove (ii) and (iii). Thanks to Proposition F.1.15, we can assume that
A is finitely generated as an ideal, hence 6 has enough projectives by Proposition
F1.14.

Consider a surjection f : P - M with P projective. Since Hom(P, N) is a finitely
generated k-module, so is Hom(M, N). We deduce (ii) by induction on i > 0. We
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have a surjection Ext'"!(ker f, N) - Ext'(M, N). By induction, Ext""!(ker f, N) s finitely
generated, hence so is Ext'(M, N). This shows (ii).

It is enough to prove (iii) for M € A. We proceed by induction: we assume that
given D € A,,,;, we have Ext'(D, N) =0 for i > 0. We can assume that ker f € 6>,
hence Ext'(ker f, N) =0 for i > 0. So, Ext'(M,N)=0 for i > 0. This shows (iii).

Let us show (iv). We can assume that T’ is finitely generated. Assume D¢I'. Let
I"=A¢pUT. Since D is projective in 6[I"], we have Extfg[r,](D, M) = Extfg(D, M)=0
if i > 0 (Proposition F.1.15). So we have i = 0. There is M’ € €' and a surjection
M’ — M. Since Hom(D, M) # 0, it follows that Hom(D, M’) # 0, a contradiction. So

(iv) holds. O

Proposition F1.17. — Assume A is finite. Then, (6, A) is a highest category over k as in
[Rou, Definition 4.11]. There is a split quasi-hereditary k-algebra A [CPS2, Definition
3.2] and an equivalence A-mod =~ 6.

Proof. — It follows from Proposition F.1.14 that ¢ has a progenerator P and from
Lemma F.1.16 that A = End(P) is finitely generated and projective as a k-module.
So, we have an equivalence Hom(P,—): ¢ = A-mod. By Lemma F.1.16, Hom(P, D) is
a finitely generated projective k-module for all D € A. Finally, Lemma F.1.13 shows
that given D € A, there is P € Proj(6) and a surjection P - D with kernel in 64>,
It follows that (¢, A) is a highest category over k as in [Rou, Definition 4.11]. The
statement about quasi-hereditary algebras is [Rou, Theorem 4.16]. O

Remark F1.18. — If A contains a unique object D, then there is an equivalence
Hom(D,—): 6 — k-mod.

Given .¢/ an abelian category, M an object of .&/ and L a simple object of .</, we
denote by [M : L] € Z; ,U{o0} the maximum of the set of integers n such that M has
a filtration0=M_,c M, C---C M,,, = M with M,; _/M,;_,~L for1<i < n.

Proposition F1.19. — Assume k is a field and 6 is noetherian. Then,

— any object D € A has a unique simple quotient L(D) and we have End(L(D)) = k and
[D:L(D)]=1

— every simple object of 6 is isomorphic to L(D) for a unique D € A

— Let D,D’ € A such that [D : L(D")]#0. Then, we have D’ < D and [D : L(D’)] < oo.

Assume furthermore that A is finitely generated as an ideal. Then every object of € has a
projective cover. In particular, given D € A, the simple object L(D) has a projective cover
P(D)and [M : L(D)]=dim; Hom(P(D),M)< oo forall M € 6.

Proof. — Let L be a simple object of 6. There is D € A such that Hom(D, L)#0, since
L is a quotient of an object of 6. Consider now D’ € A such that Hom(D’, L)# 0.
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Assume D£D’ and let I be the ideal of A generated by D and D’. Then D is projec-
tive in ¢[I'] hence a surjection D —» L factors as the composite of a surjection D’ — L
and a non-zero map D — D’. Since Hom(D, D’) = 0, we obtain a contradiction. It
follows that D < D’. By symmetry, we obtain D’ < D, hence D = D’. It follows that
there is a unique D € A such that L is a quotient of D.

Fix now D € A and assume there are simple objects L,L’ € ¢ and a surjective
map f:D - Le& L. We have L,L’ € 6[A<p] and D is projective in 6[Acp]. It
follows that composition with f induces a surjection End(D)— Hom(D, L&L’). Since
End(D) = k, we obtain a contradiction: D has at most one simple quotient and
dim; Hom(D, L) < 1 for all simple objects L.

Let M be the largest subobject of D thatisin 6[A_p]. Since Hom(D, M) =0, we de-
duce that D/M#0. Since 6[A.p]is a Serre subcategory of ¢, we have Hom(N, D /M)
0 for all N € 6[A_p]. Let L be a non-zero subobject of D/M. Since L € 6[A<p] but
LEC[A.p], there exists a non-zero map D — L. That map lifts to a non-zero map
D — D, hence an isomorphism since End(D) = k. So, L = D/M, hence D/M is
simple.

We have shown that every D € A has a unique simple quotient L(D), that L(D) ~
L(D’) implies D ~ D’ and every simple object of 6 is isomorphic to L(D) for some
D e A.

Since D is projective in ¢[A<p] and End(D) = k, we deduce that [D : L(D)] =1
and End(L(D)) =k, since dim; Hom(D, L(D)) < 1.

Let D’ € A such that [D : L(D’)]#0. Let I be the ideal of A generated by D and
D’. By Lemma F.1.12, there is P € Proj(¢[I']) and a surjection P - D’ with kernel in
¢>r'. We have dim; Hom(P, D) < oo (Lemma F.1.16), hence [D : L(D’)] < co. Also,
Hom(P, D)#0, hence D’ < D.

Assume now A is finitely generated as an ideal. Let D € A. There is a projective
object P of 6 and a surjection P - L(D). Since End(P) is finite-dimensional, it
follows that there is P(D) an indecomposable direct summand of P and a surjection
f:P(D)— L(D). As End¢(P(D)) is a local k-algebra, it follows that f is a projective
cover. L]

FE1.D. Ideals and quotients. — Let I be an ideal of A. Recall that ¢[I'] is a Serre
subcategory of 6 (Proposition F.1.10). We put 6(A\I')=¢/%][I].

Proposition F1.20. — Let T be an ideal of A. Then 6(A\T) is a highest weight category
with poset of standard objects A\T and the quotient functor induces an equivalence 6\" —
G (A\T)AV,

Given I" an ideal of A, there is a canonical equivalence

(SN \ (T NT)) = (CA\D)II\ (NIl
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Proof. — Given M € ¢V and N € €6, we have an isomorphism Hom(M, N) —
Homga\n(M, N) since Homy (M, M’) = Ext;,(M,M’) = 0 for all M’ € €[I'] (Lemma
E1.5).

We deduce that Homy(D, D’) ~ Homy (D, D’) for all D,D’ € A\T. It follows
that (i) and (ii) in Definition F.1.1 hold for ¢ (A\T).

Let M € 6. By Proposition F.1.10(iv), there is N € M such that M /N is the largest
quotient of M in ¢[I']. There is a surjection f : R - N with R € 6. By Proposition
F.1.10(i), there is a subobject R’ c R with R’ € €2\ and R/R’ € 6". Let N’ = f(R’).
We have a surjection R/R’ -+ N/N’, hence N/N’ € 6[I']. It follows that N/N' =
hence N is a quotient of R’. The image in ¢(A\T) of the map R’ — M is a surjection.
So, (iii) in Definition F.1.1 holds for € (A\T).

Let .# (resp. #) be the thick subcategory of D?(¢) generated by €[I'] (resp. A\T).
Since Exti w(D,D')=0forall i 20, D € A\T and D’ €T (Lemma F.1.5), it follows that
Homp (¢ (C C')=0for C € ¢ and C’ € .#. We deduce that Homp)(M,M’) —
Homyp(4)4(M,M’) for all M € ¢ and M’ € D?(¢). Since ¢(A\T) is the heart
of the canonical quotient ¢-structure on D?(6)/.¢, we deduce that Ext1 (M, M) ~
Exty, (M, M’) for all M € 62\ and M’ € 6. In particular, if M € ¢\ is projective
in ¢, then it is projective in ¢(A\T). Also, ¢ LA (‘6 (A\ 1“))A\r

Let us now assume that A is finitely generated as an ideal. Let M € 6. We have
seen that there exists R € 42\ and a map R — M that becomes surjective in 6(A\T).
In the proof of Proposition F.1.14, we saw that there exists a surjection P —» R with
P € Proj(6)N 6*\. The composition P — R — M is surjective in 6(A\T) and P is
projective in 6(A\T). We deduce that the quotient functor induces an equivalence
Proj(¢)N 62V = Proj(‘6(A\TI)) and that 6(A\T) has enough projectives. So, (iv) in
Definition F.1.1 holds for 6 (A\T).

Let us consider again an arbitrary A. We have ¢[I"]"\"") = (4 [I'](T"\(T'NI"))
and €7\ = @ [/F\En) =, ((g A\ r))r’\(mr')

)r \('NI")

. So, we have an equivalence

(e @nry)) M (g
We have shown that every object of (¢[I"])(I"\ (I'NI")) is the cokernel of a morphism
in (G \ (T NI hence the canonical functor (¢[I'])I7\ (CNTY)) — € (A\T)
is fully faithful.

Let D,D’€ A\T and M € €. There is a finitely generated ideal I of I' containing
D, D’ and such that M € €[I”].

There exists a surjection P - D with kernel in 6* 2p and P € Proj(6¢[I"]). Since
(¢[I')I"\ (I'NI")) is a highest weight category, we deduce that (iv) in Definition
E.1.1 holds for 6(A\T). The last statement of the proposition follows. O
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Lemma F.1.21. — Let T be an ideal of A. The quotient functor gy : ‘6 — 6 (A\T) has a left
adjoint ¥ qy.

Assume A is finitely generated as an ideal. Given M € 6, there is a finitely generated
ideal T of A such that A\T is finite and such that the canonical map ¥ qrqr(M)— M is an
isomorphism.

Proof. — Thanks to Corollary F.1.11 and Proposition F.1.20, it is enough to prove the
lemma when A is finitely generated as an ideal, and we make now that assumption.

Let 2 be the full subcategory of projective objects of 6 that are in i(¢2\). The
quotient functor gy restricts to an equivalence ¢ from Z to the category of projec-

tive objects of 6(A\I). Let N € €(A\T). Fix a projective presentation P N Q—
N — 0. Define Vq(IN) = coker(¢~'(f)). It is easy to check that this defines a functor
6 (A\T)— 6 that is left adjoint to gr.

Let M € 6. Let P — Q — M — 0 be a projective presentation of M. There is an
ideal T of A such that A\T is finite and P,Q € i(¢*\"). It follows that the canonical
map “grqr(M)— M is an isomorphism. ]

F1.E. Base change. — Let & be an additive category. We denote by #-Mod the
abelian category of additive functors #°P? — Z-Mod and by Z-mod its full subcat-
egory of functors that are quotients of representable functors. The Yoneda functor
defines a fully faithful embedding

9 — %-mod, M — Hom(—, M).

The family of representable functors is a generating family of projective objects of
2-Mod and we will identify 2 with the corresponding full subcategory of Z-Mod.

The full subcategory Z-mod of Z-Mod is closed under extensions and quotients.
We say that 7 is locally noetherian if -mod is closed under taking subobjects in
%-Mod. When % is locally noetherian, the subcategory ¥-mod of 2-Mod is a Serre
subcategory.

Lemma F1.22. — Let .o/ be an abelian category with enough projectives. The canonical
functor .o/ — Proj(.</)-Mod, M — Hom(—, M) is exact and fully faithful and it takes values
in Proj(.¢/)-mod.
The following conditions are equivalent
(i) .o is noetherian
(ii) Proj(.¢/) is locally noetherian
(iii) the Yoneda functor gives an equivalence .«f — Proj(.</)-mod.

Proof. — The first part of the lemma is clear.
Assume (i). Let P € Proj(.</) and let ¥ be a subobject of Hom(—, P). There is a
family I of objects of Proj(.¢/) and maps f, : Hom(—,Q) — ¥ for Q € I such that
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> fo : Poe Hom(— Q) — W is surjective. Define g, : Q — P such that Hom(—, go) is
the composition of f, with the inclusion ¥ < Hom(—, P). By assumption, there is a
finite subset I’ of I such that Im(g,) C ZQ,G Im(gq/) for all Q € I. It follows that ¥ is
a quotient of Hom(—, P, Q’), hence L € Proj(.</)-mod. This shows that (ii) holds.

Assume (ii). Every object M of Proj(.</)-mod is isomorphic to the cokernel of a
map f : Hom(—, P) — Hom(—, Q) with P,Q € Proj(.«/). There is g € Hom(P, Q) such
that f =Hom(—, g). We have M ~ coker f = Hom(—, cokerg) and (iii) follows.

Assume (iii). Let M € ./ and let I be a family of subobjects of M. Since sums
of subobjects exist in Z-Mod, they exist in Proj(.</)-Mod. So, there is a subobject
U= ZQQ Hom(—, Q) of Hom(—, M). Let ® = Hom(—, M)/¥. Since ® € Proj(.¢/)-mod,
there is N € ./ and an isomorphism ® ~ Hom(—, N). There is a map f € Hom(M, N)
such that Hom(—, f) corresponds to the quotient map Hom(—, M) - ®. We have
¥ =ker(Hom(—, f)) ~ Hom(—, ker f). We deduce that ker f = ZQE[ Q. So, (i) holds. [

Let & be a k-linear category. Note that the forgetful functor from the category
of k-linear functors #°PP — k-Mod to the category #-Mod is an isomorphism of
categories.

Let k' be a commutative k-algebra. We denote by k’% the k’-linear category
with set of objects {k’M} where M runs over the set of objects of ¥ and with
Homy.,(k'M,k’'N) = k' ® Hom, (M, N). There is a base change functor k' ® —: 9 —
k'9, M — k'M that is compatible, via the Yoneda embedding, with the base change
functor k' ® —: ¥-Mod — (k’'%)-Mod, F — (k’'N — k' ® F(N)).

Lemma F1.23. — Assume k' is a localization of k. Let M € (k'%)-mod. There exists
M € 9-mod such that k'M ~ M.

Proof. — Let Q € 2 and N a subobject of k'Q in (k’%)-Mod such that M ~(k'Q)/N.
Let ¢ : k — k’ be the canonical algebra map and ¢, = ¢ ®Id, : Q — kK’'® Q. Let
L= ¢61(N ) € Q. We have a canonical isomorphism k'L - N,hence M ~k’(Q/L). O

Lemma F.1.24. — Assume k' is a finitely generated module over a localization of k.
If 2 is locally noetherian, then k'% is locally noetherian.

Proof. — Let M € 9 and let N be a subobject of k’M in (k’%)-Mod.

Assume k' is a localization of k. The proof of Lemma F.1.23 shows that there
exists a subobject L of M such that k'L ~ N. Since L € ¥-mod, it follows that N €
(k’2)-mod.

Assume k' is a finitely generated k-module. The restriction of k’M to -Mod is a
quotient of a finite direct sum of copies of M, hence the restriction N, of N to 2-Mod
is the quotient of an object of Z-mod. So, there exists P € 2 and a surjective map
P - N, in 2-mod. By adjunction, we obtain a surjective map k’P - N in (k'%)-Mod.
So N €(k’%)-mod.
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The general case follows. O

Assume k is a discrete valuation ring with residue field k and field of fractions
K.

Lemma F1.25. — Assume Hom-spaces in K9 are finite-dimensional vector spaces over
K and 9 is locally noetherian. Then K% and k% are locally noetherian.

Let M € K 9. There exists M € 9 such that KM ~ M and Hom(P, M) is a free k-module
of finite rank for every P € 9.

Given any such M, the class [kM] e Ky((k2)-mod) depends only on [M] € Ky((K 2)-mod).

Proof. — Note that K% and k2 are locally noetherian by Lemma F.1.24.

Lemma F.1.23 ensures the existence of N € 9-mod such that K’N ~ M. Let N’
be the torsion subobject of N and M = N/N’. We have k’M ~ M. Let P € 2.
Since Hom(P, M) is a torsion-free k-module such that K ® Hom(P,M) is a finite-
dimensional K-vector space, it follows that Hom(P, M) is a free k-module of finite
rank.

Let M, and M, be two objects of Z-mod. Given P € 7, the canonical map K Hom(P, M,) —
Hom(K P, K M,) is an isomorphism. Since M, has a resolution P/ — P, — M, — 0 with
P/, P, € 9, it follows that the canonical map K Hom(M,, M,) — Hom(K M,, K M,) is an
isomorphism.

Assume now we have an isomorphism g : KM; — KM,. There is f : M; — M,
and m > 0 such that K f = n™g, where 7 is a generator of the maximal ideal of k.
Similarly, there is f’: M, — M, and m’ >0 such that K f'=n"'g™'. Let n=m+m’.
Since f’o f =1d", it follows that f is injective. We have f o f’=n"1d, hence n"M, C
tm(f). S

We proceed by induction on n to show that [kM;]=[kM,].

Assume n=1. Let L =cokerf. There is an exact sequence

0— Tor]f(l_c, L)— kM, — kM, — kL —0.
Since L =0, we have Torf(k, L)~ kL, hence [kM,] = [kM,].

In the general case, let M; =Im(f)+ 7"~ M,. We have 7M; c Im(f), hence [kM,]=
[kM;]. We have m"~'M, C Mj, so it follows by induction that [kM,] = [kMs;]. This
completes the proof of the lemma. O

The previous lemma provides a decomposition map

d : Ky((K 2)-mod) — K,((k2)-mod)

with the property that d([KM]) = [kM] when M € 2-mod and Hom(P, M) is a pro-
jective k-module for all P € 2.

We assume from now on that % is a highest weight category over k with poset of
standard objects A.
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Proposition F.1.14 and Lemma F.1.22 imply the following result.

Lemma F.1.26. — Assume A is finitely generated as an ideal and 6 is noetherian. The
Yoneda functor induces an equivalence € — Proj(6)-mod.

Given two ideals I' ¢ I”, we have a functor F : ¢[I'] — €¢[I'] sending an ob-
ject of €[I"] to its largest quotient in 6[I'] (Proposition F.1.10). This functor sends
projective objects to projective objects.

WhenT and I" are finitely generated, we have a commutative diagram

@[r] 222N b o34 [T))-mod
l_oﬁ"cr’
G = Proj(6[I"])-mod

M—Hom(—,M)
and the vertical arrow —o K. is fully faithful.

Given M € €, there is a finitely generated ideal I'" of A such that M € 6[I"] (Corol-
lary F.1.11) and Hom(—, M) defines an object of Proj(¢[I"'])-mod. So, we obtain a
functor

%6 — colimy Proj(¢[I'])-mod,
where the colimit is taken using the system of strictly transitive transition functors
—o Kp. Lemma F.1.26 shows the following result.

Corollary F.1.27. — The Yoneda functor gives an equivalence
6 = colim; Proj(¢[I'])-mod,
where T runs over finitely generated ideals of A.

Let k' be a noetherian commutative k-algebra. Given I a finitely generated ideal
of A, we put (k'6)r = (k' Proj(6[T']))-mod. We define k’6 = colim(k’6);, where T
runs over finitely generated ideals of A. Note that, in this colimit, given I} C I, the
functors (k'6), — (k'6);, are fully faithful.

The base change functor k’ ® — : Proj(¢[I'])-mod — (k’Proj(‘g[F]))—mod induces a
base change functor k’'®—:%6 — k'6.

Proposition F1.28. — Assume Proj(6[I']) and k'Proj(6[I']) are locally noetherian for all
finitely generated ideals T of A (note that that the assertion over k' is a consequence of the
one over k when k' is a finitely generated module over a localization of k).

The category k'€ is a highest weight category with set of standard objects k' A ={k’D}pca.

Proof. — Let D € A. The object D is projective in ¢[A¢ p], hence
Endkmg(k/D) = En(:l(kug)AS b (k/D) =k’ EI’lCLg[AS D](D) =K'
So, (i) in Definition F.1.1 holds for k'€
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Let Dy, D, € A and let I be the ideal of A generated by D, and D,. If D, £ D,, then D,
is projective in ¢[I'], hence as above we have Hom(k'D,, k’D,) ~ k' Hom(D,, D,) = 0.
We deduce that (ii) holds.

By assumption, every object of k¢ is a quotient of an object of the form k’'P,
where P is a projective object of 6¢[I'] for some finitely generated I'. Note that k’'P
(k’6)F2 and (iii) holds.

Let I be a finitely generated ideal of A. Let M € (k’6¢);. Let D € A\T and consider
g :k'D — M. Let P € Proj(¢[I']) and f : k'P —» M be a surjection. LetI" =TU
A¢p. Since D is projective in ¢[I"] (Lemma F.1.13), it follows that k’D is projective
in (k’6)r, hence there is h : k’D — k’P such that g = f o h. On the other hand,
Homy,(k'D, k’'P)~ k'Hom (D, P)=0. So, g =0. We deduce that Hom(k'D, M) =
0, hence (k'€ ) C (k'€) k'T].

Let D,D’e Aand M € k’6. Let T be a finitely generated ideal of A containing D
and D’ and such that M € (k’6);. By Lemma F.1.13, there is P € Proj(¢[I']) and a
surjective map P —» D whose kernel is in 62>». So, we have a surjection k’P - k’D
whose kernel is in (k’%)<2>>. We have Hom.) (k'P,k’D’) ~ k' Home(P, D’) and
Hom, (P, D’) is a finitely generated projective k-module (Lemma F.1.16). It follows
that Homy.(k’P, k’D’) is a finitely generated projective k’-module.

Consider an exact sequence 0 - M — N — k'P — 0 with N € k’6. There is a
finitely generated ideal I'" of A containing I' and such that N € (k’6)... Now, there is
R € Proj(¢[I"']) and a surjection f : k'R - N. By Proposition F.1.10(i), there is R’ < R
such that R € 6"\ and R/R’ € ¢*. We have Hom(k’R’, k’P) =0 and Hom(k’R’, M) =
0, hence f factors through a surjection k’(R/R’) -» N. We have k'(R/R’) € (k'6)r,
hence N € (k’6)y, so the surjection N - k’P splits. This shows that Ext.,.(k’, M)=0,

k6
hence (iv) holds. This completes the proof of the proposition. O

F1.F. Grothendieck groups. — The nextlemma follows from [Wei2, Lemma I1.6.2.7].

Lemma F1.29. — We have Ky(6¢) = colimy Ky(6[I']), where T runs over finitely generated
ideals of A.

Let V € k-mod. Given M € 2, the object V ®, Hom(—, M) is representable by

an object V ®, M: given k’ L k" - V - 0 an exact sequence in k-mod, we have
V@, M =coker(f®M:M" — M?*).

Lemma F1.30. — Let M € 6 and let 0 — V; —» V — V, — 0 be an exact sequence in
k-mod. We have an exact sequence 0 — V, @, M -V @&, M — V,® M — 0.

Proof. — We can assume that A is finitely generated as an ideal, so that ¢ has
enough projectives. Let P € Proj(6). Since Hom(P, M) is projective over k, it fol-
lows that we have an exact sequence 0 — V; ®, Hom(P, M) — V®, Hom(P, M) — V, ®;
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Hom(P, M) — 0, hence an exact sequence 0 — Hom(P, V; ®, M) — Hom(P, V ®; M) —
Hom(P, V, ®; M) — 0. The lemma follows. ]

Lemma F.1.31. — Let T be an ideal of A such that A\T is finite. We have an exact sequence
0— Ko(6[I']) = Ko(€) = Ko(€(ANT)) — 0.

Proof. — Without assumption on A\T, there is an exact sequence [Wei2, Theorem
11.6.4]
Ko(6[I]) = Ko(€) = Ko(6(A\T)) — 0.

Assume A\T has a single element D,. It follows from Lemma F.1.30 that the func-
tor Dy®;—: k-mod — % is exact. Let M € 6. Let N be the cone of the adjunction map
f 1 Dy ® Homy(Dy, M) — M. Since Hom(D,, f) is an isomorphism and D, is projec-
tive, it follows that Hom (Dy, H'(N)) =0 for all i. So, N is a bounded complex with
cohomology contained in 6[I]. It follows that M — N provides a left adjoint to the
inclusion functor of the thick subcategory of D?(%) of complexes with cohomology
in ¢[I']. As a consequence, the canonical map Ky(€¢[I']) — Ky(%¢) is a split injection.
So, the lemma holds when |[A\T| = 1. The general case follows by induction on
|A\T]. O

It follows from Lemma F.1.30 that given V € k-mod and D € A, the class [V®, D] e
Ky(6) depends only on [V] € Gy(k) and [D]. We denote it by [V]-[D]. This provides
Ky(€6) with a structure of Gy(k)-module.

Lemma F.1.32. — The morphism of Gy(k)-modules

Go(k)™ = Ko(6), (ap)pes— > ap-[D]

is injective.
If A is finitely generated as an ideal, then the canonical map Ky(6-proj) — Ky(6) is
injective with image the free Z-submodule generated by {[D]}pen.

Proof. — When A is finite, the lemma follows from Lemma F.1.31. When A is
finitely generated, given a finite subset I of A, there is an ideal I' of A such that
A\T is finite and contains I. Since the lemma holds for ¢ (A\T), we deduce that the
lemma holds for €. The general case follows from Lemma F.1.29. O

Definition F.1.33. — We say that € is separated if D" (6) is generated as a triangulated
category by {V ®; D}, where V € k-mod and D € A.

Lemma F.1.34. — If all the finitely generated ideals of T are finite, then 6 is separated.

Proof. — When A is finite, the statement follows by induction as in the proof of
Lemma F.1.31, cf Remark F.1.18.
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Let M be a bounded complex of objects of ¢. There is a finitely generated ideal
I' of A such that M is a bounded complex of objects of 6[I']. Since the lemma holds
for €[I'], we are done. O

Lemma F1.35. — If 6 is separated, then Ky(6) is a free Ky(k-mod)-module with basis

{{Dl}pea-
If in addition A is finite and Spec k is connected, then there is an isomorphism

K,y(k-mod) ®; K,(6 -proj) — K,(€), a®[P]— a-[P].

Proof. — The first statement follows immediately from Lemma F.1.32. The second
statement follows by induction from Lemma F.1.31. O

Remark F1.36. — If DY(6) is generated, as a triangulated category closed under
taking direct summands, by {V ®; D}, where V € k-mod and D € A, then it is sepa-
rated: this is shown by the proof of Lemma F.1.31 when A is finite, and the general
case follows. m

F.1.G. Completed Grothendieck groups. — We define the completed Grothendieck
group of € as Ky(6) = colimy limg Ko(6 [T/ 6[]) where T runs over finitely gener-
ated ideals of A and Q runs over ideals of T such that I'\ Q is finite.

Note that given Q c ' C T, the transition map Ky(6(I'\Q2)) — Ko(6(I'\ ') is surjec-
tive, while given I" C T, the transition map limg Ko( € (I' \ ©2)) — limgp Ko(6(I7\ ©2))
is injective.

There is a canonical morphism of groups

Ko(6) = Ko(6), [M]— [[M]]

since ¢ = colim; ¢[I'], where I runs over finitely generated ideals of A.

When T is finitely generated, we have Ky(6) =limgr Ky(6[T]/ 6[9]) where Q runs
over ideals of A such that A\ Q is finite.

When A is finite, we have a canonical isomorphism Ky(%) = Ky (6).

Let Map®®(A, Ky(k-mod)) be the abelian group of maps y : A — Ky(k-mod) such
that {D € A | y(D)# 0} is contained in a finitely generated ideal of A.

Lemma F.1.37. — There is an isomorphism

o :Map¥(A, Ky(k-mod)) 5 Ky(6), = > [7(D)]-[[D]]
DeA
and an isomorphism

Ry(6) = Map™(4, Ky(k-mod)), [[M]— (D — > (~1)[Ext'(D, M)).

iz20
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Proof. — Assume first A is finite. Consider the morphisms
f : Ky(k-mod)® = Ko(6), ([VpDpea— D [Vp]-[D]
DeA
and
g : Ko(6) = K(k-mod)*, [M]— (D — > (-1 [Ext'(D, M)]).
i>0

Lemma F.1.35 shows that f is an isomorphism. Since g o f has a triangular matrix
with entries 1 on the diagonal, it follows that g is an isomorphism.

Consider now a general A. We have Map'¥(A, K,(k-mod)) = colimy limg, K,(k-mod)®
where T runs over finitely generated ideals of A and Q runs over ideals of T such
that I'\ Q is finite. The lemma follows from the case where A is finite. ]

Lemmas F.1.35 and F.1.37 have the following consequence.

Proposition F1.38. — If ¢ is separated, then we have a canonical injection Ky(€¢) —
Ko(6).

Lemma F.1.39. — Assume k is a field and 6 is noetherian. The map M — ([M : L(D)])pea
induces an injection Ky(6)— Z-.

Proof. — Let M € 6 and D € A. There is a finitely generated ideal I' of A and an
ideal Q of T such that I'\ Q is finite and contains D and such that M € €¢[I']. We
have [M : L(D)]=[M’: L(D)], where M’ is the image of M in ¢(I'\ Q). It follows that
[M : L(D)] depends only on the class of M in Ky (6).

When A is finite, 6 is equivalent to the category of finite-dimensional modules
over a finite-dimensional k-algebra, hence the class of a module in K; is determined
by the multiplicities of simple modules in a composition series. So, we obtain the
injectivity when A is finite, and the general case follows. O

Let k’ be a noetherian commutative flat k-algebra. There is a commutative dia-
gram

Ky(6) —— Ry(6) —Z— Map'¥(A, Ky(k-mod))
Ky(k'6) — Ky(k'6) —> Map'¥(A, Ky(k’-mod))
where the vertical maps are induced by the functor k' ®; —.
F1.H. Decomposition maps. — We assume in §F.1.H that ¢ is noetherian.

If k is a discrete valuation ring with residue field k and field of fractions K, it
follows from §F.1.E that there is a decomposition map

d: Ky(K6)— Ky(k6)
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with the property that d([KM]) = [kM] when M is an object of 6[T] where T is a
finitely generated ideal of A and Hom(P, M) € k-proj for all P € Proj(¢[I']).

We construct now decomposition maps over more general local rings k, using
completed Grothendieck groups.

Assume k is a local integral ring with residue field k and field of fractions K. We
have canonical isomorphisms dimy : Ky(K-mod) — Z and dim; : Ky(k-mod) — Z.
We define d : Ky(K6)— K,y(k6) as the map making the following diagram commu-
tative

Ry(K6) -2~ Map®(A, Z)

|

Ky(k'€) —= Map'¥(A, Z)

Proposition F1.40. — Let M € 6 and let T be a finitely generated ideal of A such that
M € 6[I']. Assume Hom(P, M) € k-proj for all P € Proj(6¢[I']). Then d([KM])=[[kM]].

Proof. — Assume first A is finite. There are objects D of ¢ for D € A such that
Ext'(D,D’)=6y;6p,p for all D,D’ € A and i > 0 (Proposition F.1.17 and [Rou, Propo-
sition 4.19]). The assumption on M guarantees that it has a finite projective resolu-
tion0— P~ —-.-— P®— M — 0 [Rou, Proposition 4.23]. As a consequence, [[M]] =
oD —>.. . (~1)[Hom(P’, D))). Since dimg[Hom (K P, K D)] = dim;[Hom,4(kP’, kD)],
the proposition follows.

Consider the general case. Let I be a finitely generated ideal of A such that
M € 6[I']. Let Q be a finitely generated ideal of I' such that I'\ Q is finite. There
exists a projective object of ¢[I'] whose image in 6[I']/6[Q2] is a progenerator, and
Hom(P, M) ~ Hom(gn(P), go(M)) (cf. Lemma F.1.21). Since the proposition holds for
go(M), we deduce that it holds for M. O

When k is a discrete valuation ring, there is a commutative diagram

Ky(K 6) — Ry(K6) 2 Map¥(A, Z)

|

Ky(k6) — Ky(k'6) —> Map®8(A, Z)

F1.I. Blocks. — We assume in §F.1.1 that Spec k is connected.

We define the equivalence relation ~ on A as the one generated by D ~ D’ when
Ext. (D, D’) #0 for some i € {0,1}. This is the equivalence relation generated by the
partial order < (cf. Proposition F.1.9).
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Proposition F1.41. — Given I € A/ ~, the full subcategory 6[I] of 6 is an indecompos-
able Serre subcategory whose objects are the quotients of objects of 6. It is a highest weight
category with poset of standard objects 1. We have € = @ cp /. 6 1]

Proof. — LetI,JeA/~withI# J.Given M € ¢! and N € 6/, we have Ext'(M,N) =
0 and Hom(M, N)=0. It follows that 62 =@ ,cA,. 6. We deduce that a quotient of
an object of €' is in 6¢[I].

Let L € 6. There is an exact sequence M R N — L — 0 with M,N € ¢2. We have
decompositions M = @;cn,M', N =@;cp,. N and =, f! with f1: M' — N'
and M!,N! € ¢!. Tt follows that L = @), cokerf! and cokerf’ is a quotient of an
object of 6¢’. Assume L € 6[I]. Consider J # I. We have Hom(N’/, L) = 0, hence
cokerf/ =0. It follows that L = cokerf’ is the quotient of an object of ¢!. We have
shown that ¢ =@ ;ca,. CLI].

Let e be an idempotent of the center of ¢[I]. Note that e acts by 0 or 1 on an
object of A. Let I, be the subset of I of objects on which e acts by 0. Given D,D’ €I
with Ext!(D, D’)# 0 for some i € {0,1}, we have D, D’ € I, or D, D’ € I\ I,. We deduce
that I =1, or I, =0. Since every object of ¢[I] is the quotient of an object of ¢, it
follows that e =0 or e = 1. So, ¢[I] is indecomposable.

Since (6, A, <) is a highest weight category (Proposition F.1.9), it follows that 6]
is a highest weight category with set of standard I and partial order <, hence it is a
highest weight category with the partial order <. O

Lemma F1.42. — Let D,D’ € A.

We have D ~ D' if and only if there is a finitely generated ideal T of A and an ideal Q of
T such that T\ Q is a finite set containing D and D’ and such that qo(D) and qo(D’) are in
the same block of ‘€ [T'](I"\ ).

Proof. — Let T be a finitely generated ideal of A and 2 an ideal of T such that '\ Q
is a finite set containing D and D’. We have Extfg(D, D)~ Extfg[r](ﬂ)(qQ(D), go(D’)) for
i €{0,1} (cf. proof of Proposition F.1.20).

We have D ~ D’ if and only if there exists Dy = D, D,,...,D, = D’ in A such that
Ext*(D;, D;,;) # 0 or Ext*(D;,,,D;) # 0 for some * € {0,1}, for all i € {0,...,n—1}.
So, D ~ D’ if and only if there is a finitely generated ideal T of A, an ideal Q
of T and D, = D,D,,...,D, = D’ in T'\ Q such that EXtY 1y0)(da(Di), go(Dis1)) # 0 or
Exti‘g[r](m(qﬂ(D,-H), qn(D;)) # 0 for some x <€ {0,1}, for all i €{0,...,n—1}: this is equiva-
lent to the requirement that go(D) and gq(D’) are in the same block of ¢[T'](I'\ ©2) by
Proposition F.1.41. d

We assume for the remainder of §E.1.1 that € is noetherian.
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GivenT a finitely generated ideal of A and 2 an ideal of I' such that '\ Q is a finite
set containing D and D’, there is a finite family By of prime ideals of k such that
given a prime ideal q of k, we have k, ®; D ~ k,®, D’ if and only if p C q.

Lemma F.1.43. — Let D,D’ € A and let k' be a commutative noetherian k-algebra that
is a finitely generated module over a localization of k. If k' ®, D ~ k' ®; D" in k’'A then
D~D'.

Proof. — Assume first A is finite. In that case, the result is classical: we have
RHomj}, (k'D,k'D’) ~ k' ® RHom?, (D, D). So, if Ext, (k'D,k’'D’) # 0 for some
* €10, 1}, then Ext} (D, D’) # 0 for some x* > 0.

Consider D =D, ..., D, = D"in A with Ext},(k'D;, k'D;.,) # 0 or Ext},.(k'D;,,, k' D;) #
0 for some x € {0, 1} for all i € {0, n—1}. We have Ext},(D;, D;,,) # 0 or Exti,(D;, D;) #0
for some x> 0 for all i € {0, n—1}. It follows that D and D’ are in the same block of
%, hence D ~ D’ by Proposition F.1.41.

The general case follows from Proposition F.1.28 and its proof. O

Proposition F1.44. — Assume k is integral and integrally closed and let K be its field of
fractions.

There exists a (unique) family F of height one prime ideals of k with the following prop-
erty:

given p a prime ideal of k, the partition of A into blocks of k,6 is the same as the parti-
tions into blocks of K 6 if and only if p contains no element of F.

Given p a prime ideal of k containing an element of F, a subset of A corresponds to a
block of k,6 if and only if it is a union of blocks of k,6 for all q € F with qCp.
The set F has the cardinality of a union over the set of finite subsets of A, of finite sets.

Proof. — Assume A is finite. We have ¢ ~ A-mod where A is a k-algebra that
is finitely generated and projective as a k-module. The proposition follows from
Proposition F.1.41 and Proposition D.2.11

The general case follows from Lemma F.1.42. The set .7 is the union of the finite
sets associated with the categories 6[I'](€2), where I runs over finitely generated

ideals of A, Q runs over ideals of I' such that I'\ 2 is finite and generates I as an ideal
of A. O

Remark F.1.45. — Proposition F.1.43 shows that if D# D’, then k, ®; D#k,®, D’ for
all prime ideals q of k.

F.2. Triangular algebras

The construction of a highest weight category from representations of triangular
algebras in [GGOR, §2] is done under the presence of a grading coming from an
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inner derivation. The method used there does not actually use that the gradings
are inner, and we describe here constructions following [GGOR, §2], with a more
general setting.

F2.A. Definition. — Let A be a graded k-algebra with three graded subalgebras
B*, B~ and H such that

(Ai) H, B~ and B™ are flat k-modules

(Aii) the multiplication map u: B*® H® B~ — A is an isomorphism of k-modules
(Aiil) wW(B*®@ H)=u(H® B*) and u(B-® H)=u(H ® B")
(Aiv) B;,=B} =0, By =B/ =k and H = H,,.

The canonical maps H — (B*H)/(B*H).y and H — (B"H)/(B™H),, are isomor-
phisms. Composing their inverse with the quotient maps, we obtain a canonical
morphism of graded k-algebras B°H — H for € € {+,—}.

We identify the category of H-modules with the category of graded H-modules
that are concentrated in degree 0.

F2.B. Induced modules. —

F2.B.1. Given F a graded (B~H)-module, we put A(F)=A®p 5 F. Note that A is
an exact functor that is left adjoint to the restriction functor from the category of
graded A-modules to the category of graded (B~ H)-modules.

There is a canonical isomorphism of graded (B* H)-modules

BTH®;; F = A(F)
and a canonical isomorphism of graded B*-modules
BT® F = A(F).
When E is an H-module, we view E as a graded (B~H)-module concentrated

in degree 0 through the canonical map p : B"H - H and we put A(E) = A(p*(E)).
There is a canonical isomorphism of graded (B* H)-modules

BTH ®, E = A(E).

Let n > 0. We put
A (E)=A(((BH/(B"H)_,)®y E).
Note that Ay(E)=A(E) and A,(E) has a filtration with subquotients

A(E),A((B"H)_;®4 E),...,A((B"H)_, ®y E).
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F2.B.2. Given M a B~-module and n a non-positive integer, let Anng- (M) = {m €
M|B_,m =0}, a B~-submodule of M. We put M;,, = U, «Anng- (M) and we say that
M is locally nilpotent for B~ it M = M,,. The functor M — M, is right adjoint to the
inclusion functor from the category of locally nilpotent B~-modules to the category
of B~-modules.

Note that

— When M is a graded B~-module, M|, is a graded B~-submodule of M.

- If M is a (B~H)-module, then M, is a (B~ H)-submodule of M, since HB_, =

(HB ), =(B H), = B<_nH'

Assume now M is an A-module. Since (B™);H(B"); CA ;;; CA(B )y for i+ j <
0, it follows that M, is an A-submodule of M. We deduce that M — M,, is right
adjoint to the inclusion functor from the category of A-modules (resp. graded A-
modules) that are locally nilpotent as B~-modules to the category of A-modules
(resp. graded A-modules).

Let M € A-modgr and E € H-modgr. We have an isomorphism of k-modules
HOM 4 imodgr(A (E), M) — Homy moag(E,Anng_ (M), f = fios
If E is concentrated in degree d, then
HOM 7 modg:(E,Anng_ (M))=Homy/(E,(Ann,_ (M) ) Homy(E, M,).

Note that if M is a finitely generated graded A-module that is locally nilpotent
for B—, then M_; =0 for i < 0.

Lemma F2.1. — Let M € A-modgr, let E be an H-module, let d € Z and let i € Z such
that M; = 0. Then the canonical map Hom y.moqgr(An(E){—d), M) — Homy(E, M,) is an
isomorphism for n =2 d —i.

Proof. — We have (Ann 5, (M )) ;= M, since (B7)._,My; € M4, =0 and the result
follows. O

Lemma F.2.2. — Let E,E’ € H-mod and let d € Z.
If d <0, then Homy 40 (A(E), A(E’(d))) = 0.
The functor A induces an isomorphism

HomH(E’ E/) ; HomA-modgr(A(E)» A(E/))
Proof. — We have
HomA—modgr(A(E)) A(El<d))) =~ HomB*H—modgr(E) A(E/)(d))

If d < 0 then (A(E’)(d)), = 0, hence Homp_j; 1moqq(E, A(E’){d)) = 0. This shows the
first statement.
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Note that E’ = A(E’), is a (B~ H)-submodule of A(E’). It follows that
HomB—H-modgr(E ’ A(E/)) = HomH(E’ E/)

and the second statement follows. O

E2.C. Category 08". — We fix a set I of isomorphism classes of H-modules that
are finitely generated as k-modules.

We assume that

(A\v) given E €I, every submodule of E is a quotient of a finite multiple of E
(Avi) Endy(E)=k forall E€T
(A\vii) Homy(E,F)=0for all E,F €I with E£F
(Aviii) the H-modules ((B+H)> n/(B*H)>n) ®y E and ((B_H)g_n/(B_H)<_n) ®y E are
direct summands of finite direct sums of objects of I forall E€I and n >0
(A\ix) the A-module A(E) is noetherian for all E € 1.

We denote by 0y the full subcategory of H-Mod with objects the quotients of
finite direct sums of objects in I. Note that 0y is an abelian subcategory of H-Mod
closed under quotients and subobjects, and I is a set of projective generators for 0y.
There is an equivalence of categories
(F2.2) @ Hom(E,—): 0y — (k-mod)".

Eel
Example F2.3. — Let I be a family of isomorphism classes of H-modules. Assume
for every E € I, the quotient of H by the annihilator of E is a matrix algebra over k
and E is the pullback of its vector representation.

Note that the modules in I are free k-modules of finite rank. We have the equiv-
alence of categories (F.2.2) and the conditions (A v)-(Avii) hold. m

Remark F.2.4. — Note that Assertion (Aix) is satisfied if B* is noetherian: since E
is a finitely generated k-module, it follows that A(E)~ B*®E is a finitely generated
B*-module, hence a noetherian B*-module. m

We denote by 08" the category of finitely generated graded A-modules M that
are locally nilpotent for B~ and satisfy M; € 0y, for all i € Z. Since 0}, is closed under
taking quotients, we deduce that 08" is a full subcategory of A-modgr closed under
taking quotients. Note that if 0} is closed under extensions, then ¢¢” will also be
closed under extensions.

Lemma F.2.5. — Let M be a graded A-module. The following conditions are equivalent
(i) Meos”
(ii) there exists a finite family S of objects of 1, dy € Z and ng € Z , for E € S such that
M is a quotient of Pres Ap, (E{dg)).
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Proof. — Assume (i). There is a finite subset J of Z such that M is generated by
@Dje; M; as an A-module. Given j € J, there is a finite family S; of objects of I and
a surjective morphism of H-modules f; : @gcs, E - M;. By adjunction, we obtain a
morphism of graded (B~ H)-modules g; : Pges, B-H®y E(—j) — M. Let E € ;. Since
fi(E) is a finitely generated H-module, there is a non-negative integer n; such that
(B )<—n, fi(E) = 0. So, g; factors through a morphism of graded (B~ H)-modules
hj:@ges,(B"H)/(B"H)<_y,)®y E(~j) — M. Let

D A®s (B H)/(B H)<_y,)®y E(—j)— M
E€S;
be the morphism of graded A-modules obtained from k; by adjunction. The map
2. jes It} is surjective and this shows (ii) holds.

Assume (ii). Let E € I. Note that (A,(E))._, =0, hence B___.(A,(E)); =0. It fol-
lows that A, (E) is locally nilpotent for B~. There is an isomorphism of H-modules
(B"H)/(B"H)_,~@_ (B H)<_;/(B"H)._;, hence

A(E): ~ED(BH),,; 8y (B H)_; @y E)

j
is isomorphic to a direct summand of a finite direct sum of objects of I. We deduce
that A,(E)€ 08".

Since 08" is closed under taking finite direct sums, quotients and shifts, it follows
that (i) holds. O

Lemma F2.6. — Let E€cI, n€Zsqandlet M € 08". If M._, =0, then Ext ., (A,(E),M) =
0.

In particular, given E’ € I and d < n, we have Exti‘_modgr(An(E), A(E’{(d)))=0.

Proof. — We have
Hom_modgr(A®p- (B"H)._, ®y E, M) ~Homg-py.modgr((B"H)<—py ®y E,M)=0
since (B~ H)._,®y E); =0 for i =2 —n, while M; =0 for i <—n.
There is an exact sequence of graded A-modules
0—A®y (B H)._,®, E—A®, E—A,(E)— 0.

Since A®y E is projective in the category of graded A-modules whose restriction to

H isin 0y, we deduce that Ext,, (A, (E), M) =0. d

Let A8" = {A(E(n))}ger, nez, @ set of objects of 08" (cf. Lemma F.2.5). We put a
partial order on A8": given E,F €1 and i, j € Z, we put E(i) < F(j) if i < j. Given
nez,weput A8"S" ={A(E(r)} ger,r < n-

Theorem F2.7. — 08" is a noetherian highest weight category with poset of standard ob-
jects A8’
Given n € Z, the set {A,,_(E{r))}, < n.per 1S a set of projective generators for O8"[A8"<"].



310

Proof. — Let E € I. By (/\ix), every A-submodule of A ,(E) is finitely generated. So,
all subobjects of objects of 08" are finitely generated as B*-modules by Lemma E2.5.
We deduce that 08" is closed under taking subobjects, since 0y has that property.

We check now the conditions of Definition F.1.1. Conditions (i) and (ii) are given
by Lemma F.2.2, and (iii) by Lemma F.2.5.

Let E,E'€l,d€Zand M € 08". By Lemma E2.5, there is m > 0 such that M__,, =
0. It follows from Lemma FE.2.6 that Extlﬁg,.(An(E),M) =0 for n = m. Thereis m’ >0
such that A(E’), is killed by BZ_,. Consequently given n = m’, we have

Homgr(A,(E), A(E'(d))) ~ Homy moag(E, Annp_ (A(E'(d))) = Homy modg(E, A(E")4)-

Since A(E’), is a direct summand of a finite direct sum of objects of I, we deduce
that Hom-(A,(E), A(E’(d))) € k-proj. So, (iv) holds.

The projectivity of the objects A,_,(E(r)) follows from Lemmas F.2.6 and F.1.12.
Since every object of 08"[A8"<"]is a quotient of an object filtered by A(E(r))’s with
r < n, the generation follows. O

Let k’ be a noetherian commutative k-algebra. We put A’ = k’A, B* = k’B* and
H’=k’H. The conditions (/\i)-(/\iv) are satisfied for those k’-algebras.

Let I’ ={k’E}gc;. Note that assumption (/\viii) is satisfied for I’. We assume that
assumptions (/\v)-(/\vii) hold for I’ (this will be the case if I is as in Remark F.2.3)
and that assumption (/\ix) holds.

We obtain a highest category 08" over k’. Given E an H-module and given n > 0,
we have a canonical isomorphism k’A,(E) = A’ (K'E). It follows that tensoring by
k' the projective generating family for 08"[A8"<"] given by Theorem F.2.7 gives a
projective generating family for ¢’¢"[A’8"<"]. We deduce that k’08" — 0"¢".

E2.D. Inner grading. — We assume in §F.2.D that k is a Q-algebra and that there
isheAsuchthat A;={a€A| ha—ah=ia} for all i € Z. We assume that A # A,.

Lemma F.2.8. — There is a unique decomposition h = h’+ hy where h’ € B*® H® B_, and
hy € Z(H).

Proof. — We have h € A,. Write h = h’+ hy where "€ B*® H® B_;and hy€ B*® H.
Since hy € A, it follows that hy€ H. Let a € H. We have 0=[h,a]l=[h',a]+[hy, a].
Since [h',a]€ B*® H® B_, and [hy,a] € H, we deduce that [}, a]=0. This shows that
hy € Z(H). ]

Let E € I. The action of h, on E is given by multiplication by an element Cr, of k.
Note that h acts by Cg +i on A(E);.

We put L= J,,(Cz+Z)C k. Let ~ be the equivalence relation on L generated by
A~ A if A—A'€k*. We assume in §E.2.D that



311

(X) CgfCy+iforiezZ—{0}.

We define a relation on I as the transitive closure of the relation E > F if C;—Cp+
Zo¢k*. Our assumption above ensures that > is a partial order on I.

Let 0 be the category of finitely generated A-modules that are locally nilpotent
for B~ and whose restriction to H is the quotient of a (possibly infinite) direct sum
of objects of I.

Let M € A-Mod. Given A € k, we put
W, (M)={meM | (h—A)"m=0 for n>0}.

Given a€ L/ ~, we put #,(M)=>_,_ W;(M).
We denote by 08" the full subcategory of 08" of objects M such that M; C

Wio(M) for all i € Z. We denote by 0“*Z the full subcategory of 0 of objects M
such that M =Y., #,.:(M).

Proposition F2.9. — We have 08" = @c;,. 08" and 0 = P, (1 /02 0" Further-
more, given a € L/ ~, the forgetful functor gives an equivalence 08"% — 07,
Fix an element B € L/ ~ for each B € (L] ~)/Z. There is an equivalence of graded

—_—

categories 0% = 08" sending A(E) to A(E){Cy +Z— Cp).

Proof. — Let M € 0. Let us first show that M =>_,_, #;(M). This is clear when
M = A(E) for some E. It follows that it holds also when M = A, (E), hence for M a
direct sum of A,(E)’s. One shows as in Lemma F.2.5 that every object M € 0 is a
quotient of a finite direct sum of A, (E)’s, hence the result holds for M.

Note that if A¥A/, then #,(M)N#;,(M)=0. It follows that we have an H-module
decomposition M =@ ¢ /.. #o(M).

Let M(a+Z) = @,y #ori(M): this is an A-submodule of M in 0%'Z and M =
Darze1/~yz M(a+Z). This gives the required decomposition of 0.

Assumenow M € 08". Let M(a); = #,,;(M)NM; and M(a)= P, M(a);, a graded
A-submodule of M contained in 08"*. We have M =, ,. M(a), and this provides
the required decomposition of 08".

Let M € 0**%. Let M' = #,,;(M). This defines a structure of graded A-module
on M, and gives an object M’ of 08"“. The construction M — M’ is inverse to the
forgetful functor g8"% — g*+%.

Consider now an element 3 € L/ ~ for each B € (L/ ~)/Z. We have constructed
an equivalence F : 07 — 08P, These functors extend uniquely to the required
equivalence of graded categories 0 — 08", O

From Proposition F.2.9 and Theorem F.2.7, we deduce the following result ((GGOR,
Theorem 2.19] when k is a field). Let A = {A(E)}g<;, with the poset structure of I.
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Theorem F2.10. — O is a noetherian highest weight category with poset of standard ob-
jects A.

Example F2.11. — Let g be a finite dimensional reductive Lie algebra over k = C.
Let b, be a Borel subalgebra and h c b, a Cartan subalgebra. Let b~ be the opposite
Borel subalgebra. Let A= U(g), B* =U(b*) and H = U(h). Let h € h be the sum of the
simple coroots. We consider the inner grading on g, hence on A defined by ad(h).
We have bf =bZ,=b, =0and b, =b; =C.

We take for I the set of isomorphism classes of simple h-modules, so that 0 is
the category of semisimple h-modules. Then ¢ is the usual BGG category. B

Remark F.2.12. — If the grading on A is not inner, then ¢ is not a highest weight
category in general. B
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