Long time behavior of Gross-Pitaevskii equation at positive temperature - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2018

Long time behavior of Gross-Pitaevskii equation at positive temperature

Résumé

The stochastic Gross-Pitaevskii equation is used as a model to describe Bose-Einstein condensation at positive temperature. The equation is a complex Ginzburg Landau equation with a trapping potential and an additive space-time white noise. Two important questions for this system are the global existence of solutions in the support of the Gibbs measure, and the convergence of those solutions to the equilibrium for large time. In this paper, we give a proof of these two results in one space dimension. In order to prove the convergence to equilibrium, we use the associated purely dissipative equation as an auxiliary equation, for which the convergence may be obtained using standard techniques.
Fichier principal
Vignette du fichier
GibbsGP8.pdf (379.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01579123 , version 1 (27-09-2017)

Identifiants

Citer

Anne de Bouard, Arnaud Debussche, Reika Fukuizumi. Long time behavior of Gross-Pitaevskii equation at positive temperature. SIAM Journal on Mathematical Analysis, 2018, 50 (6), pp.5887-5920. ⟨10.1137/17M1149195⟩. ⟨hal-01579123⟩
275 Consultations
114 Téléchargements

Altmetric

Partager

More