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Abstract: After a brief description of k-anonymity, l-diversity and t-closeness techniques, the paper presents the Dis-
crimination Rate (DR) as a new metric based on information theory for measuring the privacy level of any
anonymization technique. As far as we know, the DR is the first approach supporting fine grained privacy
measurement down to attribute’s values. Increased with the semantic dimension, the resulting semantic DR
(SeDR) enables to: (1) tackle anonymity measurements from the attacker’s perspective, (2) prove that t-
closeness can give lower privacy protection than l-diversity.

1 INTRODUCTION

An increasing number of services are relying on
users’ data sharing. City services, weather, map-
ping... are services based on Open Data operated by
many public or private platforms. Several efforts are
made by publishers for anonymizing a dataset prior
to publishing, based on anonymization techniques
(e.g. Differential Privacy, k-anonymity, l-diversity, t-
closeness).

So far, there have been no convincing metrics de-
fined for accurately quantifying the anonymity level
of a given dataset. The differential privacy met-
rics (Dwork et al., 2006) rely on an ”ε” parameter
to capture the anonymity degree. However, it re-
mains specific to data being anonymized in a differ-
ential privacy manner; it is difficult to apply to other
types of anonymization (Lee and Clifton, 2011) (Hsu
et al., 2014); it suffers from the lack of accuracy
due to the noise being roughly added for anonymiza-
tion thus, making the evaluation of the risk of re-
identification difficult (Lee and Clifton, 2011). The
theoretic Distortion Rate based metrics (Sankar et al.,
2013) (Rebollo-Monedero et al., 2010), including
also Mutual Information metric (Salamatian et al.,
2013) (Rebollo-Monedero et al., 2010) (Makhdoumi
and Fawaz, 2013), provides more generic measure-
ments, but does not take into account the semantic di-
mension and measurement of combined key attributes,

while these aspects are both shown to be critical in
privacy measurement (refer respectively to Sections
5.1, 6 and 4).

Furthermore, only few works provide measure-
ments according to some threat models (identity and
attribute attacks), even if it has been clearly identified
that the anonymity problem comes from the correla-
tion between key attributes (attributes that are trans-
formed to protect the subject’s identity; e.g. 35510
transformed into 35***) and sensitive attributes (at-
tributes which sensitive value is of interest to be re-
vealed; e.g. health, salary...).

Contributions
This paper proposes the Semantic Discrimination
Rate (SeDR), an attribute-centric metric that enables
to quantify anonymity by measuring the identifica-
tion capability of attributes and that takes into account
semantic considerations. The SeDR is based on the
DR metric (Sondeck et al., 2017) which objective is
to quantify the identification capability by measuring
how much attributes can refine a given anonymity set.
The DR gives a score scaling from 0 to 1 where an
identifier with a DR equal to 1 reduces the anonymity
set to a single user. The SeDR adds the semantic di-
mension to the DR and measures the identification ca-
pability according to subsets of subjects, instead of
single subjects within an anonymity set, thus, leading
to the definition of some semantic domains (cf. Sec-



Table 1: Generalization Table.

ZIP Code ZIP Code* Age Age* Age**
1 35567 355** 22 2* ≤ 40
2 35502 355** 22 2* ≤ 40
3 35560 355** 22 2* ≤ 40
4 35817 3581* 45 ≥ 40 ≥ 40
5 35810 3581* 63 ≥ 40 ≥ 40
6 35812 3581* 40 ≥ 40 ≥ 40
7 35502 355** 35 3* ≤ 40
8 35568 355** 35 3* ≤ 40
9 35505 355** 32 3* ≤ 40

tion 5.2).
The SeDR metric enables to:

• Tackle anonymity measurements from the at-
tacker’s perspective by computing how much in-
formation is gained after applying a given attack.
Any existing attacks (identity attack and attribute
attacks) can be evaluated.

• Prove that t-closeness as a metric, is not as
protective as claimed by the authors and that,
depending on the semantic considerations, t-
closeness can be worse than l-diversity.

The rest of the paper is organized as follows: Sec-
tion 2 gives some background on k-anonymity-like
privacy techniques and their related attacks, Section
3 presents our critical analysis on t-closeness tech-
nique, and points out its irrelevance to quantify pri-
vacy. After introducing our Discrimination Rate con-
cepts in Section 4, Section 5 describes the semantic
empowered Discrimination Rate together with our se-
mantic domain definitions. Then Section 6 presents
our measurements and comparison of l-diversity vs t-
closeness. Finally Section 7 gives our conclusions.

2 BACKGROUND ON
ANONYMIZATION
TECHNIQUES

Anonymization techniques aim to protect user’s con-
fidential attributes from released datasets while ensur-
ing usability of data. The k-anonymity model, in-
troduced by Samarati (Samarati, 2001) is one of the
most notable models to achieve data anonymization.
From the k-anonymity point of view, datasets contain
three types of data: identifiers (e.g. social security
numbers...), key-attributes/quasi-identifiers (e.g. ZIP
Code, Age) and confidential/sensitive attributes (e.g.
Salary, Diseases, ...). Due to its limitations, many
improvements have been proposed. After a brief de-
scription of the k-anonymity goals and limitations, we

present two of its most important improvements: l-
diversity and t-closeness.

2.1 K-anonymity to Mitigate Identity
Disclosure

The goal of k-anonymity is to protect sensitive at-
tributes by reducing the link between those sensitive
attributes and subjects to whom they belong; mitigat-
ing hence the identity disclosure attack. For that
purpose, k-anonymity makes use of different oper-
ations among which generalization and suppression
(cf. Table 1) that are applied on key-attributes and
identifiers to reduce their capacity to identify a sub-
ject. Generalization consists in replacing every key
attribute value by more generic values (e.g. Age 22
replaced with Age 2*) and suppression is applied
on identifiers (attributes that can not be generalized
and that strongly identify subjects). For k-anonymity,
these operations are applied in such a way that ev-
ery generalized attribute corresponds to at least k sub-
jects. The maximal set of subjects is called the equiv-
alence class.

However, if k-anonymity mitigates identity disclo-
sure, it fails mitigating attributes disclosure attacks,
especially: homogeneity and backgroung knowledge
attacks (Machanavajjhala et al., 2007).

Table 2: 3-anonymity Table (Disease).

Age* Disease
1 2* lung cancer
2 2* lung cancer
3 2* lung cancer
4 ≥ 40 stomach cancer
5 ≥ 40 diabetes
6 ≥ 40 flu
7 3* aids
8 3* aids
9 3* diabetes

2.2 L-diversity to Mitigate Homogeneity
and Background Knowledge
Attacks

The l-diversity technique (Machanavajjhala et al.,
2007) has been introduced to counteract:

1. homogeneity attack which refers to the knowl-
edge gained by correlating key attributes and sen-
sitive attributes within the table. For instance, in
the 3-anonymity table (Table 2), the key attribute
value ”2*” completely corresponds to the sensi-
tive value ”lung cancer”; as such, an attacker only



needs to know that the subject is twenties to link
him to the disease ”lung cancer”.

2. backgroung knowledge attack which uses exter-
nal data to improve subjects identification. For
example, in the 3-anonymity table (Table 2), if we
consider the third equivalence class (with key at-
tribute value ”3*”), the correspondence between
”Age*” and ”Disease” is not complete, and an
attacker will therefore need external information
(for example that the subject is less likely to have
diabetes) to link him to aids.

To counteract those attacks, l-diversity adds the re-
striction that all the sensitive attributes should have at
least l ”well represented” values.

Definition 1. (The l-diversity principle)
An equivalence class is said to have l-diversity if there
are at least l ”well-represented” values for the sen-
sitive attribute. A table is said to have l-diversity if
every equivalence class of the table has l-diversity.

This restriction enables to reduce the correlation
between key attribute values and sensitive attribute
values and helps to mitigate both homogeneity
and background knowledge attacks. For instance,
in the 3-diverse table (Table 3), the diversity of
sensitive values (”Disease”, ”Salary”) in each class
prevents from correlating key attributes and sensitive
attributes.

Despite these improvements, l-diversity has been
proved (Li et al., 2007) to be inefficient to counteract
attribute disclosure attacks as it does not take into ac-
count the semantic of attributes. This flaw is depicted
through two main attacks: skewness attack and simi-
larity attack.

Table 3: A 3-diverse Table.

ZIP Code* Age* Salary Disease
1 355** 2* 4K colon cancer
2 355** 2* 5K stomach cancer
3 355** 2* 6K lung cancer
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
7 355** 3* 8K aids
8 355** 3* 10K flu
9 355** 3* 11K lung cancer

2.3 T-closeness to Mitigate Skewness
and Similarity Attacks

The t-closeness technique (Li et al., 2007) has been
introduced to counteract:

1. the skewness attack which is based on the skew-
ness between the distribution of sensitive attribute
values within the original table and the distribu-
tion within equivalence classes. Let us consider
the following example:

Example 1. Suppose we have an original skew-
ness table containing data of 1000 patients with
and without cancer; the key attributes are ”Age”,
”ZIP Code” and the sensitive attribute is ”Can-
cer”; and ”Cancer” can have two values ”Yes”
or ”No”. Suppose we have only 10 ”Yes” in the
table. A 2-diverse table (formed by equivalence
class of 2 subjects) would provide 50% probability
of having cancer for each subject within classes
instead of 10/1000% in the original table and
then, an information gain from the anonymized ta-
ble.

2. the semantic attack which relies on similarity be-
tween sensitive values. Indeed, when the sensi-
tive attribute values are distinct but semantically
similar (e.g. ”stomach cancer”, ”colon cancer”,
”lung cancer”), the similarity attack can occur.
For example, let us consider the first class of the
3-diverse table (Table 3) with key value ”2*”. The
value ”2*” corresponds to the subset of sensitive
values: {4K, 5K, 6K}. Even if those values are di-
versified, they still contain semantic information
as an attacker can infer that all subjects who are
twenties have low incomes.

To overcome skewness and similarity attacks, the t-
closeness principle was proposed by Li and al (Li
et al., 2007) and states that:

Definition 2. (The t-closeness principle)
An equivalence class is said to have t-closeness if
the distance between the distribution of a sensitive
attribute in this class and the distribution of the at-
tribute in the original table is no more than a thresh-
old t. A table is said to have t-closeness if all equiva-
lence classes have t-closeness.

The t-closeness metric measures therefore the dis-
tance between distributions of sensitive values within
classes and within the original table to ensure it does
not exceed a given threshold. This property is claimed
to mitigate both skewness and similarity attacks.

3 T-CLOSENESS LIMITATIONS
AND INABILITY TO QUANTIFY
PRIVACY

(Domingo-Ferrer and Torra, 2008) identified the fol-
lowing limitations on the t-closeness metric:



• t-closeness does not provide a computational pro-
cedure;

• If such a procedure was available, it would greatly
damage the utility of data. Indeed, by definition, t-
closeness aims to destroy the correlations between
key attributes and sensitive attributes and this, for
any combination of key attribute values.

Additionally, we identified another criticism as t-
closeness, taken as a metric, does not measure the ef-
fective disclosure risk but instead the accomplishment
of the anonymization process. Indeed, two attributes
with the same t-closeness measurement can have dif-
ferent privacy levels. This comes directly from the
definition (cf. section 2.3): t-closeness computes the
distance between the distribution of a sensitive at-
tribute within classes and the distribution of attributes
in the original table. That is, a t-closeness measure-
ment relies on the distribution of attributes in the orig-
inal table; hence, if two attributes have different dis-
tributions in the original table, they can have the same
t-closeness measurement, but not the same disclosure
risk.

Another concern is that the t-closeness measure-
ment relies on a pre-built hierarchy of attribute values
that can differ according to the attacker’s model. In-
deed, in order to compute a t-closeness measurement,
the attribute values should be classified and the mea-
surement relies on this classification (Li et al., 2007)
which is subjective. We give more details about se-
mantical subjectivity and attacker’s model in Section
5.1.

Finally, there is no direct link between t-closeness
measurements and the re-identification process. In-
deed, t-closeness computes a distance between distri-
bution sets and the relationship with information gain
or loss is unclear as acknowledged by the authors (Li
et al., 2007): ”...the relationship between the value t
and information gain is unclear”.

4 BASIC CONCEPTS OF
DISCRIMINATION RATE (DR)

The Discrimination Rate metric (Sondeck et al., 2017)
refers to the entropy and conditional entropy mea-
surements (Shannon, 2001). The DR objective is to
quantify how much an attribute is able to refine an
anonymity set; the maximum refinement leading to
one subject. The anonymity set is characterized by
a given sensitive attribute and the DR measures how
much the key attribute refines the set of values of this
sensitive attribute. More precisely, we consider key
attributes as discrete random variables (d.r.v.) and the

anonymity set as the set of outcomes of another d.r.v.
Let us consider 2 d.r.v. X and Y where Y is the at-
tribute we wish to measure the identification capacity
and X , the attribute which the set of outcomes is our
anonymity set. We then want to compute the amount
of information carried by Y according to the refine-
ment of the set of outcomes of X . For that purpose,
we consider the amount of uncertainty carried by X
(the entropy of X , H(X)) as our initial state and com-
pute the entropy of X conditioned on Y (H(X |Y )), as
we wish to measure the effect of Y on X . This quan-
tity represents the remaining uncertainty within X , af-
ter Y is divulged. In order to compute the amount
of information carried by Y according to X , we need
to subtract that quantity from H(X) and thus we ob-
tain H(X)−H(X |Y ), which is the effective amount
of identification information carried by attribute Y ac-
cording to that anonymity set. Finally, we divide that
quantity by H(X) to normalize the value.

Table 4: Original Data Table (Salary/Disease).

ZIP Code Age Salary Disease
1 35567 22 4K colon cancer
2 35502 22 5K stomach cancer
3 35560 22 6K lung cancer
4 35817 45 7K stomach cancer
5 35810 63 12K diabetes
6 35812 40 9K aids
7 35502 35 8K aids
8 35568 35 10K flu
9 35505 32 11K lung cancer

4.1 SDR and CDR Definitions

Let us propose the following definitions for Simple
Discrimination Rate (single key attributes measure-
ment) and Combined Discrimination Rate (multiple
key attributes measurement).

Definition 3. (Simple Discrimination Rate)
Let X and Y be two d.r.v. The Simple Discrimina-

tion Rate of the key attribute Y relatively to sensitive
attribute X, is the capacity of the key attribute Y to
refine the set of outcomes of the sensitive attribute X
and is computed as follows:

DRX (Y ) =
H(X)−H(X |Y )

H(X)
= 1− H(X |Y )

H(X)
(1)

Definition 4. (Combined Discrimination Rate)
Let X, Y1, ...,Yn be d.r.v. The Combined Discrimi-

nation Rate of key attributes Y1,Y2, ...,Yn relatively to
the sensitive attribute X, is the capacity of the com-
bination of key attributes Y1, ...,Yn to refine the set of



outcomes of the sensitive attribute X and is computed
as follows:

DRX (Y1,Y2, ...,Yn) = 1− H(X |Y1,Y2, ...,Yn)

H(X)
(2)

We can deduce that 0≤ DRX (Y1,Y2, ...,Yn)≤ 1.
Also we deduce that, the SDR is a particular case

of the CDR.
Note that, DRX (Y1,Y2, ...,Yn) = 1 in case

(Y1,Y2, ...,Yn) is an identifier. Indeed, in this
case, the remaining information within X is null
(H(X |Y1,Y2, ...,Yn) = 0).

4.2 Illustration of DR over Table 4

Let us consider Table 4. We can compute the DR of
key attribute Age (and its values) with respect to the
sensitive attribute Disease.

The computation steps for DRX (Y ) with X = Dis-
ease, Y = Age are as follows:

DRX (Y ) = 1− H(X |Y )
H(X)

(3)

= 1− 1/3log2(1/3)+2/9log2(1/2)
3/9log2(1/9)+6/9log2(2/9)

(4)

= 0.70 (5)

For H(X |Y ), attribute Age can take 6 values -
22, 32, 35, 40, 45, 63 - which help to reduce the
outputs of Disease to subsets of 3, 1, 2, 1, 1 and
1 respectively, corresponding to 1/3, 1/9, 2/9, 1/9,
1/9 and 1/9 of the original set respectively. The
specific conditional entropies are then: H(X |Y =
22)=−log2(1/3), H(X |Y = 32)= 0, H(X |Y = 35)=
−log2(1/2), H(X |Y = 40) = 0, H(X |Y = 45) = 0 and
H(X |Y = 63) = 0. H(X |Y ) is therefore the sum of
−1/3 log2(1/3) and −2/9 log2(2/9).

We can also compute the DR of a combination of
key attributes Age and ZIP Code using Disease as sen-
sitive attribute. The result is depicted in Table 5.

As we can see, the DR provides granular measure-
ments and can be performed either on attributes or on
attribute’s values.

4.3 Risk Measurement of
Anonymization Techniques

The DR supports anonymity measurements by quanti-
fying the amount of knowledge gained by an attacker
after applying a given attack on a system. The at-
tacker’s knowledge in this case is key attributes and
the DR measures how much from those key attributes,

Table 5: Discrimination Rate over the Original Data Table
4.

X Y DRX (Y )
Disease 22 0.79
Disease 32 1
Disease 35 0.91
Disease 40 1
Disease 45 1
Disease 63 1
Disease Age 0.70
Disease ZIP Code & Age 1

an attacker is able to link a subject to a sensitive at-
tribute. The DR enables therefore to measure the pri-
vacy risk according to identity disclosure, background
knowledge and homogeneity attacks. When applied
on Tables 1 and 3, we obtain the results depicted in
Tables 6, 7 and 8.

The identity disclosure attack refers to the gener-
alization mechanism (cf. Table 1) and the anonymity
measurement process consists in measuring the re-
finement capacity of generalized attributes over orig-
inal attributes (cf. Table 6).

The homogeneity attack refers to the correspon-
dence between sensitive and key attributes (Domingo-
Ferrer and Torra, 2008); the anonymity measurement
process consists then in measuring the refinement ca-
pacity of key attributes over sensitive attributes (Table
7).

Finally, as the background knowledge attack re-
lies on the homogeneity attack (cf. Section 2.2); we
compute the resistance measurement to combine ho-
mogeneity and background knowledge attacks from
the result of the homogeneity attack measurement (Ta-
ble 8).

We observe from Table 7 that the l-diverse ta-
ble (Table 3) provides more resistance than the k-
anonymity table (Table 2) to the homogeneity attack,
as the DR (the capacity of the attacker) is lower for the
l-diverse table (0.52 vs 0.36). However concerning
the identity attack, both techniques provide the same
resistance for attribute ZIP Code but not for attribute
Age (0.31 vs 0.38) as the generalization process of
Age is different in each case (Table 1).

Table 6: Risk measurement for identity disclosure (Table
1).

X Y DRX (Y )
ZIP Code ZIP Code* 0.31

Age Age* 0.66
Age Age** 0.38



Table 7: Risk measurement for homogeneity attack (Table
3).

X Y DRX (Y )
k-anonymity Table

Disease 2* 1
Disease ≥ 40 0.70
Disease 3* 0.83
Disease Age* 0.52

l-diverse Table
Disease 2* 0.78
Disease ≥ 40 0.78
Disease 3* 0.78
Disease Age* 0.36

Table 8: Resistance measurement to combine homogeneity
and background knowledge attacks (Table 7).

X Y 1 - DRX (Y )
k-anonymity Table

Disease 2* 0
Disease ≥ 40 0.30
Disease 3* 0.17
Disease Age* 0.48

l-diverse Table
Disease 2* 0.22
Disease ≥ 40 0.22
Disease 3* 0.22
Disease Age* 0.64

4.4 Inability for Basic DR to Measure
Semantic

The DR does not take into account the semantic be-
hind attribute values. For example, the t-closeness in-
stantiation (Table 9) can provide more semantic pri-
vacy than the l-diverse instantiation (Table 3). Indeed,
from key attribute value 355** in the l-diverse instan-
tiation, an attacker can infer with 50% success that
the user’s salary is low (between 4K and 6K). This
reflects the semantic aspect of attributes which is not
taken into account by l-diversity, but is included in the
t-closeness approach (Table 9).

5 SEMANTIC EMPOWERED
DISCRIMINATION RATE

This section presents the semantic DR (SeDR) that
supports semantic measurements. After arguing that
the semantic measurement is a subjective measure-
ment, we define our semantic domains that permit to
capture this subjectivity. Then, we present our seman-
tic Discrimination Rate (SeDR), along with illustra-
tion of SeDR computation.

Table 9: An 0.167-closeness w.r.t. Salary and 0.278-
closeness w.r.t. Disease.

ZIP Code* Age** Salary Disease
1 3556* ≤ 40 4K colon cancer
3 3556* ≤ 40 6K lung cancer
8 3556* ≤ 40 10K flu
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
2 3550* ≤ 40 5K stomach cancer
7 3550* ≤ 40 8K aids
9 3550* ≤ 40 11K lung cancer

5.1 Semantic as a Subjective
Measurement with Regard to
Attacker’s Model

The term semantic refers to the meaning of attributes
or attributes values, which is fully subjective. In-
deed, an attribute’s value can have different meanings
according to the attacker’s model. The attacker’s
model here refers to the attacker’s goal and previ-
ous knowledge to achieve this goal. The attacker’s
model can be specified according to the categories an
attacker is classifying the sensitive values.

For instance, let us consider the following three
attacker’s models over Tables 3 and 9 where the at-
tacker’s knowledge is made of the key attributes
Age* and ZIP Code*:

1. The attacker needs to know the exact Salary’s
value of a subject;

2. The attacker needs to know which Salary category
the subject belongs to: low (4K-6K), medium
(7K-9K) or high (10K-12K);

3. The attacker wants to link the subject to one of the
following Salary’s subsets: {4K, 6K, 10K}, {7K,
12K, 9K} and {5K, 8K, 11K}.

For the attacker’s model 1, the attacker needs
to know the exact value. The set of categories con-
tains therefore single values: {4K}, {5K},...,{12K}.
Hence, the similarity between values is not taken into
account for this model as the attacker is interested in
single values. Therefore, the t-closeness instantiation
provides the same semantic security than the l-diverse
instantiation and the current DR is enough to compute
the disclosure risk for both techniques.

For the attacker’s model 2, the attacker’s needs
are not as restrictive as for attacker’s model 1 as the
attacker only wants to know the average salary. For
this attacker’s model, the similarity between values



is worthwhile and is a privacy risk. As such, the t-
closeness metric and the l-diversity metric do not pro-
vide the same semantic security, and adaptation of the
Discrimination Rate is therefore necessary to measure
that disclosure risk.

The attacker’s model 3 is somewhat interesting
as it refers to the subsets of Salaries within classes of
the t-closeness table (Table 9). As shown in Section 6,
for this model, the t-closeness instantiation (Table 9)
is proved to be worse than the l-diverse instantiation
(Table 3).

5.2 Semantic Domain Definitions

This section gives our definitions about semantic par-
tition and semantic domains, which help to capture
the subjectivity of semantic based on attacker’s mod-
els of section 5.1. These definitions are illustrated
through an example.
Definition 5. (Semantic Partition)
Let X be an attribute and X be the set of all possible
values of X. A Semantic Partition of X is a partition
of X according to a given attacker’s model.
Definition 6. (Semantic Domain)
A Semantic Domain is an element of a Semantic Par-
tition.

The semantic domains refer to the classification of
sensitive values with respect to their sensitivity sim-
ilarity as identified by the attacker’s model (Section
5.1). We refer to the set of semantic domains as the
semantic partition. Indeed, for the purpose of this
work, we suppose the semantic domains to be disjoint
and the semantic partition to be a partition1 of the set
of sensitive values.

The corresponding semantic partitions of at-
tacker’s models in Section 5.1 are:
• Attacker’s model 1: SP1 = {{4K}, {5K},...,
{12K}}.

• Attacker’s model 2: SP2 = {{4K, 5K, 6K}, {7K,
8K, 9K}, {10K, 11K, 12K}}.

• Attacker’s model 3: SP3 = {{4K, 6K, 10K}, {7K,
12K, 9K} {5K, 8K, 11K}}.
Note that, the methodology for getting a seman-

tic partition is out of scope of this paper. Our objec-
tive is only to show how subjective are the anonymity
measurements and how semantic can be introduced in
our DR metric. There are however some works (Erola
et al., 2010) (Abril et al., 2010) proposing a way to
cluster values according to their semantic similarity,
and therefore, a way to build semantic partitions.

1Partition of a set A: is a subdivision of A into subsets
that are disjoint, non-empty and which the union equals to
A.

5.3 SeDR as DR with Semantic
Measurement

To cope with the DR’s inability to handle semantic
dimension as explained in Section 4.4, this section
defines the Semantic DR (SeDR) which supports se-
mantic measurements based on the semantic domains
(Section 5.2).

Thanks to the semantic domains, the SeDR has the
objective to measure how much an attacker provided
with key attributes, is able to refine the set of semantic
domains (the semantic partition) instead of the set of
single values. As such, with SeDR, it is possible to
know the attacker’s capacity to infer subsets of user’s
sensitive values from a key attribute value.

Before applying the SeDR, we should first trans-
form the sensitive attribute X according to a given se-
mantic partition SP. Let sX be the result of the trans-
formation. We define the semantic partition trans-
formation fSP as follows:

fSP : X → sX . (6)

The SeDR is then defined as follows:

Definition 7. (Semantic Discrimination Rate)
Let X be a sensitive attribute and SP a semantic
partition of X. Let sX = fSP(X) and Y1, ...,Yn be a
set of key attributes. The Semantic Discrimination
Rate (SeDR) of Y1, ...,Yn relatively to X is the DR of
Y1, ...,Yn relatively to sX and is computed as follows:

SeDRX (Y1,Y2, ...,Yn) = DRsX (Y1,Y2, ...,Yn) (7)

Therefore, the original DR is a particular case
of the SeDR with a semantic partition composed of
single sensitive values.

5.4 Illustration of the SeDR
Computation and Comparison with
the DR

Let us illustrate the SeDR over the original data Table
4 with the semantic partition SP4 = {{diabetes, flu,
aids}, {colon cancer, lung cancer, stomach cancer}}.

The semantic partition transformation fSP is ap-
plied on X by replacing the set of values X (of X) by
the set of values sX (of sX). For example, for sen-
sitive attribute ”Disease”, we transform X = {colon
cancer, stomach cancer, lung cancer, stomach can-
cer, diabetes, aids, aids, flu, lung cancer} using SP4
= {{diabetes, flu, aids}, {colon cancer, lung cancer,



Table 10: Semantic DR in Table 4.

X Y DRX (Y )
Disease 22 1
Disease 32 1
Disease 35 1
Disease 40 1
Disease 45 1
Disease 63 1
Disease Age 1

stomach cancer}} into sX = {cancer, cancer, can-
cer, cancer, other disease, other disease, other dis-
ease, other disease, cancer}.

When applying the previous transformation on the
sensitive attribute Disease in Table 4, and computing
the SeDR according to the key attribute ”Age*”, we
obtain the results in Table 10.

As shown in Table 10 vs Table 5, the SeDR is able
to extract more information from the same database
than the non-semantic DR, as higher values are ob-
tained in Table 10. For instance, for key attribute
value 22, the SeDR is 1 compared to 0.79 for the DR,
as this key attribute fully corresponds to the semantic
domain {colon cancer, lung cancer, stomach cancer}
of the original data table (Table 4).

6 MEASUREMENT AND
COMPARISON OF
L-DIVERSITY VS
T-CLOSENESS WITH SeDR

This section shows first how the semantic attacks -
skewness attack and the similarity attack (Section 2.3)
- can be measured with either the DR or the SeDR.
Then it proves through the SeDR, for the similarity
attack only, that t-closeness is not as privacy protec-
tive as claimed by the authors, and that it can pro-
vide lower privacy protection than l-diversity. Both
t-closeness and l-diversity techniques are instantiated
over the original data Table 4 to give Tables 3 and 9
respectively. Note that these tables are similar to the
ones of the original paper related to the t-closeness
metric (Li et al., 2007).

6.1 Skewness Attack - Measurement
with DR

The original DR is enough to evaluate this attack as
only the skewness between the original distribution
of sensitive values and their distribution within equiv-
alence classes needs to be measured. For explaining

this measurement, let us consider Example 1 of Sec-
tion 2.3. The objective of the attack is to improve the
attacker’s knowledge within the equivalence classes.
As such, the DR enables to quantify how much in-
formation is gained by an attacker from equivalence
classes, according to the original table.

Therefore, for evaluating this attack, we compute
the difference between the DRs of the involved key
attributes in the original table and in the equivalence
classes. Based on the skewness table of Example 1
(Section 2.3), we compute the DR of key attributes
”Age” and ”ZIP Code” using ”Cancer” as the sensi-
tive attribute in the original table (DRCancer(Age) &
DRCancer(ZIPCode)) and the DR of the key attributes
”Age*” and ”ZIP Code*” within equivalence classes
(DRCancer(Age*) & DRCancer(ZIPCode*)). Finally
the actual information gain related to skewness attack
is:

• DRcancer(Age)−DRcancer(Age*) for key attribute
Age.

• DRcancer(ZIPCode)−DRcancer(ZIPCode*) for
key attribute ZIP Code.

This computation can also be performed on at-
tribute’s values instead of the attributes.

This evaluation through DR computation gives
far more results than merely computing the ratio
between probabilities (50% and 10/1000%), as
the DR takes into account the correlation between
key attributes and sensitive attributes and since the
attacker’s knowledge refers to key attributes, the DR
quantifies the actual information gain.

6.2 Similarity Attack - Measurement
with SeDR

The SeDR is computed to evaluate the similarity be-
tween values of sensitive attributes. The similarity
between values is formalized through some defined
semantic partitions.

We consider three semantic partitions; two parti-
tions of ”Salary” (according to the attacker’s models
2 and 3, Section 5.2) and one partition of ”Disease”:

• SP2 = {{4K, 5K, 6K}, {7K, 8K, 9K}, {10K, 11K,
12K}} for ”Salary”.

• SP3 = {{4K, 6K, 10K}, {7K, 12K, 9K} {5K, 8K,
11K}}

• SP4 = {{diabetes, flu, aids}, {colon cancer, lung
cancer, stomach cancer}}
We then use these semantic partitions and each

key attribute (”Age*” and ”ZIP Code*”) to compute



Table 11: Risk measurement for Tables 3 & 9 for the sim-
ilarity attack using SP2 as the semantic partition and Age*
& ZIP Code* as key attributes.

X Y SeDRX (Y )
3-diverse Table

SP2 2* 1
SP2 ≥ 40 0.81
SP2 3* 0.81
SP2 Age* 0.61
SP2 355** 0.39
SP2 3581* 0.81
SP2 ZIP Code* 0.19

t-closeness Table
SP2 ≤ 40 0.39
SP2 ≥ 40 0.81
SP2 Age** 0.19
SP2 3550* 0.67
SP2 3581* 0.81
SP2 3556* 0.81
SP2 ZIP Code* 0.28

the SeDR for the l-diverse and the t-closeness instan-
tiations (Tables 3 and 9). The results are depicted in
Tables 11, 12 and 13.

Table 12: Risk measurement for Tables 3 & 9 for the sim-
ilarity attack using SP3 as the semantic partition and Age*
& ZIP Code* as key attributes.

X Y SeDRX (Y )
3-diverse Table

SP3 2* 0.81
SP3 ≥ 40 1
SP3 3* 0.81
SP3 Age* 0.61
SP3 355** 0.58
SP3 3581* 1
SP3 ZIP Code* 0.58

t-closeness Table
SP3 ≤ 40 0.58
SP3 ≥ 40 1
SP3 Age** 0.58
SP3 3550* 1
SP3 3581* 1
SP3 3556* 1
SP3 ZIP Code* 1

6.3 Results Proving the Lower Privacy
Protection of T-closeness vs
L-diversity

As reported in Section 5.3, the SeDR can compute the
refinement capacity of a given key attribute over a se-

mantic partition of a sensitive attribute (Section 5.2).
The semantic partition reflects the subjectivity related
to the semantic interpretation. The semantic risk mea-
surement consists therefore in measuring how much
from a given key attribute, an attacker is able to refine
the semantic partition of a sensitive attribute. The
more an attacker is able to refine the semantic parti-
tion, the higher the related risk.

Each computation is therefore performed accord-
ing to a given key attribute and a given semantic par-
tition.

Tables 11, 12 and 13 depict the risk measurements
related to the similarity attack performed over the l-
diverse table (Table 3) and the t-closeness table (Table
9). The considered key attributes are ZIP Code* and
Age* and their SeDR are computed over the seman-
tic partitions SP2, SP3 (related to ”Salary”) and SP4
(related to ”Disease”).

Hereafter, we prove that the assertion that t-
closeness is semantically more secure than l-
diversity is wrong:

1. Table 11 shows that an attacker is more able
to refine the semantic partition SP2 within the
t-closeness table based on key attribute ZIP
Code* than with the l-diversity table. ZIP
Code* gives a SeDR of 0.28 for t-closeness vs
0.19 for l-diversity.

2. Table 12 proves that the t-closeness instantia-
tion is weaker than the l-diverse instantiation
against the similarity attack for the semantic
partition SP3. Based on attribute ZIP Code*, an
attacker is able to completely refine the semantic

Table 13: Risk measurement for Tables 3 & 9 for the sim-
ilarity attack using SP4 as the semantic partition and Age*
& ZIP Code* as key attributes.

X Y SeDRX (Y )
3-diverse Table

SP4 2* 1
SP4 ≥ 40 0.69
SP4 3* 0.69
SP4 Age* 0.38
SP4 355** 0.38
SP4 3581* 0.69
SP4 ZIP Code* 0.07

t-closeness Table
SP4 ≤ 40 0.38
SP4 ≥ 40 0.69
SP4 Age** 0.07
SP4 3550* 0.69
SP4 3581* 0.69
SP4 3556* 0.69
SP4 ZIP Code* 0.07



partition SP3 (DR = 1), as the ZIP Code*’s values
directly refer to the considered semantic domains.

3. Table 13 shows that an attacker is more able
to refine the semantic partition SP4 with some
key attribute ZIP Code* values (3550* and
3556*). For these two values, the computed SeDR
is higher for the t-closeness instantiation (0.69 vs
0.38).

7 CONCLUSION

Data publishing promises significant progress for
emergence and improvement of new services. How-
ever, to mitigate privacy leakages due to poor
anonymization procedures, there is a strong need for
publishers to have a practical and precise metric to
assess the data anonymity level prior to publishing
datasets. In this paper, we propose the Semantic Dis-
crimination Rate which is a new practical metric for
getting fine grained measurement of the anonymity
level of an anonymized dataset. It enables to tackle
the de-anonymization issue from the attacker’s per-
spective, and to precisely compute the attacker’s ca-
pacity according to any existing anonymity attacks.
Illustration of that metric is given over some clas-
sical anonymization techniques (t-closeness and l-
diversity), and proves that t-closeness is not as privacy
protective as it was originally claimed to be as it can
behave worse than l-diversity.
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