The semantic discrimination rate metric for privacy measurements which questions the benefit of T-closeness over L-diversity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

The semantic discrimination rate metric for privacy measurements which questions the benefit of T-closeness over L-diversity

Résumé

After a brief description of k-anonymity, l-diversity and t-closeness techniques, the paper presents the Discrimination Rate (DR) as a new metric based on information theory for measuring the privacy level of any anonymization technique. As far as we know, the DR is the first approach supporting fine grained privacy measurement down to attribute's values. Increased with the semantic dimension, the resulting semantic DR (SeDR) enables to: (1) tackle anonymity measurements from the attacker's perspective, (2) prove that t-closeness can give lower privacy protection than l-diversity
Fichier principal
Vignette du fichier
2017-SECRYPT-DR-Tcloseness.pdf (150.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01576996 , version 1 (24-08-2017)

Identifiants

Citer

Louis-Philippe Sondeck, Maryline Laurent, Vincent Frey. The semantic discrimination rate metric for privacy measurements which questions the benefit of T-closeness over L-diversity. SECRYPT 2017 : 14th International Conference on Security and Cryptography, Jul 2017, Madrid, Spain. pp.285 - 294, ⟨10.5220/0006418002850294⟩. ⟨hal-01576996⟩
287 Consultations
533 Téléchargements

Altmetric

Partager

More