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NON-ASYMPTOTIC ERROR BOUNDS FOR THE MULTILEVEL MONTE
CARLO EULER METHOD APPLIED TO SDES WITH CONSTANT
DIFFUSION COEFFICIENT

BENJAMIN JOURDAIN AND AHMED KEBAIER

ABSTRACT. In this paper, we are interested in deriving non-asymptotic error bounds for the
multilevel Monte Carlo method. As a first step, we deal with the explicit Euler discretization
of stochastic differential equations with a constant diffusion coefficient. We prove that, as
long as the deviation is below an explicit threshold, a Gaussian-type concentration inequality
optimal in terms of the variance holds for the multilevel estimator. To do so, we use the
Clark-Ocone representation formula and derive bounds for the moment generating functions
of the squared difference between a crude Euler scheme and a finer one and of the squared
difference of their Malliavin derivatives.

1. INTRODUCTION

We are interested in deriving non asymptotic error estimations for the multilevel Monte
Carlo estimators introduced by Giles [4]. In this paper, as a first step, we deal with estimators
of E[f(Xr)] where f : R* — R is Lipschitz continuous with constant [f]e, T € (0, +00) is
a deterministic time horizon and X := (X})y<,<7 is the R%valued solution to the stochastic
differential equation with additive noise o

dX; = b(Xt)dt +dWy, Xog=ux € Rd, (11)

driven by the d-dimensional Brownian motion W = (Wl, ce Wd) and with Lipschitz drift
function b : R4 — RY :

(Har) 3Cy < +oo, Yo,y € R |b(x) — b(y)| < Cylz — yl.

When d = 1, this additive noise setting is not restrictive. Indeed any stochastic differential
equation dY; = o(Y;)dW; + n(Y;)dt with multiplicative noise given by some function o : R —
R% such that 1 is locally integrable can be reduced to (LI)) by the Lamperti transformation

: for p(y) = y% %, X: = p(Yy) solves (1)) with b(x) = <g - %,) (o~ 1(2)).

For n € N*, we consider the simple Euler-Maruyama approximation X" with time step
T /n and we introduce its continuous version given by

nt| T
XF = 80X, )i+ i, o) = | 5] L. g = oo (1.2
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When b is smooth, both the strong and the weak errors of this scheme converge to 0 with
order 1 as n — oo. According to [4], the complexity for the multilevel Monte Carlo estimator
of E[f(Xr)] based on this scheme to achieve a root mean square error ¢ is O(¢72) in the
limit &€ — 0, the same as in a standard Monte Carlo method with i.i.d. unbiased samples. For
positive integers m and L and (Ny)o<¢<r,, the Multilevel Monte Carlo method approximates
the expectation of interest E [f(X7)] by

L N,

No
Q=D FOch)+ 3w S (Foam) - o). (13)
0 k=0 =0 "t k=1

The processes ((ngf)OStST)k denote independent copies of the Euler scheme with time step
m~T for £ € {0,--- ,L}. Here, it is important to point out that all these L 4 1 Monte Carlo
estimators have to be based on different, independent samples. However, for fixed k and ¢,
the simulations f (X}”li) and f (X%’?zil) have to be based on the same Brownian path but with

different times steps m—¢T and m~¢VT.

Our main motivation is the derivation of Gaussian type concentration inequalities for
Q- E[f(X7)], a natural question, which, to our knowledge has not been addressed in the
literature. Frikha and Menozzi [3] obtained concentration inequalities for f(X7) —E[f(X7)].
Deriving estimations of the moment generating function of the differences f(X7"") — f(X7}) —
E[f(X$") — f(X})] which are optimal in terms of their variances is a much more delicate
task and adapting their approach seems to be problematic. However, the boundedness of
the Malliavin derivatives DX7 and DX} in the additive noise setting permits to follow the
approach of Houdré and Privault [0] based on the Clark-Ocone formula and this is one reason
why we focus on this setting. Another reason is that for stochastic differential equations with
multiplicative noise, more sophisticated schemes, like the Milstein scheme in the commuta-
tive case or the Giles and Szpruch [5] scheme in the general case, are necessary to improve to

12
two the order one of convergence of the variance of ( f (XC?"”Z) —f (X;’F(Z 1)) and recover the
unbiased Monte Carlo complexity.

In Section Bl when b is €2, Lipschitz continuous and the Laplacians of its coordinates
have an affine growth, we first derive non-asymptotic estimates of the squared error E[(Q —
E[f(X7)])?] of the multilevel Monte Carlo estimator (MLMC) (L3) for a Lipschitz contin-
uous test function f by computing explicit bounds for the bias E[f (XC?L) — f(X7)] and

variance Var[f(X:,Tf”Z) - f(X:,Tf”Zfl)]. Then we optimize the parameters (L, (Ny)o<¢<r) in order
to minimize the computation cost needed to achieve a root mean square error smaller than
a given precision e. It turns out that, as ¢ — 0, the optimal bias is of order (9(54/ 3), which,
to our knowledge, has not been pointed out in the MLMC literature so far. Notice that,
for stochastic differential equations with a non constant diffusion coefficient (multiplicative
noise), this property remains true for the multilevel Monte Carlo estimator based on the Giles
and Szpruch scheme [5], since it exhibits the same orders of convergence of the bias and the
variance within a given level as (L3)).

In Section [3] we state and derive our main result : as long as the deviation is below an
explicit threshold, a Gaussian-type concentration inequality optimal in terms of the variance
holds for the multilevel estimator (L3]). Denoting by Q€ the multilevel Monte Carlo estimator
corresponding to the optimal choice of parameters discussed in Section 2, we obtain the
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existence of explicit positive constants c1,co and c3 such that

2

Ve € (0,c1), Yo € (0, c2e?/3), P (\Qa —Ef(Xr)| > a) < ete @, (1.4)

In view of the last factor, this bound is optimal in terms of the precision £ (up to the
value of the multiplicative constant c3). For deviations a(e) depending on ¢ and such that
lim,_,q ale) oo, the right-hand side of (4] converges to 0 far quicker than the one of

£

the bound P <|Q€ —Ef(Xrp)| > a) < 2—22 consequence of the Markov inequality. We show

in Corollary that the same inequality holds for deviations v up to the order In(1/¢)~1/#
with 8 > 1 for a multilevel estimator with increased numbers of simulations in the high
levels but with computation cost still of order O(¢72) as ¢ — 0. Moreover, we derive a
comparison between the root mean square error (RMSE) and Orlicz norm for both standard
and multilevel Monte Carlo. It turns out that compared to standard Monte Carlo, the MLMC
estimator achieves the same complexity reduction for Orlicz norm as for the RMSE (see
Section B3]). The limitation, mentioned above, on the range of deviations « for which the
Gaussian-type concentration inequality holds is related to a corresponding limitation on the
range of parameters for which we are able to estimate (optimally in terms of the variance) the
moment generating function of Q — Ef (X7). This comes from the quadratic contributions of
the Brownian increments that one obtains when applying Itd’s formula twice to exhibit the
order of the difference f(X7") — f(X2) for n € {1,m,...,mE"1}. Maybe these restrictions
could be relaxed when replacing the Brownian increments in the Euler schemes by Rademacher
random variables like in the weak MLMC method introduced by Belomestny and Nagapetyan
[2]. Nonetheless the derivation of concentration bounds for the weak MLMC estimators
would require a different approach. Indeed, we use the Clark-Ocone formula as suggested
in Houdré and Privault [6], to relate the estimation of the moment generating function of
FXE™) — f(X2) —E [f(X7m) — f(X2)] for n € {1,m,...,mI71} to the ones of the squared
difference between the crude Fuler scheme with n steps and the finer one with mn steps and of
the squared difference of their Malliavin derivatives. Such estimations are respectively proved
in sections 4 and 5 by using a clever decomposition of the difference between the two schemes.
They are combined in Section 6 to estimate the moment generating function of Q — Ef (X7).

Notations. Throughout this paper, we shall use the following notations.

e We denote by %pOO(Rd, RY) the set of all infinitely differentiable functions g : R — RY
such that g and all of its partial derivatives have at most polynomial growth.

e For n € N*, we denote by €™ (R%,RY) the set of all n times continuously differentiable
functions ¢ : R — R9.

e For g : R? — R? we denote by Vg the Jacobian matrix defined for all i,j € {1,...,d}
and z € R? by (V9)ij(x) = Oz, 9i(x).

e For g : R - R? Ag : R — R? denotes the function obtained by applying the
Laplacian to each coordinate of g.

e The ceiling function and floor function are denoted respectively by [-] and [-] (i.e. for
x € R, [x] represents the smallest integer no less than x; [z represents the largest
integer no greater than x).

e For d € N*, we denote by M, the set of real d-square matrices with identity matrix
1.
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e For any matrix sequence (Ag)gen € My, we use the following convention

ni
H A=A, - Ap,, ¥ni,ne € Nsit. ng <ng.

k=no

The Euclidean inner product and the associated norm are respectively denoted by -

and |- |.
e For M € My, the matrix norm induced by the Euclidean norm | - | is denoted by
M| = sup [Muz|.
reER:|z|=1

For any adapted R%valued process (H;)o<i<7 and Mg-valued process (M (t))o<i<T,
we denote

([ e

where for A € My, AT and Tr[A] denote respectively the transpose and the trace of
matrix A.

1/2

\H| = and | M| := H (/OT Tr [M(t)M(t)T} dt) "

[e.9]

2. NON-ASYMPTOTIC MEAN SQUARE ERROR OF THE MULTILEVEL MONTE CARLO
ESTIMATOR

2.1. Assumptions and strong error analysis. It is well known that under assumption

(Har) we have
(P)

K, (T
Vp > 1, sup |X¢l, sup | X} € LP andE[sup | Xy — X['|P o)

np/2 ’

with K,(T') < oc.
0<t<T 0<t< 0<t<T

Moreover, since the diffusion coefficient is constant, the Euler scheme coincides with the
Milstein scheme and if b belongs to ¢2(R? R?) with bounded derivatives, then the strong
error estimation improves to E [supgci<p|X; — X7|P] < K”( ) with K,(T) < oo (see for
instance [7]). In order to get a non-asymptotic control of the blas and the variance of the
multilevel Monte Carlo estimator, we are now going to state an explicit bound for the terminal
quadratic strong error E [| X7 — X7|?] for (n,m) € N* x N (with the convention X™" = X
for m = oo) under the following assumption. The constancy of the diffusion coefficient
ensures that the bias can be estimated with the right order of convergence using this strong
error analysis instead of the more complicated weak error analysis.

Assumption (R1). The function b € €?(R% R?) and there exist finite constants [b]o, €
(0,400) and app € [0,400) such that

Ve e RY,[[Vb(2)] < B,

Vo € RY, |Ab(z)| < 2aap(1 + |z — z0]). (2.1)
Proposition 2.1. Assume (R1). Then, for all (n,m) € N* x N,

(m —1)T?
mn?

(m —1)T?

mn?

E[|X7" — X% < Kim and E max \X X |?| € Kom
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2 — —1
where /K1 m C’@:g) o\ — = m T\/m

T — e oo ;
(P (o Qé{? * T)*“AbW+ VA + o)

[e.e]

and Ko, is defined like K1, but with C’m—l—\/T replacing Cgg) = VT+[h]so f [Bloo (T—1) )\/tdt.

In the estimations (and in the remaining of the paper), m only appears through ratios
which have a limit as m — oo and when m = oo, we consider that they are equal to this
limit. The proof is postponed to Section Ml

2.2. MLMC parameters optimization revisited. In what follows let us assume that
f € €Y(R%R) is a Lipschitz continuous function with constant [f]s. For the Multilevel
Monte Carlo estimator

L

No
A 1 e-1
QZFZJC( +Z Z( (X — F(XT% )>,
0
k=0 =1
defined in ([L3), the expectation leads to a telescoping summation so that

2 . T Kl,oo
] < [fleo L
(2.2)
where we used Proposition 2.Ilfor the last inequality. On the other hand, again by Proposition

21

2 [70xn) - Q]| =[e [700n) - £ | < B2 | [ -

2 o Kim(m—1)T?
]g[f]io Ll 1

Last, as X+ ~ N (zo+b(xo)T, T1,), we use the logarithmic Sobolev inequality for the Gaussian
measure and the Herbst’s argument (see e.g. propositions 5.5.1 and 5.4.1 in [I]) to get for all
AeR

Var [506) - SO0 )] < URE | Jxp -

E| e (Ms(Xh) - B Xh)) | < e <%> . 23)

By performing Taylor expansions as A — 0, we easily deduce that
Var [£(X3)] < [fIA.T.

as a consequence, the following non-asymptotic estimation of the mean square error of Q
holds.

Proposition 2.2. Under (R1),
. 2 o (Ki1oT?2 T & Kypn(m— 1)T?
_ < 2 ) K .
E [(Q E[f(Xr)]) } < [f]w( e N T N

According to the above proposition, to achieve a root mean square error € > 0, one should

choose .
[fk# ”LK1<Ele L > [In([fleoT/K1,00/€)/ In(m (2.4)
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For such a choice, one should then choose (Ny)o<<z, such that

1 02 1 2 K oo
Z m+ (o) m + £ 1, ) (2.5)

< ; a
sz%—i-l No = Kigmm?(m—1) <[f]§oT2 m2t

where Cgy) = %, /Kl,,;n(i;:;l—lﬂ“ minimizing the computation cost which is equal to Ny +

S Ne(m + 1)m!~!. Note that for £ € {1,...,L}, (m 4+ )m’™" = m’ + m'! is the

number of grid values of the Euler schemes which are computed for each Brownian path at
. . .. . o Cen

the level ¢. This constrained minimization problem leads to Ng = N o — and

where the total number N of simulations is chosen in order to

- m—30/2
Ny = NCam+ZeL:1m73U2
achieve equality in (23] :

L .
+1 1-—m L2 K1 mm?(m — 1)[f]A,1°?
=g +> m32) [ Cpg + > X il - = .
< @ BT ) e (& — R K e
(2.6)
Then the computation cost is given by Cost(m,m~%) where

B m+1  1—yz\>  Kymm?(m—1)[f)2T?
Cost(m,x)—<0m+ - > (

x vm—1 m+1)(e? — [f]goT2K1,ooa;2)'

Notice that for fixed m, Cost(m x) is up to some positive multiplicative factor not depending

a-va) =14 m/mol) = Pt e
on z equal to g(z) = with /a =1+ Cegm > 1and f. = [flooT/K1.00 not

T pZ—x? m+1
depending on z. We thus want to find L € N m1n1m1z1ng g(m~%) under the constraint (2.4)
2
which writes m™" < .. We have ¢'(z) = 52 xQ (2\/_x 32 — %) Since, as a > 1,

z = h(z) = 2/ax — 23/% — % is increasing on (0, 1],

e cither 2\/a —1— 32 < 0, which implies 3. > 1 and inf,¢[o 1) g(2) = g(1) so that L =0
solves the constrained minimization problem.

e or 2/a — 1 — 32 > 0 so that, since lim,_,o+ 2v/ax — z%/% — \B/—% = —o0 and 2v/af: —

3/2 % = 2B.(v/a — /B:) > 2B:(1 — \/B:), there exists x¥ € (0,1 A ) such that

g is decreasing on (0, z}) and increasing on (x%, 1 A ) and the value of L solving the

constrained minimization problem belongs to {|— llrrllﬁ I llrrllii 1}

We denote by L this optimal value of L, by N® (resp. N;) the corresponding total number
of samples (resp. number of samples in the level ¢) and by Q. the multilevel Monte Carlo

estimator ([L3]) with those optimal parameters. When &2 < | f]gOT2K 1,00 (1 + %)

4/3
which is equivalent to 2/a—1— 32 > 0, since h <2Z/B§T> = \/_ < 0and infye(g 1) P/ (z) >

5/3 54/3 62 53/3
2\/—_5 > 0, we have 32755173 <zl < 255 1/34—2\/— 32 X2 e Hence, ase — 0, 2% N EEaIE

LF ~ % and the bias term [f]ooT/K10om =" behaves as O(*/3). More precisely, when
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3 m(/m— 1/2
c < o1 im [flooT /R (1 4+ /00 )

m—+1
ML > o[- EE mm o T e : (2.7)
m 223 ([l T /K1 00)Y3(1 + 2 f 1)C(IEI))2/3
m~ < e_L_llr;-i%“nm < maxf
< o <(1+%Tf”0m>”3 , (L Oy
(1 + 20D O ) (floe T K1) 3 20 1+ %om

(2.8)

We easily deduce that, as expected from [4], Cost(m,m~L") = O(e72) as ¢ — 0 for fixed m
and N = O(¢72). One could also consider minimizing m > Cost(m, L7(m)) numerically,
where we used the notation Lf(m) to make the dependence on m explicit.

Remark 2.1. For this optimal choice which clearly differs from the one in [4], the bias of
the Multilevel Monte Carlo method is not of the same order of magnitude as the precision
e but much smaller. To the best of our knowledge, such a 4/3 order of convergence of the
bias does mot appear in the existing multilevel Monte Carlo methods literature. Notice that,
for stochastic differential equations with a non constant diffusion coefficient (multiplicative
noise), this property remains true for the multilevel Monte Carlo estimator based on the Giles
and Szpruch scheme [5], since it exhibits the same orders of convergence of the bias and the
variance within a given level as (L3]).

3. CONCENTRATION BOUNDS FOR THE MULTILEVEL MONTE CARLO EULER METHOD

The main result of this paper is a concentration inequality for the Multilevel Monte Carlo
estimator ) defined in (L3]). To prove this result, we are going to estimate the moment
generating function of

Q-E[f ZQe,

where Qg := NLO Zijﬁl (X:}“,k) —Ef(X4+) and, for £ > 1,

Ny
Qei= gy, 22 (FOCH = FOGRL) ~ BLCF) - 56

3.1. Estimation of the moment generating function. We are first going to derive an
exponential type upper bound with the optimal rate of convergence for the moment generating
function of the square of the error Ur = X7 — X' between the Euler schemes with n and
mn steps. The proof of the following result is postponed to Section Ml

Theorem 3.1. Let (n,m) € N*xN, ¢, = % fork €{0,...,n} and p be a constant satisfying

9mn?

AT?(m — 1) (Cm [Boov/3d(2m — 1) /m + Cn T?/2/2(m — 1)/m)

7= PED"

(3.1)

)
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where Cgm) = VT + b fT bloo(T=1) /2 dt with Camm =€’ Tblec < ([b]2,+any) and by convention

m

= mT_l =1 and 2m = 2 when m = oo. Under assumption (R1), we have for all z >0

m—1)T2x 2 m—1)T2) .
exp {p(% + max. | X" — X[;|> }] < exp {pC’m(x)(Tng} with
(3.2)

Cea(@) = <Cam 3d(am — 1) T3/2\/7>< : 231352 d(277:n—1)

E

(m — DT ( (3 + 1)(|b(wo)| + [Dloo + ) 4d\F e
+ Can 2m < 4[b)2, ENG + 5 >> 7
and 7 = Bloce”P=T

(b1ZTans) ©

To derive our main result, we need to reinforce our assumption (R1) since our approach
relies on Malliavin calculus that requires additional smoothness on the coefficient b.

Assumption (R2). The function b € %3 (RY,R?) and satisfies assumption (R1). Moreover,
there exist finite constants [b]o € (0,400) and ayap € [0, +00) such that

Vi€ (L.}, ve RS, [P0 ‘ < bl
7
Ve € RY, [VAb(z)|| < 20w (1 + | — o). (3.3)

To state our next results we introduce the following finite quantities.

Constants Notations (CN).

m? 3n?

B T 20 P m =17 PE T A em — m 1)
Vdlbloo fioer-n
[b]oo

T . — o—2[b]oo(T—1) ; T .
Dy (r) ::/ eltls /sds and ®3(r) := \/1 62[5] +1/ [b]zoo / \/1 — e~ 2l (t=r)(t,

PED PEID PEID)
() ®3(r) P3(r)

<\/—pm VPETD | /PET VPETD | PEID \/—pm)z’

Cm = (\/E[b]oo[b]oo \4 [b]go + aVAb)7 (1)1(7‘) = o 1)’

p(r) =

Di(r)  Pa(r) Di(r)  P3(r) Do (r) D3(r)

B(r, ) = <¢P<m VPED | VPED VPETD | /PED Wm)
v ®1(r) By(r) Di(r) Ps(r) Dy(r)  P@3(r)

®3(r)Cm) P2(r, ) *1(r)Caz (0) 50
VPED VPEID VPED PEID) VPED VPETE )’ -7
Di(r) Pa(r) Di(r) P3(r) Do(r)  P3(r)

. 2
o) e M= 1) [b(zo)l + Bloo (bt _ Jlileory 4
balra) = "D (a4 ) <cm—2[6]2 ( )+ )
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1dCgT P (r) ()| + bloc it
+ NG (C 2[6]2 (

[e.9]

_ e[b}oor) + ;17) + dln 20@@%(7‘))@ >0,

. dT/T 20000 (T—1) fl. - 2d
= Jp —1— 'p\/ t
@D o

« sup Hp\/,orcm [b]oof ]oo/T[ Nip) + [flocp(r)@(r,0)/ /P
rel0,7) [floov/P@D + [, V() ’

The proof of the following theorem is postponed to Section [Gl

Theorem 3.2. Let assumption (R2) hold and f € €Y (R R) be a Lipschitz continuous
function with constant [f|o and such that V f is also Lipchitz with constant [flup,. For all
A < Cminj<y<y, Nymt, where

1/2

C = PED .
2dm?T J V=00 (e /g + ) VB

we have

L T2
E {exp (A[Q - Ef(X%nL)])} < exp {Az[f] <2§0 + Z C(E]?émzé—i)T > } :
(=1

According to Section 2], the bias satisfies

L L
Ef(XF) — Ef(X7)| <BY2A(XF) — f(X7)]* <
so we easily deduce the following corollary.
Corollary 3.1. Under assumptions of Theorem[3.23, we have, for all |\| < Cminj<¢<;, Nym?,

L m— 9 .
E [exp (MQ - Bf(X7)])] gexp{xzm < Ly Cete - T )HMV]@% VEi }
(=1

2N() Ngm

3.2. Concentration bounds. Using the above corollary, for all A € [0,C min;<,<y, mgNg]
and a > 0, we get

P (@ —Ef(Xr) > a) < exp{va(N)}, (3.4)
with
: T L Cgm(m —1)T? FlooT /K10
a(A) = N[ (m +§:; @%m%_f ) Y (Hm_ Vi a) |

NlmZZ 1
. 2
[floo T/ K1 00
a—

min a(A) = — + where (x)y+ = max(z,0).
)\E[O,CmimgengZNz]w ¥ A[f]2, (2N + ok > @)+ (,0)
0

Now, when 0 < a < 2[f]2, (2N0 + ZL > Cminj<p<;, m*Ny + [fk% 'LKl’oo,

NlmZZ 1
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and otherwise

i o (A C min m'N,
,\e[o,Cmii?gngL’Nl}w (W) = 1<¢<L ¢
[f]ooT\/ Kl,oo . 2 - 1)T2 . Vi
x < mL —atlf 2N - Z Ngm% 1 Clglzlng Ne

C minlSZSL mZNg
2

Dealing with P (Q —Ef(Xr) < —a) in a symmetric way we end up with the concentration
inequality,

L 2 .
V0 < a <2[f)3 < L +ZCm(m DT )C min mzNg—kw% VLKl‘X’]’

2Ny — Nym?2t-1 1<(<L

< mmT\/—zq,oo)2
oO— — T

]P’(]Q—Ef(XT)] 2a> < 2exp 4[f]2 ( +ZL Can (m— 1)T2>
2N Nym?2t-1

L v .
Va >2[f]2 <i ZCM)(m DT >C min meNz-i-Ma

00 2N0 + ot Ngm%_l 1<0<L L
. - .
P (’Q —Ef(X7)| > a) < 2exp <_ mmlégéLm ea> .

Hence, we proved our main result, which we now state.

Theorem 3.3. Under assumptz’ons of Theorem the multilevel Monte Carlo estimator
L Cm(m 1) . i [fleoT+/K1,00
(L3) satisfies, ¥ 0 < o < 2[f]2, 2N0 + 21—z ) Cming<pcp mENp + ==,

Nele 1

( [ﬂooT\/ Kl,oo>2
- T
+
: 2C g (m—1)T2 )
2P (& + Tio TR )

]P’(]Q—Ef(XT)] > a> <2exp | —

with (r)4+ = max(z,0).

2
Notice that the factor [ f] ( Ng T Z =1 ) in the denominator is closely related

Nele 1

L K1 o (m— 1)T

Nom2r=T of the variance of Q)

to the non-asymptotic upper-bound [ f]oo< N 2o

derived in Section The only difference is the replacement of Kim by 2Cgm). Let us
now discuss the constraint on « under which we proved Gaussian type concentration and see
that in the limit ¢ — 0, for the optimal parameters discussed in Section 2.2, we can choose
a= (9(52/3) i.e. much larger than the root mean square error ¢.
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Following the discussion and notations of Section 2.2 for € > 0, we consider Q. the MLMC
estimator (L3]) with the optimal parameters L, N¢,

C m—30/2
NE = N° (222 and Nf = N° — L>1. (3.5)
Cm + iy m—32 Cam + 2y m™ 72
. €, —LE/2 . —LE)/2
One has minj<y<ze m Nf = Cm]j—gf;m*“/z and therefore NLS ming<g<ye mZNZ6 = mcm .

As a consequence,

L c m — 2
T\/— 20/1% (zﬁwZ Lzl 1)T>

(12
C[f]oon—LE/2

C min m‘Nj >

mL — Nim?-1 1<0<Le Cen)
1/2
where, according to ([27), when ¢ < ¢; 1= [f]eT /K (1 + %) , the right-
hand side is larger than
CIfIZT

0252/ 3 with ¢y 1=

21/3C(IED\/— Joo Ty /K1 00)?/3(1 + 2 f 1)C(IEI))1/3
Under the same condition on ¢, according to (2.8]),

[f]ooT I(vl,oo'mf_LE

. mel/3 <(1 + m(ﬁl—l)cm)u?, . 1+ 2m(m\/—:1 1)0(12251))1/3>
m . 2/3 m
(1+ 220 Corm ) ([ 1o T /K1 00) /2 22/ |4 D c
On the other hand, one has
L# 2
: T 2CE(m — 1T
2( /1% (F > =B ) (3.6)
0 4 ‘
a2 (EiT? Kim(m —1)T? A0\ »
= (2\/ Kl,m > [f]00< m2L5 +Z Nsm% 1 > < <2\/ Kl,m >€ ’

(3.7)
according to the optimization of parameters which follows Proposition Combining the
2
two last inequalities and the fact that for positive a and z, (o — az)i > 5 = 22, we obtain
that for e < ¢y,

(a . [f]ooT\/ Kl,oo > 2
_l’_

mL®

. T LE QCm(m—l)Tz — (ag?
2[f12 (N_g T 2u=1 T NemIT 3

(1 + m(ﬁl—l)cm)l/ii (1+ 2m(ﬁ_1)Cm)l/3

2 m
c3 <<1 + PO O V([ floo T/ Kr0) V2 ( 22/3 1 4 2ml/nsl)

Cem

)

2
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Then
2/3 22 beae?/3
Ve € (0,c1), Va € (0, c2e?/3), <|Q CEf(Xr)] >a) < 2¢ o :
Notice that the fact | f]OOT K Loom_LE < ¢ that the bias is smaller than the precision ¢ leads,
by a similar reasoning, to the following result.

Corollary 3.2. Under assumptions of Theorem [3.2, the multilevel Monte Carlo estimator
Q- [@3) equipped with the optimal parameters [B.0) satisfies

/\6462/3

i VI
Ve € (0,1), Ya € (0,057, P(|Q: ~ Ef (Xr)| > a) <2¢ aeia

At this stage, a natural question arises: is there an alternative choice of the parameters that
does not increase neither the root mean square error € nor the order in € of the computational
cost of the multilevel Monte Carlo estimator and for which the upper bound on the deviation
parameter « is larger than ¢;e2/3 ?

For g > 1, we set Nf’ﬁ N;j x ﬂ for 0 € {1,...,L°} and
e

m

NE
A 1 9 —1
Qe =7 LS (k) Z 5 ( (XF5) = F(XF ) - (3.8)

Since for each ¢, N, ; B > Ny, the root mean square error and the statistical error of Qe,g are
not greater than the ones of Q). and therefore than €. The two estimators share the same

bias. Moreover, minj<y<rs m Nz > (Ls)ﬁ((}@g;;l/z s 0 thatNLg ming << mzNg’B >
W. As a consequence,
L¢ 2 .
Vb VB g (T s Canm VY o eyed s CUIT
ml 2NG = NpPmt 1<0<L* ~ Cgv/m(Le)P
where, when € < ¢q, the right-hand side is larger than
. — -8
LT 4 (AT 2K (1 + MY O )
cs(e) == = 1+ In
Camvm 3lnm 5

Reasoning like in the above derivation of concentration inequalities for Q., we easily get the
following result.

Corollary 3.3. Under assumptions of Theorem [33, the multilevel Monte Carlo estimator

Qaﬁ B8] satisfies

o2
Ve € (0,c1), Ya € (0,65(6), P (|Qe — BS(Xp)| > 0) <2 s

/\C4z’-_‘2/3

Moreover, the computational cost of Qe,g is proportional to

L=
R T (T P}
Le —_

moa Cem + 2oy m /2 vm
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Since B > 1, it is of the same order O(¢72) as N¢ and therefore as the computational cost of
Q: in the limit ¢ — 0.

3.3. Error control in Orlicz norm. In view of our previous results, it is natural and fruitful
to generalize the RMS error analysis developed in Section [2.2]by means of Young functions that
are increasing convex functions ¥ : RT — R* satisfying ¥(0) = 0 and lim,—, ;o ¥(z) = +o0.
For a given Young function ¥ the associated Orlicz norm || X |y of a random variable X is
defined by

| X|lw :=inf{c >0, : E[¥(X/c)] <1} with inf() = occ.
Weset W (x) := (e* — 1) /(e—1) as a fixed Young function. At first, let us deal with a standard
Monte Carlo algorithm that approximates E[f(Xr)] by Q := NLO 22\21 f (XTm,i) Then, one

can use Section 4 of [3] to bound E [exp()\(@ - E[f(X}”L)])} from above. More precisely,

taking advantage of the constant diffusion coefficient to improve the bound in Proposition 4.1
of [3] to [f]1 < [floce =), we get

2 q2 mh .
E |exp(M@Q — E[f(X7")] < exp{)\ J(’:[(Om)} with Cgr = L b S PP (3.9)

With ([22), we easily deduce that for all ¢ > 0

. [\P (Q_E[f(XT”ﬂ < [exp (Cam . mwwm> ) 1]

C

and then

Recall that the RMS error in this case is given by

EY? (@~ E[f(XT)J)}<J< vt ) + Var(Qo)-
2CEm)

By performing Taylor expansions as A — 0 in ([B.9]), we easily get Var [Q] < - Asa
consequence, we get

E'2[(Q - Elf(x7))’] < \l (mC’OTmLKl’“) + 2(,;\[(,3;:9,) (3.10)

Note that using

2
V5 +5 <o+ 1/_ g ¢3+‘f 24b), for a,b >0, (3.11)
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we easily get

<m°°T\{m>2+2C T/ K 2 90
2 < [lo -Elf(xa)llly, < (3+4\/§) (mm F) Do

m 0

(3.12)

Then, the RMS error and the Orlicz norm of the standard Monte Carlo share, up to a constant
factor, the same order.

Now, we proceed similarly for the multilevel Monte Carlo algorithm and thanks to Corollary
B we write, for all ¢ > 1/(C minj<,<y, Nym?)

. @6<Q—JﬂﬂXbﬂ>]§ !
c e—1
2 (T - Canm - DTN | [flxTVEiw
. [exp < 2 <2N0 +£§:; Nym2t-1 * emb -
Hence, if
[T /K10 T/E T & Cgplm —1)T?
2mL - J < 2mL ) [f] <2N0 + ZZ:; Ngm%_l =
1
C minlgggL Ngmw (313)
then
|@-ElrCxn], <
[loeT /K00 T/K T & COgm(m —1)T?
2ml + ( 2ml ) + [f] <2N0 + ; Nym2i—1

and thus by BII]), we get

< C6 ( T ) ( Z e Zr\Lfgm?f 1 T2)’ (3.14)

where cg := [<3+\/_) <1 Vv 2;@)]1/2.

Note that the above upper bound is equal, up to a constant factor, to the upper bound
given by the RMS error estimate of Proposition 2.2 Combining this result with (3.10]), (3:12])
and ([B.I4]), we conclude that compared to the standard Monte Carlo method, under constraint
(3.13), the multilevel Monte Carlo estimator achieves the same complexity reduction for the
Orlicz norm || - ||g, as for the RMS error.

|@-Elrn)

e

Now, it remains to check the validity of constraint (8.I3]) when choosing the multilevel
Monte Carlo algorithm optimal parameters derived in Section Let us recall that in this
setting the RMS error upper bound is equal to £. On the one hand, using (B.11), we deduce
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1/2
that the term in the left hand side of (BI3) is larger than cfe, where ¢ := [(% A ﬂ .

Nem—LE/2

“« o . é £ __ .
On the other hand, combining minj</<ze m*Nj = P T together with (2:6]) and
(Z), we get for all 0 < e < ¢

4/3

) Ky mm?(m — 1)[f]2,T2m /2
C Nym® > CC ’ —
1Segy O =Y ED (m+1)e?
Kl,mm3/2(m_l)([f]ooT)4/3
+1)(K1,00)1/3 (142 O )13
condition ([BI3)) is satisfied and

> cre”

where ¢7 := CCy) "y Hence, for all 0 < & < (cg(;7)3 A c1

< cge.

e

| @ - Brrean|,

4. ERROR EXPANSION AND MOMENT GENERATING FUNCTION OF maxj<j<n |X[§" — X[Z|2

For (n,m) € N* x N, we consider the Euler scheme X™ on the grid (t; = %)nggn and the

J

m
the solution to (LI) when m = oo. We introduce the difference U;, = X" — X;, between
the two processes and define U} = maxo<p<y, |U, |. For s € [0,T7], we set

mi(s) = V;J % u(s) = %ﬂ % when 1 € N* and 7o(s) = fime () = 5.

We have Uy = 0 and

process X™" which is the Euler scheme on the finer grid (_:CL)OSJSm” when m is finite and

T

S — —
n

tet1
vk €{0,....,n—1}, Uy, = Uy, +/ b(XI™ ()ds — —b(X[!)
tr

T mn n tk+1 mn mn
= Uy () = b))+ [ (b ) — b ) ds

ty
To deal with this induction equation, it is convenient to introduce the matrices

T (b(X™) —b(XP)) U,
Ak: - [d + 1{Utk7é0}5 X ( e |Ut |2 K ) e
k

VI <k, A}, := ApAp_1... A and AT = I,

)

This way, we have

tet+1
Ut = AUs, +/t (b(X;ZZL(S)) - b(ng")) ds. (4.1)
k
Let us introduce V;, = Otk (b(X;:”nT;(s)) — b(X;:”f(Ls))) ds. One can check by induction that
k-1
Uy, = ZAﬁj_ll(Al — IV, + Vi, (4.2)
=1

Indeed, since

. k-1
D2 AL Vi Vi, = (= )V + (A G Vi Vi) = A+
=1 =1
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k—1
= <ZAH—1 ( Id)vtz + Vtk) + Vtk+1 - ‘/tk
=1

and V;,,, — Vi, = s <b(Xm" (8)) —b(XxXmn )) ds both sides of ([4.2) statisfy the induction

tr Nmn 7n(s)
equality (4.I]). By Itd’s formula and the integration by parts formula, for k € {1,...,n},
b Ab
Vi = [ o) (T )+ S s + ThCean,
0
where v(s) = (1,(8) — Nmn(s)). Therefore
Uy, = (U + UY) with
(1) k-1 12 12
U = S A (A= L) [ a@weaam + [ a@ueogmaws (43
=1 0 0
@ k—1 t 1
and Uy~ = Z .AIJr1 (A Id)/ 'y(t)(Vb(X{”")b(X,%;(t)) + §Ab(Xtm"))dt
=1 0

tr 1
+/0 YO (VOXT™ (X5 ) + SALX™))dt

respectively giving the contributions of the stochastic and the deterministic integrals. One
can take advantage of the simpler expression

k—1

ti41
U = 3 AL / (bxgm ) — b(x) ) ds
l

=1
(also proved by induction) and the linearity of the decomposition into stochastic (w.r.t. dW;)
and standard (w.r.t. dt) integrals to rewrite

2 Plt] mn mn 1 mn
but the analogous expression of U% does not make sense because of the non-adapted factor

A(m] This is the reason why we introduced the more complicated decomposition (E2l).
Notice however than n > T[b]oo, then the matrices Ay, and therefore A} are invertible for
k € {0,...,n} so that U = Al | 0 (AL””J) y(#)Vo(X[™)dW,. With Lemma FET] just
below, we conclude that

Ur < U(*l) + U(*Q) where
n—1
BlooT N~ (oo (T—t411)

T
* b — mn mn 1 mn
Uy = [ el=T=05(t) [Vb(X™b(X () + 5 Ab(X[™)
0 2

+ max

ty
o /0 VB AW, (4.4)

/ OB,
0

dt. (4.5)

Let us state two lemmas that will be used to deal with U (*1) and U (*2) in the proof of Theorem
B.I The first one follows from usual linear algebra arguments and the submultiplicative
property of the matrix norm.
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Lemma 4.1. One has Vk € {1,...,n— 1},

1Ay — 1| < % Akl <1+ % and V1€ {0,... k}, ALY < elfl(tet)  (46)

Lemma 4.2. When b is Lipschitz continuous with constant [b]s € (0,+00), one has

i [bloot _
(1) Vt € [OvT]’ SUPyeN SUPs<t |X§L - l‘0| < e[b}wt SUPg<¢ |WS| + : }:o 1|b(l‘0)|,

o
(2) sup et 50Dy DX < Bt ([ supycy [ W] + b(a0)])
(3) Moreover, under (R1), we have

. [bloot __ 1
supsup |Ab(XT)| < 2any | el sup [W,| + 6.7]6(330)] +1
neN s<t s<t [b]oo
(4) and under (R2), we have

i elbloot — 1
supsup |[VAW(X™)| < 2avap | et sup |[W,| + T|b($0)| +1.

neN s<t s<t [b] o

Notice that the function b is Lipschitz continuous with constant [b]s, under (R1).

Proof. For n € N, one has

t
vVt € [O,T], th — Xy = Wt + / (b( ;Ln(r)) — b(l'())) + b(x())dT
0

Since b is Lipschitz continuous with constant [b],

Vo € R, [b(x)] < [b(x) — b(xo)| + [b(zo)| < [Bloc|z — o] + [b(x0)- (4.7)
One deduces that

t
. b
sup | X, — zo| < sup |Wy| + [b]oo/ sup | X7 — zo| + Mdr.
s<t s<t 0 s< [ ]oo
Applying Gronwall’s lemma to the function ¢ — sup,; | X% — xo| + %, one obtains that
Boot et — 1
vt € [0,T], sup | X" — aq| < ellt sup |W,| + ———|b(x0)|.
s<t s<t [b]oo
The second (resp. third and fourth) inequality follows by using (£1) (resp. (ZI]) and [B3])).

0

Proof of Theorem[31l Let x > 0. Since maxj<g<y, |Us, | = U < U(*l) —i—U(*2), Jensen’s inequal-
ity implies that

2 * 2 (m—l)sz * 2
7(7” — DT + max |Uy,|] < (U(l)) + o * U(2))
2mn 1<k<n b - 1—g¢q
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where ¢ € (0,1) is a parameter to be optimized later. With Holder’s inequality, we deduce

that
(m—1)T%x O\ P(U(*l))2 g p(% + U(*z))2
exp {p(w + UT> } exp {T E! exp 1= q2 .
(4.8)

e First term. Let us first deal with the contribution of U(*l). Let us introduce the
quantities

n—l [Bloo (T—tg41) . r
k=1

E < E1

0

[B)oo (T— )
pn—iandpk [bocTe o tk+1\ﬁfr1<k<n—1 Notice that > ;_; pr = 1 so that
we have defined a probability measure. By (@),

s

/ VB
0

tVo(X;"™)dW, ' + Crn max
VT 1<k<n

IN

/ by

Cam kZ: N 1212k
Applying Jensen’s inequality to the convex function R © x — exp {p—;;}, we deduce that
n 02 2
P e 2 @’
B [eXp {?(U(”) H =F [Zpk P { Pt 1<1<k H '
Now, using the periodicity of the function v with period ¢; = T'/n, we get

k=1
(2m —1)(m —1)
6(mmn)? ’

/ BT,
0

t, . (27 .
/ (1) T [ V(X Vb | di < dlif2, / 2 (1)dt = b2t T?
0 0
Then, by the second assertion in Lemma [AT],

3(gmn)* ]
40(214:%T2d[b] (2m —1)(m — 1)

. )2 n 2 241012 (2m — 1) (m —
- {p%) }] . {21 (2)Cle PT2dIb (2m — 1)( 1)}_ o

¢ 3(gmn)?

Vp € [O,

E

e Second term. On the other hand, by (£5]) and Lemma [£2] one has

g bloo (T—t oot (1172 |b(z0)|
U < / ~(t)eltlee(T=) <e[ loot ([6)2, + aAb)<sup |Ws| + 7> + aAb> dt.
0

s<t [b]oo

Using fOT ~(t)dt = (mgyileQ and T =

[lace— e deduces th
mx one deduces that

+ Uty < I+ a) [ (o) sup i ML B 2T
0

s<t [b]oo

(m—1)T%x
2mn
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= el (B2 + any) (/OTV(t) sup |Wsldt + (m — )17 X [bo)] + [Ploo + j)

o<t 2mn [b]oo
o T m —1)7* x . i
:eT[b}m([b]gOHAb)/o (0 <sup|Ws|+ : ( le)\/?v(\/?d o L o)l[ﬂ}b][b]oﬁ )dt,
s<t mn 0 rvy(r)dar )

where we used the periodicity of (t) for the first equality. Setting C g = eTlble ([b]2, +anp)

and using Jensen’s inequality for the probability density p(t) = I \\[[7( () on [0, T], we obtain
that ’
m— 21}
(g + Uy T PCem o Vrr(r)dr)?
E [exp < E| exp 5
(1—q)? 0 (1-4q)
e . N\ 2
1 sup |Ws| + (mT DT X [bo) i oo +7 Hp(t)dt. (4.11)
t s<t 2mn [ /ry(r)dr Do

. d . d .
Since sup;<; |[Ws| < \/Zi:l sups<q |Wi2 < 370 supg<y [W], for 6 > 0,

2 2
<sup|Ws|+5> <ZSUp|WZ|2+25ZSllp|WZ|—|—52<Z(Sup|WZ|—|—5> —(d —1)8?,

s<1 i 15

where the random variables in the sum in the right-hand side are independent. Setting

5 = (m-1)T" % |b(0) |+ [b] s+
2mn fOT ry(r)dr [b] oo

property of the Brownian motion W, we deduce that

, plugging this inequality in (LII]) after using the scaling

. P+ U || { (d = 1)(m — 1)*pCy T (|b(z0) | + [bloo + @2}
ex expq — .
: =07 - A((1 - ),
PCirm (Jy VT(r)dr)’ ’
xEd[eXp{ €10 Jo 5 <Sup|Wsl|+5> H
(1—-q) s<1
Using the fact that for each k € {1,...,n}, » — ~(r) is non-increasing on [tx_1, ;] while

r +— /7 is increasing, we obtain that

T n ty, t
/ Vry(r)dr = Z Vry(r)dr < Z / r)dr Vrdr
0 k=1 tk—1 te—1 te—1
—1) — 1)T°/?
= (m = )T / Vrdr = (m — )T )
2mn 0 3mn

PClm (Jg Vry(r)dr)?
(1-9)? » We

Applying the first assertion in Lemma [A.T] with |H| = 1 and p =

. —q)mn 2
deduce that if 0 < p < 80%2;);{%, then

m— 2 *
p( ( 251)3 U(z))

(1—4q)?

E [exp
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4[b]2, 3V [b]oo

< exp {pCé:m)T4(m —1)2 ((3d + 1) (Jb(zo)| + [Boo + 7)? . 4dv/T(|b(zo)| + []oo + 7) . AdT 102

(1 = g)mn)?
(4.12)

Oz e /3(2m—1)/m to obtain the
Cam [Boo \/3d(2m—1)/m+Cm T3/%/2(m—1)/m

same constraint on p for the two terms U:(pl) and Uf(pz) and conclude by combining (48], (£I0])

e Conclusion. We now choose ¢ =

and [@I2) that if 0 < p < : O’ )
4T2(m—1)<0m [b}w\/sd(zm—l)/ercmTS/%/2(m—1)/m)
N m — 1)T?
E [exp {p(UF)*}] < exp {PC(]IZD (@%} :
O
Remark 4.1. e When n > [b]ooT, one could consider using the alternative expression

Ut(;) =A._, fgk (Al?_tJ)_lfy(t)Vb(XZ””)th to replace in the first step Uy, by

e[b]‘X’T max

1<k<n

tg
| Aty eweam,

Lemma [Z-1}, implies that for k € {0,...,n}, (A7 < (1 - M%T)_k. This leads to
replace Cgz) by some constant not smaller than

. T . 1/2 , T .
elbloeT </ e2[b]ootdt> > eltlosT\/T — /T (1 + [1;]00/ e[b]oo(T_t)dt> > Cy-
0

0
e In the last step of the derivation of (L8], one could choose a constant ¢ € (0,1)

different from q to obtain
p(U€1))2 1-g p(U(*z))z
eXp{ a [ "\ T an-af)

but, following the reasoning in the above proof, this leads to the same upper-bound but
under a stronger constraint on p. Indeed, for a fixed value of qG, the maximal value
of 1—¢q)(1—q)=1—(q+q) + qq is attained for ¢ = q.

e On the other hand, if q(t) is some probability density on [0,T] and (Vi) an

E [exp {p(U3)’}] < BT

Re-valued process, applying Jensen’s inequality to the convex function R* 3 = —

exp {|z|?} leads to
T
| viatyae
0

2 T
E [exp{ }] < / E [exp{|Yt|2}] q(t)dt.
0
whereas applying Jensen’s inequality to R? > a +— |z|? then Hélder’s inequality leads to

the upper-bound exp ThE exp{|Y;|?}] q(t)dt } which is smaller when E [exp{|Y;|?
0

is mot constant dt a.e.. Nevertheless, in the above proof, the repeated use of Jensen’s
inequality for r — exp {(m)z} did not worsen the final estimation because this estima-
tion relies on uniform in t € [0,T] bounds for E [exp{|Y;|?}] .

9

)}
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Proof of Proposition 21l By (43 and Lemma [£1]

4 T
1S (T —tit / (£ TB(X VAW, | + / Y (£)TB(X ™ )AW|
0 0

The difference between the right-hand side and the definition ([#4) of U}, is that in the

(1)
latter ‘fo ~(t Vb(Xm")th‘ is replaced by max;<x<p, ‘fo ~(t Vb(Xm")th‘ Reasoning like

in estimation of the first term in the proof of Theorem B.I], we obtain that for the probability
measure (py)i<k<p introduced in this estimation,
2]

E[|Us°] < C@)Z H/ £)Vb(X™)dW;
_sz / Vb(Xm")Vb(Xm") }dt

< i o 6‘(25;; =

(4.13)

When estimating E [(U (*1))2] one needs to apply Doob’s inequality to deal with the last and
different term. Modifying the probability by giving weights proportional to 2VT for k =n
and to [BlooTe! et 11) for 1 <k <n-—11leads to

n

x )2 21712 2(2m —1)(m —1)
E [(U(l)) } < (Cam + VI blAdT* = ) (4.14)
On the other hand, by the Minkowski inequality and (.5l),
12 [rpre 12 it ([T i 1/2 Ab ?
BV ()] < el /0 e Mo (s)BY? || Tb(Xm X )+ S (X | ds
(4.15)

Using Lemma L2 and that E? [sup,, |[W,|] < E [sup,,W?|] < E [ZZ L Sup,< (W))?
4d x s, we have

[ —

Ab 2

+5m)

e—[i)}wsEuz

VIO )

1—e ~[bloos

< [Bloo <2[6]00\/d X s+ |b(m0)|) +anp <2\/m_|_ Ib(z0)| + e—[i)}ws)

oo

1-— e_[i’]“’s
[b]oc

Using the fact that for each k € {1,...,n}, s — g¢g(s) is non-decreasing on [tx_1,t;) while
(m—1)T
mn

< |b(o)| <am + [b]oo) +2([B)% + anp)Vd x 5 + appe P 1= g(s) + appe s

s — 7y(s) is non-increasing and bounded by

ol T1/2 [(U(*Q))z]

, we get that
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"op e tk m-—10T (T R
Szft V(S)ds/ Q(S)ds-I-aAb%/o el g

k=1 k—1 lg—1
m—1)T /T (m—1T 1—e W=l
= s)ds + a X -
o o 9(s) Ab e

oo

DT (b DT — 14 el . 1— e lBleT o ,
< (m — VT blao)] (aAb[ ] e + [b]ooT> + any——e—— + V(B2 + ann) T ).
2 [b]3 [b] oo 3
The estimation of E [|UT|2] (resp. E [|U:F|2]) is obtained by plugging this inequality together
with ([@I3) (resp. (@I4])) into the inequality

=[] =i’ sfenr] e

)2
®) ] for ¢ € (0,1)

E[|Urf] < . = resp. E [|UF?] < .,

and optimizing over ¢ : for a,b > 0, minge1) ¢ + IL (va + Vb)? attained for ¢ =
va O

Va+vb’

5. ERROR EXPANSION AND MOMENT GENERATING FUNCTION OF ITS MALLIAVIN
DERIVATIVE

5.1. Basic facts on Malliavin calculus. In this work, we follow the notations, definitions
and results of [8]. Let (W;)o<i<7 be a d-dimensional Brownian motion defined on the filtered
probability space (2, F, (F;)i>0,P). Let D denote the Malliavin derivative operator taking
values in the real separable Hilbert space H := L?([0, 7], R?) whose norm is denoted by |- |a-
More precisely, for h € H, we denote W (h) the Wiener integral W (h fo - dWy. Let
S denote the class of random variables of the form F = f(W (h!),-- W(h")) for n > 1,
with (h!,--- k") € H®" and f € 6€;°(R",R). Then, for F € S, the Malliavin derivative of
F denoted DF = (DiF,0 <t < T,1 <i < d) is defined by

DiF = Z S W) W () RE(E),

where h¥ denotes the i-th coordinate of h¥. The operator D is closable as an operator
from L,(Q2) to Ly(, H), for any p > 1. Its domain with respect to the norm |F|;, :=
[E(|F|P) + E(|DF|%)]? is denoted by D

We now state some essential properties, which are going to be useful in the sequel.

Proposition 5.1 (Chain’s rule). Let ¢ € €1(RY,R) with bounded first order derivatives and
F = (F',--- | F%) be an Ri-valued random vector with F¥ € D for k = 1,...,q. Then,
¢(F) € DYP and for eachi=1,...,d

q
Dig(F Z a—¢ )DIF7,
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Proposition 5.2 (Clark-Ocone formula). Let F' be a Fr-measurable random variable that
belongs to DVP for some p > 1. Then,

d T
F=EF)+Y / E(DLFIF)dW:, a.s,
=170

A preliminary essential result is on the boundedness of Malliavin’s derivative of the diffusion
and its Euler scheme given by (L2])

Lemma 5.1. Let X = (Xy)e(o,7] be the solution to Eq. (L)), where the coefficient b satisfies
our global Lipschitz condition (Har). Then, Xy, X' € DY = My DYP for any t € [0,7).
Moreover, assume that b € € (R%,R®) with ||Vb|| < [bloo for some finite constant [b)oo. Then,
for all1 < j <d we have

Vit € 0,7, DIV sup [DIXF]) < Lgpgyel=7).
nelN*

Proof. Under our assumptions, for any ¢ € [0, T], the random variables X;, X}* belong to D>
(see [§], Section 2.2). The estimation of the Malliavin derivative of X} is straightforward. We
only give a proof for the estimation of the Malliavin derivative of the Euler scheme. For
r,t € [0,7T],

0ift <,
DIXP ={ejifr <t <[22

¢ "
&+ Iz VO )

, (5.1)
VDX yduif t > [T

where (e;);=1, .4 denotes the canonical basis of R4, Hence DI X" =ejand fort > [ 7] %,

]z
n tn S - kE+1)T kT " S
vk € {{?} hJ } DIX], v = DiXin + <m (T) _ 7) Vb(X}r )DIX .
so that
| [7] T
DIX; = (T + (4 = () V5, ) (12 Zoatxin) ) o
k=71

Using the boundedness of the first order derivatives of b, we deduce that for ¢t > [%]%

)

< elbloo(t-1221T)

PP < (1 = m(@)lle) (14 5 ) e

O
5.2. Moment generating function of max \DQ:XZ:L” - DQ:X[;F. The next theorem states
<n

an exponential type upper bound for the moment generating function of 1121]?<x \DgX{Zm —
SRS

DQ:X{; 2. In what follows, we refer to constants notation (CIN) introduced in Section Bl
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Theorem 5.1. Let assumption (R2) hold ( ,m) eN*xN, t}, = % for k € {0,...,n} and
p be a constant satisfying 0 < p < e~ 2(b]oc " p(r)n?. Then,

| y-mn i v j —r ; m—1)T?
B [exp {p g (007" - DL 2} < o { e ) T

mn2
Proof. Let j € {1,...,d} and r € [0,T]. By 1)), for k € {0,..., 2|}, DU, =0,

, n (r)
DUy, = [ VX )DIXT yds, (5.3)
n

mn (7)

and for k € {[*#],...,n —1},

j ) r mn j T mn n i Y
DUty =Dl + V(X[ DrUs, + — (VO(XG™) = V(X5 ) Dr Xy,

let1 .

+/ Vb(X:Z;‘L(S))DJX:Z;‘L(é) — Vb(XZZ")DiX;’;”"ds.
ty

Setting

T
By = I+ —Vb(X"),

and defining (thf’j ))f%KkSn inductively by Vz([rr’f; )] =0 and
T

Vi) ) = (Vb(Xg;j") Vb(X})) DIX]

E+1

thy1 .
+ / Vb(Xm" )D]Xm" — Vb(X;’;b")Df,ngnds, (5.4)
ty

nmn (s) nmn (s)

we deduce that for k € {[7F],...,n — 1},

DgUtk+1 - V;t(r’j) = BkDgUtk - VQE:J) = Bk(DgUtk - ‘/;t(nj)) + (Bk - Id)v;/ir’j)’

k+1 k

equality similar to (41]). Let us introduce
VI <k, Bl := ByBy_1... B and Bi "t = I,.

One can check by induction on & that for all & € {[%+],...,n} and any sequence (f/tir’j)) [t <k<n
such that V;(rrf’i)w =0, we have
"T’!L" k )
[ r, r(r,g
D1t i+ S T - )
=l7l
+ Z Bl—l—l )(V;Em) _ ‘ngm)) + Vtim) _ f/;im)‘ (5.5)

Tn‘l_,’_l

Let us explicit the right-hand side of (5.4). We have

~ (Vo(X7™) — Vb(X]")) DIX] = ;kaUtkDﬁth,
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where for v € R?, the I*® column of the d x d matrix (thklu) is given by

(kau)'l - ( 0 %Zlb(@th (1 —e)Xg’;")de))u.

Then, we write

J yvmn o mn J ymn _ mn mn J Y mn

Vb(Xnm<s))D X7I77L7L(-5) Vb(Xnn<s>)DT’Xnn<s> o (Vb(Xﬂmn(é)) Vb(X ))D Xn (s)
mn J ymn DI ymn

+ Vb(Xﬁm )(D X’?mn(5) DTX’m(S))

For the first term, by It6’s formula and the integration by parts formula,

tey1 )
/ (VB(X™ )= Vb(X™ )DIX™ ds

1 1 (s)

trt1
= / w<s><(v2b<X?">b< T o) + 5 VX)) DIXT ds+V26<Xm">DJXTZ)dW>
tg

where 7(s) = (9,(8)—fmn(s)) and for u € R?, the I*" columns of the d x d matrices (V2b(X[*)u)
and <V[Ab(Xt”)]) are given by

OVb(X]) OAb(X])
2 n - t n - t <] <
(v b(X! )u>.l =g, wand (V[Ab(Xt )]).l =g, 1si<d
Concerning the second term we use (G5.1]) to write
Nmn(8)
DX i ~ DI, _/n o VIR PR 0@ ) <rnmn o)) 05

. ¢
For k € {[7],...,n — 1}, remarking that ft:“ Vb(X::;:L(S))1{7]n(5)<7"§7]mn(5)}ejds = 0 and
using Fubini’s theorem, we get

Bt mn ] mn ] mn Bt i (5) mn mn ] mn

Hence,
tht1 T tet1
v ylnd) = / Y(s)VAB(X™YDIX™™ AW, + HtkUtkDJth / ~(s)GE™n s

ti tg

with Gom .= (v%(xs (X0 () + 5 VIAb(X] )]) DIX

n(s)

1 s fin ()
4 | A0 VH(X™  Ydu | VH(X™ YDIX™
7(8) f]mn(s) nmn (u) Nmn (s) Nmn (s)

Choosing ‘7t(r+]1 ) f/tsf’j ) equal to the sum of the second and third terms in the above expression
of VE;JR Vtgj’j) and applying (5.5), we conclude that for k € {[7F],...,n},
DU, = DUy + Divt) + Divl + DI with (5.6)
DIUY) = BT, DU,
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k—
T
pivY ':E Z Bt HY U, DIX]!

) ti41
DﬁUt(kz) = Z Bfg_ll/t v(s)GY™ds
l:(rn‘l l

s
3

. 1 .
P 3 B0 [ i
I=[22]+1 n

+ / tk( )y(s)v%(xgm)p,ﬂ;xm)dws.
Combining Assumption (R2), standard linear algebra arguments and Lemma [5.1] we easily
prove the following result.
Lemma 5.2. One has Vk € {1,...,n — 1},
TBo T[b] o

n

1Br, — Lal| < DBl <1+ == Ve {0, k), B < olbloo (e —1)

and ¥'s € [fp(r), T
, . 1 )
GAm] < ) (V7 )| + 5 IVIABCET™ -+ 2 )

Combining this result, (0.3 and Lemma 5.1l we easily get an upper bound for DgUt(f )

DI | < 1B DU | < et (5] elfln1=r) () — (b))
T

(5.7)

In the same way as in the previous section where we introduced U7 = maxo<p<n |Uy, |, we

also define for all r € [0,T], the process DZU} = maxXg<i<n \DgUt(f) + DZUfj’ + DZUt(f) +
Diu®). According to our assumption (R2) and by Lemmas 5.1 and 5.2, we have

ty
DJUF < DIUf, + DIUY + DiUG, + DIUf,, with

e i fblee(m—r) (M — 1T
DIUY, = L lto=r) Z Tt || H) Uy, ||
%

] T
DIl = / O )Gas
Mn (T

n—1 !
| T Bocelt k
ity = L S (it (s)V2b(XI™)DIX ™ dW|
- T Tin (1)
tg
+  max ’/ " )V%(an)D]Xm" dWs|. >
[F1+1<k<n Ja, ()
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By Jensen’s inequality we get
j 2 ' 2
|D£U(*1)| |D]U(0) D’U(2)| |D¥Ué)|
(1-q) q(1-q) qq
where ¢,G € (0,1) are two parameters to be optimized later. Then, by Holder and Jensen
inequalities, we deduce that for all r € [0, 7], we have

B fexp (D207 }) < B0 [oxp { -2 pi0

x B0~ [ex {L DIUY, + DIl 2}] E [ex {—p DIU; 2H
p q2(1—(j)2‘ (0) @ p q2q2‘ (5(?0‘)

[DIUE <

e First term. In this part, we focus on the contribution of the term DU (*1). Note that under
assumption (R2) we have, for all k € {[%],--- ,n — 1}

Utk” < (

.. n_l
pive, < TVl o il T elielT i)
n

8Vb

1
2 2
(OX] + (1—0)X;™) deUtﬁ) < Vd[boo|Up, |

Therefore,

k=121
T .
< V[i] o Ut =) / elbloo(T=1) g4
ﬁn('r)
< elflo(T=) —‘/E.[b]“ (el T=1) _ 1)y = el TN, (1)U (5.11)

[boo
Hence, it follows that for all r € [0,7T], we have

) 2[B]OO(T—7")(I)2
P pe 7)1
= {i ot} <2 o { = it

As assumption (R1) is satisfied under (R2), then Theorem Bl applies and

Vp € [0,

_ 2[15}00(T—r)q>2 C 0 _ 2
- p 2 € 1(NCezx(0) (m-1T
]E( q) |:eXp {W‘Dilj(*l)’ }:| < exp {p (1 — q) X 2 .

(5.12)

e Second term. By the second assertion of Lemma 5.2 we have

nmn

. ; T . 1 .
DIty < BT [ ) (Vi o )] + S IVIAMCE™ ] -+ B ) ar
7in (1)
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Moreover, thanks to Lemma [£.2], we get
JTT* bloo (T—1
DjUpy, < elbloo(T=7)

T 1 . . x )
g /ﬁn(r) ") (e[b]mt(\/a[b]‘x’[b]m +avan) (Ssliltj (Wl + |b[§-)]i)|> +avap + [b]i,) dt

=) [ [Bloct |b(o)|
< Ceme v(t)e sup |Ws| + ; + 1) dt, (5.13)
(1)

s<t [ ]oo

where = .oo"oo\/. + ayap). Wit , we deduce that
here O = (Valb]oo oo V B2 + avap). With (E3), we deduce th

T
DIV}, + DiUfy, < Crgell=T—" x/ﬁ(r)

Vi [b(20)| + [Dos [T g)elilos g [D)os(m — )T
f ) b]oos\/_ds< [b] oo /n(rﬂ() ds Cexymn >>dt'

viy(eltloet -
oy V3V (8)elPloosds

y(t)eltlt (sup Wl

s<t

Therefore, using Jensen’s inequality for the probability density p(t) =

[Mn(r), T], we obtain that
P iTTx |2
S

T ,OC'2 62[6}00(71—7“)(]‘ " ( ) b]oos\/—ds) 1 9

s<t

where § = b(zo) |+ [b]os fn V(s Jelbloosds + M) and by the scaling

1
T oy 7)o s ( e Crain
property for the Brownian motion W, we may replace % supg<; |[Ws| by supg<q [Ws.

In the same way as we did for the second term of Sectiond], we use that (sup,<; |Ws| + 0) ?
. 2 -
Zle (supsSl |W? + 5) —(d —1)62, to get

14 T T% iTTx |2
E|exp{ - |DiU%, + DU, H
[ p{q2(1—q)2| © el

p d—1 C2 62[6}00(T—r) . _ 2
o { BV Ul [ BT
(1 —q) [b]oc iin () Cexymn
pC2 ez[zﬂw(T—r)( T ) y(s)e[i’]ws\/gds)Q 2
XEd[exp{ 619 5 f”(_)2 X (sup|Wsl|—|—5> H
q*(1 —q) <
Applying the first assertion in Lemmal[A Jlwith |H| = 1 and usmg that since s \/_ se and
s+ eltl=s are non-decreasing, fi( ) (s )e[b w08 f5ds < Tn—1) f [b]ws\/_ds and f () HOOsds <
T(QTZ;LI) e[b]w;’]_ e[b]wr, we deduce that if
2 2,2 2 T
rexmq (1 —q)n* m / ] os
= h = P = oo
00 gy ) e 203y T*(m — 1)? and @o(r) = | 7"V sds,
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then
(1-9) P _piux x 12 € Ga(r, [b]oo) (m
E4 q |:eXp { q2(1 _ q—)2 ‘DQ«U(O) + DiU@)‘ }:| < exp {p q(l — q) X -
(5.14)
where
; 2
m—1 b(xo)| + [boo , i 0
Pa(r,x) = % <(3d +1) (Cm%(e[b}mT _ elbleo )+ x)

1d0gTn ®2(r) [o(o)| + Bloc it
LY <Cm TP

[e.9]

_ e[b}oof) + :E) +dln 20@@%(7")).

e Third term. Let us introduce the quantities

\/62[5]00(T—77n(?“)) 1 Z—: T[[}]ooe[b]oo(T—tkﬂ)\/(62[6}m(tk—ﬁn(r)) - 1)/2[6]00
T

M

n

Hoo(T r) (\/162 Joo (T—7) l / / —Q[b]oot r) ) _e[b (T—- T)CI)g( )

(5.15)

20bloo (T—in (1)) Thsoe™oe T tht1) (200 (th—n (1) 1) /2b]
P by S = i for [ +1 <
k < n — 1. Notice that ZZZ[%1 1Pk = 1 so that we have defined a probability measure.

Therefore, by (5.9]) we have

DiUf) = Z Pk

C'v/2[0] s
\/ez[b]oo(tk—ﬁn(r)) —1

e '
| Atsveeempixy aw.
in (T) e

T7L'|+1
C/2[b]oo
Dn . max / Xm”)DJXm” dWy
Ve2bloo(T=in(r)) — 1 [F1+1<k<n | /5,
and so
r T < Pk max / (t ;rm J mn AR
) k=[T2]+1 \/62[b (tg—nn(r)) — 1 (%—H-lglﬁk fin (1) nn (s)
=l

Now, applying Jensen’s inequality to the convex function R 3 z — exp{ 72 }, we deduce
that for all » € [0, 7], we have

emfmse] < S5

T7L'|+1
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2[b] oo (T—7) 2 i
x E [exp { pe 3(r)2[bloc max

t '
| awvneempixem a.
Tin (1) "

2
q262(62[61w(tk_ﬁn(r)) — 1) [ 1+1<I<k } :|

Now, using Assumption (R2), Lemma [5.1] than the periodicity of the function ~ with period
t1 =T/n, we get

tk . .
| [ pix, (i, )i
7

n(T) Nn (t) nn (1)
th ) d
<[y
n j:l

n(T)

2

mn t .
PR i Par < iz, [ y(apeimton Oy
j 7in ()

Oz

nn (t)

k-1
— d[i2T? @m-1)(m-1)T Z o 2bloo (t1—n (r))

n
=T1

ji2 p2(2m —1)(m —1) e2[bloo (te—iin(r)) _ 1

< d[b X -
Then, by the second assertion in Lemma [A.T]
2:-2 9 32

PEIRI TN
Vp e [0, —
pel e2lble (1) 93 (1)

b with PEI = e Dy 1)

_ . 2[b]0°(T_T)Q)2 C -1 T2
E% [exp {%‘DfnU&)‘zH < exp {pe 73(7“) 61 (m 2) , (5.16)
a-q aq mn

where Cgg) = 2 In(2)d[b]% 221

o m

e Conclusion. In order to have the same constraint on p for the three Laplace transforms,
we choose

VPED (VPET | VPETH) VPETD
g= B0) Bl B0 and g = Ba(r)
VPED VPETD | PED VPEID | JPEID VP VPEm | JrEm

Pi(r)  Pa(r) Pi(r) P3(r) Pa(r)  Ps3(r) Pa(r)

Then, by combining (5.10), (5.12), (5.I4) and (5.I6]), we deduce that if

PED PEID AEID)
2¥(r) ®3(r) ®5(r) 2

Xn
2[i]oo(T—1) <¢Pa3:n> VPETD | PED VPETD | VPETD \/Pm)z

D3(r)

0<p<

Di(r)  Pa(r) Di(r) P3(r) Do(r)  P3(r)
then as
B(r, [f]e) = <\/P<13:m VPETD | VPED VPETS | /PE) Wm)
e Py(r) Pao(r) Py(r) P3(r) Do(r)  P3(r)
< ®3(r)Cm) 27, [D]oc) @%(r)cm)(o)>

VPED VPED) — /PED VPEID
Q1(r)  P2(r) Q1(r)  Ps(r) Qo(r)  P3(r)

we get

. . . _ 2
E [exp {p|DIUT*}] < exp {pez[b}m(T"‘)@(r, [b]oo)i(mm;)T } ,
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O
6. PROOF OF THEOREM
For A € R, by independence,
_ A . L A
E |exp ()\[Q —Ef(XF )])] = HE [exp(AQg)] where (6.1)

=0

o] (e o 3 13-

and E :exp()\Qo)] < exp {%} ;

where we used the Gaussian concentration bound (Z3)) to get the last the inequality. For
¢e{l,...,L}, we set n € N* and define

T = f(X7"") = f(X7) = E[f(X7") = f(XT)].
For A € R, we want to obtain an estimation of E [exp(S\T)} of the form exp {CS\QM}

mn?2
— 2 . .
where C' is an explicit constant and (m 1)2T is the order of the variance of the centered
mn

random variable T according to Proposition 2.1l To do so, we assume that f € ‘fbl(Rd,R)

is Lipschitz continuous with constant [f]o, and such that V f is also Lipschitz with constant

[f]ip- By Clarck’s Ocone formula we have

T
FXT") = f(X7) = E[f (X7™) — f(XP)] = /0 E K| Fr] - dWy,

where, for j € {1,...,'d}, the j*-component of the d-dimensional vector K, is given by
K, ;= D} f(XJ™) — D] f(X}). For p € (0,1), we use Holder’s inequality to get

E[exp(m)} < BP [exp{%/oTE[Kr]fr]-dWr X /OT IE [K,|F,] \er}]

_2_p2

1=P lex L ' 2dr
<E [ p{2p(1_p)/0 \E[Kr\fmd}].

Now, by the Malliavin chain rule we have

Ky = D, X7"Vf(X7") — D X7V f(X7), (6.2)
where DTX? = (DiX%,j)lgi,de S Réxd,
According to Lemma [5.1] and under our assumption on the boundedness of V f, we easily
check that sup,¢(o 7 |K,|? < 4de?T Bl [f]2,. Therefore, the process

5\ t 5\2 t 9
exp q — EKT}}~dWT——/ E K, |F:]|7dr
pi5 [ B 5 | EUSIF]

0<t<T
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is a martingale, which together with the choice p = 1/2 which minimizes =] leads us to

E [exp(xr)} < E/2 [eXp {2&2 /0 ' IE [K,|F] |2drH :

Applying Jensen s inequality twice, and now denoting by p a measurable positive function
such that fo r)dr = 1, we obtain that

E [exp{25\2 /OT E [K,|F,] \%h»}] < /OTE [exp{?(i?\m\?}] p(r)dr.

and deduce that
- T IN2T 2
E [exp()\T)} < (/0 E exp{ o) ]Krlz}] p(r)dr) . (6.3)

We now want to estimate the moment generating function of |K,|?. Setting

Ur == XJ" — X},

lp)

remarking that | D, Ur|? < Tr [D,Ur(D,Ur) "] = Z?Zl |DiU7|? and, by Lemmal5.1] | D X7 <
Vdeltl=(t=7) " we obtain that
(K| < [|Dp X7 [V f(X7) = VA(XE)| + D X7 — Dr X7V f(XT)]
1/2
< V[ flipeP= =D Up| + [ Z DU : (6.4)

A careful look at the proof of this theorem shows that, in the decomposition (5.6]) of Dl Urp,
the sum D]U(l 3) D]U( ) DiU:(pz) +D¥U:(F3) goes to 0 as r — T whereas DiU:(FO) does not.
This indicates that it is not optimal to combine DQ:U}O) with DZU%D as in this proof. We also
notice that under the same constraint on p as in the theorem,

(1 i (T—r m —1)T?
E [exp {,0|D$,U:(p1 3)|2H < exp {Pez[b}w(T ”HMD%} . (6.5)

Since Ur does not depend on r, it should be better to combine D7 U:(FO)

([64]) by the estimation

with it by replacing

1/2 p 1/2
|, | < V[ flipe®= T Uz | + [f ZWU +[flee | Y IDIUNTPP
, J 1/2
- 1Tz
< loc(r—r) (M~ T J0-9)
S o | i

T[f]lip

where x =
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which takes (B.7) into account. One deduces that for x(r) € (0,1),

| i (r—p [((m—1)T%x 2 [f]2 4 as
2 < 2 2[b]eo(T—T) 00 jrr(1=3))2
K, < —d[fTpe < o +\UT\> A0 ;:1: DUy

K(r)
Combining (6.3]), Holder’s inequality and the convexity of the exponential function which

ensures that the exponential of the mean of d terms is not greater than the mean of the
exponentials, we deduce that

. T 2dN2T[f]2 2bloe(T=1) /(0 1\2, 2
e < [ o (SRR ()

—k(r)

1
d
1 2dN\Tf]5, (1-3) 2
- exp{ ———— =2 |DIU, r)dr. (6.6
(d§j [ p{mmu—m<»' ; p(r)dr. (66)
We now choose k(r) = — lip ﬁ.(r) __ to obtain the same constraint on \ for the two
[floo /P +[f11ip v/ A(7)

[ Joo (T'—1)

expectations at time r and then p(r) oc o ([ .]oo\/——l-[ Jip V/A(7 ))2 to ensure
that this common constraint does not depend on r. Notice that since the functions ®; are
continuous on [0,T], positive on [0,7") and such that ®;(r) = O(T —r), ®o(r) = O(T — )
and ®3(r) = O(v/T —r) so that p(r) = O(T —r)~') as r — T—, the function p is bounded
and therefore integrable on [0,7]. We conclude that if

2
32 < reD™

27 [ U= ([l ogg + ], /At

)

- [exp(m)} é/OTeXp{2ch2T([f]up\/ﬁ(r)Ca;gzzg(2[15]00[f]oo/T[ ']np)ir[f] A(r)®(r,0)/ /PET)

[f]oom+ iV P(r)
T 20b]oo(T—1) : 2
. /0 p(t) < wov/PED F [l VA1) ) }
. {mmgoom(m —1)T2 } | 67

mn2

where

T 2[b)ec (T—1) A, 2
Can :dT/O VPED + VR )

llp V O(B:ZD b 00 ]OO/T[ ]hp) + [f]ooﬁ( ) (Tv 0)/\/@

X sup ~

rE[OT) [f]oo\/—+ 1V P(T)

is finite since, as r — T—, ¢o(r,0) = O((T —r)?) and ®(r,0) = O((T —r)). We complete the
proof using (G.1]).
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APPENDIX A. PROOFS OF THE TECHNICAL LEMMAS

1/2
Lemma A.1. Let (Hy);<r be an adapted R%-valued process and |H| := ‘(fOT |Ht|2dt) ‘

[e o]

Then V6 > 0, Yy € [o, ﬁ)

¢ 2062 80| H| 1
E (et d+supicior | fo Hs-dWs))?)
(¢ ) < e T 4ulHP § \Vor(l— 4ufHP) i qaHE )’

where the right-hand side is smaller than exp {4,u (52 + %5|H| + |H|?In 2)} when moreover
we |0, gim)|.

1/2
For (M (t))i<7 an adapted R¥%-valued process and |M| := ‘(fOT Tr(M(t)M*(t))dt)

)
o0

1 , , )
Yu e |0, —— 7E( msupsero,ry | Jy MsdWs| ) <
ve 0 qam) B (e

T VT —Ap M

1 su b ModW, |2 4| M2 1n2
and Yy € [07 W} . E (e” Piefo,r] | Jo | ) < M|
Remark A.1. Let h(t) = |||Ht|||lco for t € [0,T]. Then

1 t 2 1
Y € [0, —] , sup E erlfo HsdW:)*) <
2||hl3 < )

t€[0,T] N Ve ZMHhH%7
where ||b|3 = [T h2(t)dt > |H|?.

When ||h||3 < +oo, this is a consequence of the convexity of x + e and Jensen’s
inequality. Indeed introducing (on a possibly enlarged probability space) (Bt)icor) @ one-
dimensional Brownian motion independent from FWH = o((H;, Wy),t € [0,T]), we obtain
that fort € 0,71, fg Hg.dWs+ fg Vh2(s) — |Hs|?dfs is a centered Gaussian random variable

with variance equal to fg h?(s)ds such that
t t t
E </ H,.dW, +/ NEOE |Hs|2dﬁs‘}‘W7H> :/ H.dW,.
0 0 0

Proof. The argument is based on the Dambins-Dubins-Schwarz (see e.g. [9]) theorem which
ensures the existence of a one-dimensional standard Brownian motion (/;):>0 such that V¢ > 0,

t
Jo Hs-dW = 5%5 L 2ds” Hence
5 CH AW u<5+sup 1Bt 1512 \)2 (6+su 18s1)?
E (e“( +SUPye(o0, 17 | Jo Hs.dWs]) ) =E|e te[0,T] 1P [ | Hs |2 ds <E (e” Psefo,|m2) 1P )
<E (e“(5+supse[o,\m2] Bo)? gn(0=int oo 12 53)2)
< E1/2 <e2“(5+SUPse[O,\H\21 55)2) E1/2 <62H(5—infse[o,uﬂ2] ﬁs)Q)

_E (ezu<6+wuﬂ2|>2>
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where we have used that supyejo g2 Bs and —infye(om72) 85 have the same law as |8 2| for

the last equality. Now, using the change of variables y = = — 4ud|H|?/(1 — 4u|H|) for the
second equality, we obtain that

o] 2
2(3+HBy 22 _ / 2 T dx
E(e > 2 ; exp ¢ 24(0 + x) 28T | THVE
{ 2u6° }/w { (1—4u|H|2)y2} dy
:2€Xp o2 exXp 4§ — 5
U —4p[H? | J 51512/ (1—4p H?) 2|H| |H|\/27
20° }( 86| H | /°° { (1—4M|H|2)312} dy >
<e + e _
. Xp{1—4ulH|2 VR —aplHP) oo 6P [ [H[Vzr
_ex{ 21102 } 81| H| N 1
PAT=apHP [\ Var(1 — aplHP) * T 4uHP )

The concavity of the logarithm ensures that Vz € [0, %], In(1 —z) > —2zIn2 so that

e~z m(1-2) < e*m2 Therefore when u € [O, ﬁ],

]H

1—

21162 80| H | 1 2 (8ud|H| 1
exp 5 + < et +1) ———m—
1—4plHP? [\ Var(1 — 4p|H|?) /1 - 4p[HP? VT V1—A4plHP?
< no? S aplHP 2

Let now for ¢ € {1,...,d}, M;(t) denote the i-th line of the matrix M(¢) and |M;| :=
T —d 1/2
H (fo Zj:l Mizj(t)dt> H . For u < 4|—1\14\27 we have

o0

E (eMSUPte[O,T] |fot M(S)dWs\Q) =E (6” SUPte[0,T] Zle(fot Mi(s)dWs)z) <E (euZ?:1 SUPte[0,T] (f(f Mi(s)dWs)2>

d 2
<FE Z |Mi|2e’rj‘v—f“7 Supte[o,T](fot M;(s)dWs)? < 1
-\ 1M = /1 —4u|MP?
where we used Jensen’s inequality for the third inequality and the first statement of the
Lemma for the fourth. O
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