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ChemGAN challenge for drug discovery: can AI reproduce natural chemical
diversity?

Mostapha Benhenda∗

Abstract

Generating molecules with desired chemical properties is im-
portant for drug discovery. The use of generative neural net-
works is promising for this task. However, from visual in-
spection, it often appears that generated samples lack diver-
sity. In this paper, we quantify this chemical diversity, and we
raise the following challenge: can a nontrivial AI model re-
produce natural chemical diversity for desired molecules? To
illustrate this question, we consider two generative models:
a Reinforcement Learning model and the recently introduced
ORGAN. Both fail at this challenge. We hope this challenge
will stimulate research in this direction.

Introduction

Drug discovery is like finding a needle in a haysack. The
chemical space of potential drugs contains more than 1060

molecules. Moreover, testing a drug in a medical setting
is time-consuming and expensive. Getting a drug to mar-
ket can take up to 10 years and cost $2.6 billion (DiMasi,
Grabowski, and Hansen 2016). In this context, computer-
based methods are increasingly employed to accelerate drug
discovery and reduce development costs.

In particular, there is a growing interest in AI-based gen-
erative models. Their goal is to generate new lead com-
pounds in silico, such that their medical and chemical prop-
erties are predicted in advance. Examples of this approach
include Variational Auto-Encoders (Gómez-Bombarelli et
al. 2016), Adversarial Auto-Encoders (Kadurin et al. 2017a;
2017b), Recurrent Neural Networks and Reinforcement
Learning (Jaques et al. 2017; Segler et al. 2017; Olive-
crona et al. 2017), eventually in combination with Sequential
Generative Adversarial Networks (Guimaraes et al. 2017;
Benjamin et al. 2017).

However, research in this field often remains at the ex-
ploratory stage: generated samples are sometimes evaluated
only visually, or with respect to metrics that are not the most
relevant for the actual drug discovery process.

Rigorous evaluation would be particularly welcome re-
garding the internal chemical diversity of the gener-
ated samples. Generating a chemically diverse stream of
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molecules is important, because drug candidates can fail in
many unexpected ways, later in the drug discovery pipeline.

Based on visual inspection, (Jaques et al. 2017, p. 8)
reports that their Reinforcement Learning (RL) generative
model tends to produce simplistic molecules. On the other
hand, (Guimaraes et al. 2017, p.6, p.8) argues that their
Objective-Reinforced Generative Adversarial Network (OR-
GAN) generates less repetitive and less simplistic samples
than RL. However, their argument is also based on visual in-
spection and therefore, it remains subjective: our own visual
inspection of the ORGAN-generated samples (available on
the ORGAN Github:
https://github.com/gablg1/ORGAN/tree

/master/results/mol_results) rather suggests
that ORGAN produces molecules as repetitive and as sim-
plistic as RL.

In this paper, we introduce a metric that quantifies the in-
ternal chemical diversity of the model output. We also sub-
mit a challenge:

Challenge: Is it possible to build a non-trivial generative
model, with (part of) its output satisfying a non-trivial chem-
ical property, such that the internal chemical diversity of this
output is at least equal to the diversity found in nature for the
same kind of molecules?

To illustrate this challenge, we compare RL and ORGAN
generative models, with respect to the following chemical
properties:

1. Being active against the dopamine receptor D2. The
dopamine D2 receptor is the main receptor for all antipsy-
chotic drugs (schizophrenia, bipolar disorder...).

2. Druglikeness as defined in (Guimaraes et al. 2017). We
are interested in this property because we can use ex-
perimental results in (Guimaraes et al. 2017) to facili-
tate discussion. However, the notion of druglikeness in
(Guimaraes et al. 2017) is different from the notion of
Quantitative Estimation of Druglikeness (QED) (Bicker-
ton et al. 2012), which is an index measuring different
physico-chemical properties facilitating oral drug action.

Here, druglikeness is the arithmetic mean of the solubil-
ity (normalized logP), novelty (which equals 1 if the out-
put is outside of the training set, 0.3 if the output is a



valid SMILES in the training set, and 0 if the output is
not a valid SMILES), synthesizability (normalized syn-
thetic accessibility score (Ertl and Schuffenhauer 2009))
and conciseness (a measure of the difference of the length
between the generated SMILES and its canonical repre-
sentation).

We mention that recently, (Benjamin et al. 2017) consid-
ers an ORGAN with the QED definition of druglikeness.
However, we also performed our own experiments with
the QED property, and they did not affect our conclusions.

The metric of internal chemical diversity

Let a and b be two molecules, and ma and mb be their Mor-
gan fingerprints (Rogers and Hahn 2010). Their number of
common fingerprints is |ma ∩mb| and their total number of
fingerprints is |ma ∪mb|.

The Tanimoto-similarity Ts between a and b is defined
by:

Ts(a, b) =
|ma ∩mb|

|ma ∪mb|

Their Tanimoto-distance is:

Td(a, b) = 1− Ts(a, b)

We use rdkit implementation (Landrum 2017) of this dis-
tance.

Internal diversity

We define the internal diversity I of a set of molecules A
of size |A| to be the average of the Tanimoto-distance Td

of molecules of A with respect to each other. Formally, we
have:

I(A) =
1

|A|2

∑

(x,y)∈A×A

Td(x, y) (1)

For a sufficiently large set A, any sufficiently large subset
A′ ⊂ A, sampled with uniform probability, has the same
internal diversity as A. This property follows from the law
of large numbers. We can thus define the internal diversity of
a generative model, by computing the internal diversity of a
sufficiently large generated sample. This allows to formalize
our challenge:

Challenge (restatement): Let N be the molecules ob-
served in nature. Is there a non-trivial generative model G
and a non-trivial chemical property P such that:

I(G ∩ P ) ≥ I(N ∩ P ) ? (2)

Internal chemical diversity is always smaller than 1 (be-
cause the Tanimoto-distance is smaller than 1), and it is usu-
ally much smaller. That’s why we prefer this definition to
the Tanimoto-variance of a set of molecules A, which is:

V (A) =
1

|A|2

∑

(x,y)∈A×A

Td(x, y)
2 (3)

External diversity

A related notion is external diversity. Let A1 and A2 two
sets of molecules. The relative diversity E of A1, A2 is de-
fined by:

E(A1, A2) =
1

|A1| × |A2|

∑

(x,y)∈A1×A2

Td(x, y) (4)

The external diversity of a generative model is defined as
the relative diversity between the training set and a suffi-
ciently large generated sample.

External diversity essentially corresponds to the notion of
diversity defined in (Guimaraes et al. 2017, p.5).1

Generative Models

Reinforcement Learning

As in the case of RL considered in (Guimaraes et al. 2017),
the generator Gθ is a LSTM Recurrent Neural Network
(Hochreiter and Schmidhuber 1997) parameterized by θ. Gθ

generates SMILES (Simplified Molecular-Input Line-Entry
System) sequences of length T (eventually padded with ” ”
characters), denoted by:

Y1:T = (y1, ..., yT )

Let R(Y1:T ) be the reward function.

• For the case of dopamine D2 activity, we take:

R(Y1:T ) = Pactive(Y1:T )

where Pactive(Y1:T ) is the probability for Y1:T to be D2-
active. This probability is given by the predictive model
made in (Olivecrona et al. 2017)2, and available online at

https://github.com/MarcusOlivecrona/

REINVENT/releases

• For the case of druglikeness, we take:

R(Y1:T ) = L(Y1:T )

where L(Y1:T ) is the druglikeness of Y1:T .

The generator Gθ is viewed as a Reinforcement Learn-
ing agent: its state st is the currently produced sequence of
characters Y1:t, and its action a is the next character yt+1,
which is selected in the alphabet Y . The agent policy is:
Gθ(yt+1|Y1:t). It corresponds to the probability to choose
yt+1 given previous characters Y1:t.

Let Q(s, a) be the action-value function. It is the expected
reward at state s for taking action a and for following the
policy Gθ , in order to complete the rest of the sequence. We
maximize its expected long-term reward:

1The only difference is that in the definition of (Guimaraes et
al. 2017, p.5), only a random subset of molecules of the training set
is considered. For faster computations, we also consider a random
subset of the training set (of 3000 samples).

2This reward function is slightly different than the function in
(Olivecrona et al. 2017), which is: −1 + 2× Pactive.



J(θ) = E[R(Y1:T )|s0, θ] =
∑

y1∈Y

Gθ(y1|s0)Q(s0, y1)

For any full sequence Y1:T , we have:

Q(s = Y1:T−1, a = yT ) = R(Y1:T )

For t < T , in order to calculate the expected reward Q
for Y1:t, we perform a N -time Monte Carlo search with the
rollout policy Gθ , represented as:

MC(Gθ(Y1:t, N)) = {Y 1
1:T , ..., Y

N
1:T }

where Y n
1:t = Y1:t and Y n

t+1:T is randomly sampled via
the policy Gθ .

For t < T , Q is given by:

Q(s = Y1:t−1, a = yt) =
1

N

N∑

n=1

R(Y n
1:T )

Objective-Reinforced Generative Adversarial
Network (ORGAN)

To obtain an ORGAN, (Guimaraes et al. 2017) brings a
Character-Aware Neural Language Model (Kim et al. 2016)
Dφ parameterized by φ. Basically, Dφ is a Convolutional
Neural Network (CNN) whose output is given to a LSTM.
Dφ is fed with both training data and data generated by Gθ .
It plays the role of a discriminator, to distinguish between
the two: for a SMILES Y1:T , the output Dφ(Y1:T ) is the
probability that Y1:T belongs to the training data.

For the case of dopamine D2-activity, the reward function
becomes:

R(Y1:T ) = λDφ(Y1:T ) + (1− λ)Pactive(Y1:T )

and for the case of druglikeness:

R(Y1:T ) = λDφ(Y1:T ) + (1− λ)L(Y1:T )

where λ ∈ [0, 1] is a hyper-parameter. For λ = 0, we
get back the RL case, and for λ = 1, we obtain a Sequential
Generative Adversarial Network (SeqGAN) (Yu et al. 2017).

The networks Gθ and Dφ are trained adversarially
(Schmidhuber 1992; Goodfellow et al. 2014), such that the
loss function for Dφ to minimize is given by:

min
φ

EY∼train[logDφ(Y )]+EY∼gen[log(1−Dφ(Y ))] (5)

Experiments

As in (Guimaraes et al. 2017), we pre-train the models 240
epochs with Maximum Likelihood Estimation (MLE), on a
random subset of 15k molecules from the ZINC database
of 35 million commercially-available compounds for virtual
screening, used in drug discovery (Sterling and Irwin 2015).
Then we further train the models with RL and ORGAN re-
spectively, for 30 and 60 epochs more.

Dopamine D2 activity

In table 1, we show the proportion of valid SMILES output
(Prop. Valid SMILES), the average probability of activity
on dopamine D2 (Avg. Pa), the average internal diversity
(Avg. int. div.), the proportion of molecules with probability
of activity greater than 0.8 (Prop. Pa > 0.8), and most im-
portantly, the average internal diversity among samples with
probability of activity greater than 0.8. That’s the most im-
portant column, because it is related with our open problem.

The averages are computed over the set of valid SMILES,
whereas the proportions are computed over all the generated
SMILES (both valid and invalid).

We compute those quantities for a D2-active set of 8324
molecules from ExCAPE-DB (Sun et al. 2017) (which is es-
sentially the training set of the SVM classifier in (Olivecrona
et al. 2017)) (DRD2), for the output of the Reinforcement
Learning model after 30 epochs (RL 30) and 60 epochs (RL
60), and for the output of ORGAN with λ = 0.04 after 30
epochs and 60 epochs (ORGAN-0.04 30, ORGAN-0.04 60)
and for λ = 0.5 after 60 epochs (ORGAN-0.5 60). All those
outputs have 32k samples.

[TABLE 1 HERE]

The most interesting case is RL after 30 epochs. In this
case, we can see that increasing the probability of D2 activ-
ity is contradictory with keeping diversity. After 30 epochs,
internal diversity is still pretty good overall, even higher than
the DRD2 diversity baseline.

However, when we only keep the molecules of interest,
with Pa > 0.8, internal diversity dramatically drops to van-
ishingly small levels.

For ORGAN-0.04, results are mostly analogous to RL.
We note that at 30 epochs, diversity for Pa > 0.8 is 2 orders
of magnitude better than RL 30. However, it still remains
one order of magnitude lower than the DRD2 baseline, and
at 60 epochs, diversity has dropped to levels similar with RL.

For ORGAN-0.5, learning the D2 property still did not
start after 60 epochs. The situation is analogous to the Se-
qGAN case (λ = 1) described in (Guimaraes et al. 2017):
high diversity, but no learning of the objective. In partic-
ular, that’s why the internal diversity for Pa > 0.8 is in-
detectable: there are only 6 samples satisfying the desired
property, among 32k.

The intermediate cases between λ = 0.04 and λ = 0.5
are analogous to either of them. It is hard to situate the tip-
ping point, between the cases where training is just slow, and
where training will never take off.

Here are 10 samples for ORGAN with λ = 0.04 after 30
epochs, selected such that Pa > 0.8 (most diverse case):

CCOCCNC[C@H]1CCCN1CCc1ccsc1
CCCOC[C@H]1Cc2ccccc21
CC[C@H]1CCNCOc2ccccc21
CC[C@H]1CCN(CCc2ccccc2)c1
CCCO[C@@H]1CCN(C)Cc2ccccc21
CCC[C@@H]1CCC[NH+]1CC[C@H]1CCCn1
CC[C@@H]1CCN(CCc2ccccc2)c1
CC[C@H]1CCN(Cc2ccccc2)c1
CCOC1CCN(CCCNCCCc2ccccc2)c1



Prop. Valid
SMILES

Avg. Pa Avg. int. div. Prop. Pa > 0.8
Avg. int. div.
for Pa > 0.8

DRD2 0.996636 0.911519 0.089478 0.876367 0.081972
RL 30 0.379844 0.160777 0.112864 0.018906 8.65864e− 05
RL 60 0.536 0.389979 0.014994 0.078438 0.000775

ORGAN-0.04 30 0.425375 0.097810 0.242544 0.013531 0.005826
ORGAN-0.04 60 0.604406 0.342687 0.028563 0.100969 0.000170
ORGAN-0.5 60 0.264687 0.006502 0.324884 0.000187 0.0

Table 1: Experimental results for probability of D2 activity Pa

CCCN1CCO[C@H]1C[C@@H]1CCOc2ccccc21

Druglikeness

In table 2, we show the proportion of valid SMILES out-
put (prop. Valid SMILES), average druglikeness (Avg. L),
the average internal diversity (Avg. int. div.), the propor-
tion of molecules with druglikeness greater than 0.8 (Prop.
L > 0.8), and most importantly, the average internal di-
versity among samples with druglikeness greater than 0.8.
Again, that’s the most important column, because it is re-
lated with our challenge.

Again, the total averages are computed over the set of
valid SMILES, whereas the proportions are computed over
all the generated SMILES (both valid and invalid).

We compute those quantities for the training set ZINC
of 15k molecules (ZINC), which serves as a baseline, for
the output of the Reinforcement Learning model after 200
epochs (RL 200) and for the output of ORGAN with λ = 0.8
after 200 epochs (ORGAN 200). Those outputs have 6400
samples.

[TABLE 2 HERE]

Results show that ORGAN indeed improves over RL,
since it is able to raise internal diversity to detectable levels.
However, ORGAN diversity still remains 2 orders of mag-
nitudes lower than ZINC diversity when L > 0.8. ORGAN
diversity also remains 3 orders of magnitude lower than the
total diversity of ZINC, which corresponds to the level of
internal diversity to which most eyes are used to. We con-
clude that both RL and ORGAN for λ = 0.8 fail to generate
diverse molecules for this property.

Here are 10 SMILES samples from ORGAN for λ = 0.8
and 200 epochs:

Cc1ccccc1CCSc1ccccc1C

COCCc1ccccc1CCCCCCSC

CCCCCCn1cccc1CCCSC

COCc1ccccc1CCCc1ccccc1CC

CCCC(=O)CCCc1ccccc1CCCc1ccccc1C

COCCNC(=O)CCc1ccccc1

CCOC(=O)CCCCc1ccccc1CCN(C)CCCCc1ccccc1C

COCCCC(=O)CC(C)CCCCc1ccccc1C

CCCC(=O)CSCCC(=O)CCCCC(=O)OC

CCC(=O)COCCCCCCC(=O)CCCSC

Conclusion and future work

We conclude that both RL and ORGAN fail to match natural
chemical diversity for desired molecules, although ORGAN
is slightly better than RL. For future work, ORGAN training
can be improved by considering 2 distinct problems:

• The perfect discriminator problem in adversarial training

• The imbalance between different objectives in Reinforce-
ment Learning

The perfect discriminator problem

In ORGAN training, the discriminator Dφ quickly becomes
perfect: it perfectly distinguishes between training data and
generated data. In general, this situation is not very good
for adversarial learning (Arjovsky and Bottou 2017). Here,
the discriminator still teaches something to the generator. On
average, according to the discriminator, the probability for a
generated sample to belong to the training set still remains
far from 0, although always smaller than 0.5. This probabil-
ity is transmitted to the generator through the reward func-
tion.

However, not being able to ’fool’ the discriminator, even
in the SeqGAN case of λ = 1 (without any other objective),
shows generator weakness: it shows inability to reproduce a
plain druglike dataset like ZINC. Training a SeqGAN prop-
erly should be a first step towards improving ORGAN.

To achieve this, it might be possible to take a larger gen-
erator, to replace the discriminator loss in equation (5) with
another function (like CramerGAN (Bellemare et al. 2017)),
and to use one-sided label smoothing (Salimans et al. 2016,
p.4).

The discriminator might also overfit training data. Tak-
ing a larger training set could help, we took 15k samples
here (less than 1MB), and this is small compared with train-
ing sets in Natural Language Processing. On the other hand,
datasets in drug discovery rarely exceed 10k molecules, and
therefore, it could also be interesting to look in the direc-
tion of low-data predictive neural networks (Altae-Tran et
al. 2017).

Once adversarial training is stabilized, it might be inter-
esting to replace all classifiers in the reward function with
discriminators adversarially trained on different datasets.
Various desired properties might be instilled into generated
molecules with multiple discriminators. This might better
transmit the chemical diversity present in the various train-
ing sets.



Prop. Valid
SMILES

Avg. L Avg. int. div. Prop. L > 0.8
Avg. int. div.
for L > 0.8

ZINC 1 0.661094 0.331222 0.020133 0.025986
RL 200 0.975625 0.917358 0 0.974844 0

ORGAN-0.8 200 0.943906 0.906885 0.000151 0.940625 0.000150

Table 2: Experimental results for Druglikeness L

Imbalance in multi-objective RL

The main issue is the imbalance between the various objec-
tives in the reward function, a problem occurring also in RL.
Multi-objective reinforcement learning is a broad topic (for
a survey, see (Roijers et al. 2013)).

A problem here is that with a weighted sum, the agent al-
ways focuses on the easiest objective, and ignores harder
ones. Moreover, the relative difficulty between objectives
evolves over time. For example, the average probability of
D2 activity initially grows exponentially, and so this growth
is small when this probability is near 0.

Using time-varying adaptive weights might help. More-
over, those weights might not necessarily be linear: For ex-

ample, the reward function can be of the form (xλ+ yλ)1/λ,
which converges towards min(x, y) as λ → −∞. Using an
objective function of the form min(x, y) focuses the gener-
ator on the hard objective (but in our experiments, due to the
perfect discriminator problem, it did not work).

Morever, in the reward function, a penalty can be in-
troduced for newly generated molecules that are too simi-
lar with the generated molecules already having the desired
properties.

In any case, the (varying) relative weights between dif-
ferent objectives must be determined automatically, and not
through guesswork. In a drug discovery setting, a molecule
must simultaneously satisfy a large number of objectives.
For example, for an antipsychotic drug, it is not enough to
be active against D2. The molecule must also pass toxicity
and druglikeness tests. Moreover, to avoid side-effects, the
molecule must not be active with D3, D4, serotonin, or his-
tamine. That’s a lot of objectives to include in the reward
function.

Finally, there is also further work to improve the defini-
tion of internal diversity, in order to exclude trivial solutions
(for example, a generative model reproducing the training
set can also have high internal diversity). This will facilitate
the attribution of financial prizes.
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