Hypocoercivity without confinement - Archive ouverte HAL
Article Dans Une Revue Pure and Applied Analysis Année : 2020

Hypocoercivity without confinement

Résumé

In this paper, hypocoercivity methods are applied to linear kinetic equations with mass conservation and without confinement, in order to prove that the solutions have an algebraic decay rate in the long-time range, which the same as the rate of the heat equation. Two alternative approaches are developed: an analysis based on decoupled Fourier modes and a direct approach where, instead of the Poincar\'e inequality for the Dirichlet form, Nash's inequality is employed. The first approach is also used to provide a simple proof of exponential decay to equilibrium on the flat torus. The results are obtained on a space with exponential weights and then extended to larger function spaces by a factorization method. The optimality of the rates is discussed. Algebraic rates of decay on the whole space are improved when the initial datum has moment cancellations.
Fichier principal
Vignette du fichier
BDMMS-35.pdf (322.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01575501 , version 1 (20-08-2017)
hal-01575501 , version 2 (05-10-2017)
hal-01575501 , version 3 (07-11-2018)
hal-01575501 , version 4 (20-09-2019)

Identifiants

Citer

Emeric Bouin, Jean Dolbeault, Stéphane Mischler, Clément Mouhot, Christian Schmeiser. Hypocoercivity without confinement. Pure and Applied Analysis, 2020, 2 (2), pp.203-232. ⟨10.2140/paa.2020.2.203⟩. ⟨hal-01575501v4⟩
589 Consultations
376 Téléchargements

Altmetric

Partager

More