Non-asymptotic error bounds for The Multilevel Monte Carlo Euler method applied to SDEs with constant diffusion coefficient - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2019

Non-asymptotic error bounds for The Multilevel Monte Carlo Euler method applied to SDEs with constant diffusion coefficient

Résumé

In this paper, we are interested in deriving non-asymptotic error bounds for the multilevel Monte Carlo method. As a first step, we deal with the explicit Euler discretization of stochastic differential equations with a constant diffusion coefficient. We obtain Gaussian-type concentration. To do so, we use the Clark-Ocone representation formula and derive bounds for the moment generating functions of the squared difference between a crude Euler scheme and a finer one and of the squared difference of their Malliavin derivatives.
Fichier principal
Vignette du fichier
1708.07064.pdf (446.09 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-01577874 , version 1 (13-02-2024)

Identifiants

Citer

Benjamin Jourdain, Ahmed Kebaier. Non-asymptotic error bounds for The Multilevel Monte Carlo Euler method applied to SDEs with constant diffusion coefficient. Electronic Journal of Probability, 2019, 24 (12), pp.1-34. ⟨10.1214/19-EJP271⟩. ⟨hal-01577874⟩
382 Consultations
28 Téléchargements

Altmetric

Partager

More