ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity?

Résumé

Generating molecules with desired chemical properties is important for drug discovery. The use of generative neural networks is promising for this task. However, from visual inspection, it often appears that generated samples lack diversity. In this paper, we quantify this chemical diversity, and we raise the following challenge: can a nontrivial AI model reproduce natural chemical diversity for desired molecules? To illustrate this question, we consider two generative models: a Reinforcement Learning model and the recently introduced ORGAN. Both fail at this challenge. We hope this challenge will stimulate research in this direction.
Fichier principal
Vignette du fichier
diversitypaper_test.pdf (109.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01577696 , version 1 (27-08-2017)
hal-01577696 , version 2 (29-08-2017)
hal-01577696 , version 3 (31-08-2017)

Identifiants

Citer

Mostapha Benhenda. ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity?. 2017. ⟨hal-01577696v2⟩
190 Consultations
741 Téléchargements

Altmetric

Partager

More