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Abstract. Multimodal registration is a challenging problem in medical
imaging due the high variability of tissue appearance under different
imaging modalities. The crucial component here is the choice of the right
similarity measure. We make a step towards a general learning-based
solution that can be adapted to specific situations and present a metric
based on a convolutional neural network. Our network can be trained
from scratch even from a few aligned image pairs. The metric is validated
on intersubject deformable registration on a dataset different from the
one used for training, demonstrating good generalization. In this task,
we outperform mutual information by a significant margin.

1 Introduction

Multimodal registration is a very challenging problem in medical imaging com-
monly faced during image-guided interventions and data fusion [13]. The main
difficulty of the multimodal registration task comes from the great variability of
tissue or organ appearance when imaged by different physical principles, which
translates in the lack of a general rule to compare such images. Therefore, ef-
forts to tackle this problem focus mainly on the design of multimodal similarity
metrics.

Recent works have explored the use of supervised methods to learn similarity
metrics from a set of aligned examples [2,8,11], showing potential to outperform
hand-crafted metrics in particular applications. However, a general method to
learn similarity between any two modalities calls for higher capacity models.

Inspired by their success in computer vision, we propose to learn such general
similarity metric based on Convolutional Neural Networks (CNNs). The problem
is modelled as a classification task, where the goal is to discriminate between
aligned and misaligned patches from different modalities. To the best of our
knowledge, this is the first time that CNNs are used in the context of multimodal
medical image registration.

The ability of our metric to obtain reliable registrations is demonstrated on
the ALBERTs database of neonatal images [5], where we outperform Mutual
Information [10]. Importantly, we train on a separate dataset (IXI database of
adults [1]), demonstrating the capability to generalize to data acquired with
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note in caption: output = dissim map

Fig. 1. Overview of our method. The input to the network N consists of the fixed im-
age If and the warped image I ′m resampled from the moving image Im by the current
transformation T (θ). The output of N is a dissimilarity map, where each element corre-
sponds to a patch P in the input (its receptive field). We use its derivative with respect
to I ′m to update the transformation parameters θ. Warm and cold colors corresponds
to positive and negative values in the colormaps, respectively.

different scanners and with demographic differences in the subjects. We also
show that our method is able to learn reliable multimodal similarities even with
a small training set, as is often the case in medical imaging applications.

1.1 Related Work

The idea of using supervised learning to build a similarity metric for multimodal
images has been explored in a number of works. On one side, there are prob-
abilistic approaches which rely on modelling the joint-image distribution. For
instance, Guetter et al. propose a generative method based on Kullback-Leibler
Divergence [6]. Our work is closer to the discriminative concept proposed by Lee
et al. [8] and Michel et al. [11], where the problem of learning a similarity metric
is posed as binary classification. Here the goal is to discriminate between aligned
and misaligned patches given pairs of aligned images. Lee et al. propose the use
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of a Structured Support Vector Machine while Michel et al. use a method based
on Adaboost. Different to these approaches we rely on CNN as our learning
method of choice as the suitable set of characteristics for each type of modality
combinations can be directly learned from the training data.

The power of CNNs to capture complex relationships between multimodal
medical images has been shown in the problem of modality synthesis [12], where
CNNs are used to map MRI-T2 images to MRI-T1 images using jointly the
appearance of a small patch together with its localization. Our work is arguably
most similar to the approach of Cheng et al. [3] who train a multilayer fully-
connected network pretrained with autoencoder for estimating similarity of 2D
CT-MR patch pairs. Our network is a CNN, which enables us to scale to 3D due
to weight sharing and train from scratch. Moreover, we evaluate our metric on
the actual task of registration, unlike Cheng et al.

2 Method

Image registration is the task of estimating the best spatial transformation T :
Ωf 7→ Rd between a fixed image If : Ωf ⊂ Rd 7→ R and a moving image
Im : Ωm ⊂ Rd 7→ R. In our setting d = 3 and the images come each from a
different modality. The problem is often solved by minimizing the energy

E(θ) = M(If , Im(T (θ))) +R(T (θ)) (1)

where the first term M is a metric quantifying the cost of the alignment by
transformation T parameterized by θ and the second term R is a regularization
constraining the mapping. We denote the moving image resampled into Ωf by
T as the warped image I ′m = Im(T (θ)) : Ωf ⊂ Rd 7→ R. The minimization
is commonly solved in a continuous or discrete optimization framework [13],
depending on the nature of θ.

In this work we explore formulating M as a convolutional neural network. To
this end we rely on network N(Pf , Pm) which outputs a scalar value estimating
the dissimilarity between two image patches Pf ⊂ If and Pm ⊂ I ′m of the same
size. Its incorporation into a continuous optimization framework is explained in
Subsection 2.1. The architecture and training of N is described in Subsection 2.2.

2.1 Continuous Optimization

Continuous optimization methods iteratively update parameters θ based on the
gradient of the objective function E(θ). We restrict ourselves to first-order meth-
ods and use gradient descent in particular. Our metric is defined to aggregate
local patch comparisons as

M(If , I
′
m) =

∑
P∈P

N(If (P ), I ′m(P )) (2)

where P is the set of patch domains P ⊂ Ωf sampled on a dense uniform grid
with significant overlaps. The method is illustrated in Figure 1.
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Its gradient ∇M(θ), which is required for ∇E(θ), can be computed by ap-
plying chain rule as follows:

∂
∑

P∈P N(If (P ), I ′m(P ))

∂θ
=

∑
x∈Ωf

∑
P∈Px

∂N(If (P ), I ′m(P ))

∂I ′m(x)

∂I ′m(x)

∂θ
= (3)

=
∑
x∈Ωf

∑
P∈Px

∂N(If (P ), I ′m(P ))

∂I ′m(x)

∂Im(T (θ,x))

∂T (θ,x)

∂T (θ,x)

∂θ
= (4)

=
∑
x∈Ωf

∂N(If , I
′
m)

∂I ′m(x)
∇Im(T (θ,x))JT (x) (5)

Equation (3) shows that the derivative of N w.r.t. the intensity of an input
pixel x depends on all patches containing it, denoted as Px. Thus, high overlap
of neighboring patches leads to smoother, more stable derivatives. We found that
registration quality drops considerably unless the grid stride s of P is small. On
the other hand, subsampling Ωf to obtain a sparser set of samples x has a minor
impact on performance.

In the transition from Equation (4) to (5), patch-wise evaluation of N is
replaced by fully convolutional evaluation over the whole domain Ωf . This makes
the computation very efficient, as results in intermediate network layers can be
shared among neighboring patches [9].

Ultimately, the contribution of each pixel x to ∇M(θ) is a product of three
terms, c.f. Equation (5): the derivative ∂N/∂I ′m(x) of the estimated dissimilarity
of patches around x w.r.t. its intensity in the warped image, which can be readily
computed by standard backpropagation, the gradient of the moving image ∇Im,
which can be precomputed, and the local Jacobian matrix JT of transformation
T . Note that the choice of a particular transformation type is decoupled from
the network, therefore a single network will work with any transformation.

Computing one iteration thus requires resampling of the moving image and
one forward and one backward pass in the network. All operations can be effi-
ciently computed on a GPU.

2.2 Network Architecture and Training

Architecture. A feed-forward convolutional neural network N is used to esti-
mate the dissimilarity of two cubic patches of the same size of p×p×p pixels. The
architecture is based on recent works on learning to compare patches, notably
the 2-channel network of Zagoruyko and Komodakis [14]. The two patches are
considered as a 2-channel 3D image (each channel represents a different modal-
ity), which is fed to the first layer of the network. The network consists of a
series of volumetric convolutional layers with ReLU non-linearities finalized by
a convolutional layer without any non-linearity, which produces a scalar score.

To gradually subsample the spatial domain within the network and increase
spatial context (perceptive field), we prefer convolutions with non-unit output
stride to pooling used in [14], as it has led to better performance. We hypothesize
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Table 1. Overlap scores (mean ± SD) after registration using the proposed metric
(CNN) and mutual information with (MI+M) or without masking (MI)

MI+M MI CNN k = 557 CNN k = 11 CNN k = 6 CNN k = 3

Dice 0.665 ± 0.096 0.497 ± 0.180 0.703 ± 0.037 0.704 ± 0.037 0.701 ± 0.040 0.675 ± 0.093
Jaccard 0.519 ± 0.091 0.369 ± 0.151 0.555 ± 0.041 0.556 ± 0.041 0.554 ± 0.044 0.527 ± 0.081

that too much spatial invariance might be detrimental in our case of learning
cross-modal identity, unlike aiming for robustness to distortions such as per-
spective deformation. The product of convolutional strides determines the overal
network stride s used in the fully-convolutional mode.

The 2-channel architecture is powerful as it considers both patches jointly
from the beginning. However, its evaluation does not exploit the fact that the
fixed image If does not change during optimization and its deep representation
could be precomputed in the form of descriptors and cached. We have therefore
experimented on architectures with two independent input branches, such as
the pseudo-siamese network in [14]. Unfortunately, we have observed consistent
decrease in registration performance.

Training. We suppose to have a set of k aligned pairs of training images
{(Aj , Bj)}kj=1 with Aj , Bj : Ωj ⊂ Rd 7→ R. We sample transformations Ti,Aj

,
Ti,Bj : Ωj 7→ Ωj for j-th image pair for data augmentation by varying position,
scale, rotation, and mirroring. Patch pairs Xi = (Aj(Ti,Aj (P )), Bj(Ti,Bj (P )))
with fixed-size domain P are used for training the network. Sample Xi is de-
fined to be positive (labeled yi = −1) if Ti,Aj

= Ti,Bj
and negative (yi = 1)

otherwise. Positive and negative samples are mined with equal probability. Im-
posing restrictions on negatives (such as minimum or maximum overlap of source
patch domains) or on patch content (such as minimum contrast [8]) were exper-
imentally shown detrimental to the registration quality.

The network is trained to classify training samples Xi by minimizing hinge
loss L =

∑
i max(0, 1− yiN(Xi)), which we found to perform better than cross-

entropy. We observed that softmax leads to overly flat gradients in continuous
optimization, as shown in the bottom plots in Figure 3. SGD with learning rate
0.01, momentum 0.9 and batch size 128 is used to optimize the network.

Instead of preparing a fixed dataset of patches like in [3], we sample Xi

online. This, together with the augmentations described above, allows us to feed
the network with practically unlimited amount of training data. Even for small
k we observed no overfitting in learning (see also Subsection 3.2).

Implementation. We use Torch with cuDNN library for deep learning,
elastix for GPU-based image resampling, and ITK for registration3. Our net-
work has 5 layers, 2M parameters, patch size p = 17, and stride s = 4. We plan
to open source our implementation and the trained network.

3 www.torch.ch, developer.nvidia.com/cudnn, elastix.isi.uu.nl, www.itk.org
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3 Experiments and Results

We evaluate the effectiveness of the learned metric in registration experiments on
a set of clinical brain images in Subsection 3.1 and conduct further experiments
to demonstrate its interesting properties in Subsections 3.2 and 3.3.

3.1 Deformable Registration of Neonatal Brain MRI Images

Datasets. We conducted intersubject deformable registration experiments on
a set of neonatal brain image volumes taken from the publicly available brain
atlases ALBERTs [5]. This database consists of T1 and T2-weighted MRI scans
of 20 newborns. Each T1-T2 pair is aligned and annotated with a segmentation
map of 50 anatomical regions, which allows us to evaluate registration quality
in terms of overlap measures; we compute average Dice and Jaccard coefficients.

To make the experiment challenging and demonstrate good generalization of
our learned metric (denoted CNN), we train on IXI [1], a completely independent
dataset of adult brain images. Let us remark that there are structural differences
between the brains of neonates and adults. The dataset contains about 600
approximately aligned T1-T2 image pairs and we use k = 557 for training and
the rest for validation, although in Subsection 3.2 we demonstrate that much less
is actually needed. Image intensities in both datasets are normalized to [0, 1].

Baseline. Our baseline is mutual information (MI) [10], the standard metric
for multimodal registration. We observed that MI perform better when image
domains are restricted to the head region, thus we use a fixed intensity threshold
of 0.01 for masking the background and denote this variant MI+M. Such masking
made nearly no difference to our metric. Unfortunately, we could not compare
to other learning-based metrics [8,11] as their implementation was not available.

Protocol. We test on 18 subjects in ALBERTs and perform 68 intersub-
ject registrations, half of them aligning T1 to T2 and half of them the other
way round. We reserve the remaining 2 subjects for validating registration pa-
rameters and model selection. Both metrics are evaluated in exactly the same
registration pipeline with the same transformation model and optimizer. The
pipeline consists of multiresolution similarity transform registration followed by
multiresolution B-spline registration (2 scales, 1000 control points on the fine
scale, 200k image sampling points), optimized by gradient descent with regular
step and 500 iterations per scale. MI is used with 75 histogram bins (validated
optimum). An explicit regularization term R in Equation (1) was used neither for
MI nor for CNN. Instead, we regularize implicitly by the design of the pipeline
and the choice of its hyperparameters.

Results. The results are listed in Table 1 and demonstrate statistically sig-
nificant improvement of registration quality due to CNN by about 4 points in
both coefficients (as by one-sided t-test with significance α = 0.01). Figure 2
exhibits scatter plots of initial and final Dice scores for each registration run
(Jaccard scores follow similar trend). We can see that while CNN has improved
on the alignment in all runs, this is not the case for MI+M and especially MI,
showing rather low precision. The highest accuracies achieved by both methods
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Fig. 2. Improvement in average Dice score due to registration using the proposed
metric (CNN) and mutual information with (MI+M) or without masking (MI). Each
data point represents a registration run. Dashed line denotes identity transformation.

are rather similar (up to 0.8) and seem nearly independent on the initial level of
misalignment. Furthermore, the registration using CNN is only about 2x slower
than using MI (on Nvidia Titan Black), the difference mostly due to expensive
resampling of moving image.

3.2 Influence of Training Set Size

The huge number of aligned volumes in IXI dataset is rather exceptional in
medical domain. We are therefore interested in how much we can decrease the
training set size k without noticeable impact on the quality. To this end, we train
networks with only k = 11, 6, and 3 random image pairs under the same setting
as above. Table 1 shows that even with little training data the results are very
good and only for k = 3 our metric does not significantly outperform MI+M.
On one hand, this suggests that our online sampling and data augmentation
methodology works well. On the other hand, either the inherent variability in the
dataset is very low (especially compared to natural image recognition problems,
where more data typically improves performance) or our network is not able to
exploit it. We expect that the amount of necessary data will be higher for more
challenging modalities, such as ultrasound.

3.3 Plausibility of Metric and Its Derivatives

To investigate the behavior of metric value and its actual derivatives used for
continuous optimization, we visualize these quantities by manually perturbing a
single parameter of a transformation initialized to identity on an aligned valida-
tion image pair in IXI. Figure 3 suggests that the metric behaves reasonably as
its curves are smooth with the correct local minima. The analytic derivatives, as
in Equation (5), have the correct sign over a large range, albeit their magnitude
is slightly noisy. Nevertheless, this was shown not to prevent the metric from
obtaining good registration results.
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Fig. 3. The impact of perturbation of a single parameter in Euclidean transform
(top) and B-spline transform (bottom) on metric value M and its derivatives as per
Equation (5). The curve of M is not up to scale. Curves without legend correspond to
other parameters strongly affected due to overlapping patches.

4 Conclusion

We have presented a similarity metric for multimodal 3D image registration
based on a convolutional neural network. The network can be trained from
scratch even from a few aligned image pairs, mostly due to our data sampling
scheme. We have described the incorporation of this metric into first-order con-
tinuous optimization frameworks. The experimetal evaluation was perfomed on
the task of intersubject T1-T2 deformable registration on a dataset different
from the one used for training, demonstrating good generalization. In this task,
we outperform mutual information by a significant margin.

We envision incorporating our network into a discrete optimization frame-
work as an easy extension. In a MRF-based formulation, the local alignment cost
is expressed by unary potentials over nodes in a graph [4]. In particular, a unary
potential gn(un) related to the cost of assigning a label/translation un to node n
might be defined as gn(un) = N(If (Pn), Im(T (θ, Pn) + un)), where Pn ⊂ Ωf is
a patch domain centered at the control point of transformation T corresponding
to node n. As such an optimization is derivative-free, only the forward pass in
the network would be necessary.

We also plan to apply our method to more modalities, such as ultrasound.
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Fig. 4. Improvement in average Dice score due to registration using the proposed
metric (CNN) and MIND. Each data point represents a registration run. Dashed line
denotes identity transformation.

A Comparison with MIND

The Modality Independent Neighborhood Descriptor (MIND) is a state-of-the-
art multimodal descriptor by Heinrich et al. [7] based on the concept of self-
similarity. We performed the same set of 68 registration as in Subsection 3.1
using the code from the authors’ website4. After validating its three main hy-
perparameters (six-neighborhood search region, Gaussian weighting σ = 0.5,
regularization α = 0.2), we obtained Dice score of 0.610 ± 0.073 (see also Fig-
ure 4), resp. Jaccard score of 0.458 ± 0.070. The results are clearly inferior
to both MI+M and our CNN-based approach, although the running time was
much shorter. However, we stress that their deformable registration code does
not follow our pipeline described in Subsection 3.1 (different regularization and
optimization, no similarity transformation step), and therefore the comparison
serves for rather illustrative purposes.

4 http://www.ibme.ox.ac.uk/research/biomedia/julia-schnabel/files/symgn.zip
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