Communication Dans Un Congrès Année : 2016

A Deep Metric for Multimodal Registration

Résumé

Multimodal registration is a challenging problem in medical imaging due the high variability of tissue appearance under different imaging modalities. The crucial component here is the choice of the right similarity measure. We make a step towards a general learning-based solution that can be adapted to specific situations and present a metric based on a convolutional neural network. Our network can be trained from scratch even from a few aligned image pairs. The metric is validated on intersubject deformable registration on a dataset different from the one used for training, demonstrating good generalization. In this task, we outperform mutual information by a significant margin.
Fichier principal
Vignette du fichier
1609.05396MI.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01576914 , version 1 (24-08-2017)

Identifiants

Citer

Martin Simonovsky, Benjamín Gutiérrez-Becker, Diana Mateus, Nassir Navab, Nikos Komodakis. A Deep Metric for Multimodal Registration. 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016), Oct 2016, Athènes, Greece. pp.10-18, ⟨10.1007/978-3-319-46726-9_2⟩. ⟨hal-01576914⟩
352 Consultations
784 Téléchargements

Altmetric

Partager

More