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Introduction

We consider the Cauchy problem (1)

∂ t f + v • ∇ x f = Lf , f (0, x, v) = f 0 (x, v)
for a distribution function f (t , x, v), with position variable x ∈ R d , velocity variable v ∈ R d , and with time t ≥ 0. Concerning the collision operator L, we shall consider two cases:

(a) Fokker-Planck collision operator:

Lf = ∇ v • M ∇ v M -1 f , (b) Scattering collision operator: Lf = R d σ(•, v ′ ) f (v ′ ) M (•) -f (•) M (v ′ ) d v ′ .
We shall make the following assumptions on the local equilibrium M (v) and on the scattering rate σ(v, v ′ ):

R d M (v) d v = 1 , ∇ v M ∈ L 2 (R d ) , M ∈ C (R d ) , (H1) M = M (|v|) , 0 < M (v) ≤ c 1 e -c 2 |v| , ∀ v ∈ R d , for some c 1 , c 2 > 0 . 1 ≤ σ(v, v ′ ) ≤ σ , ∀v, v ′ ∈ R d , for some σ ≥ 1 . (H2) R d σ(v, v ′ ) -σ(v ′ , v) M (v ′ ) d v ′ = 0, ∀ v ∈ R d . (H3)
Before stating our main results, let us list some preliminary observations. (i) A typical example of a local equilibrium satisfying (H1) is the Gaussian ( 2)

M (v) = e -|v| 2 2 (2π) d/2 .
(ii) With σ ≡ 1, Case (b) includes the relaxation operator Lf = M ρ f -f , also known as the linear BGK operator, with position density defined by

ρ f (t , x) := R d f (t , x, v) d v .
(iii) Positivity and exponential decay of the local equilibrium are essential for our approach. The assumption on the gradient and continuity are technical and only needed for some of our results. Rotational symmetry is not important, but assumed for computational convenience. However the property

R d v M (v)d v = 0 ,
i.e., zero flux in local equilibrium, is essential.

(iv) Since micro-reversibility (or detailed balance), i.e., symmetry of σ, is not required, Assumption (H3) is needed for mass conservation, i.e.,

R d

Lf d v = 0 , in Case (b). The boundedness away from zero of σ in (H2) guarantees coercivity of L relative to its nullspace (such bound can always be written σ ≥ 1 by scaling).

Since e t L propagates probability densities, i.e., conserves mass and nonnegativity, L dissipates convex relative entropies, implying in particular

R d Lf f M d v ≤ 0 .
This suggests to use the L 2 -space with the measure d γ ∞ := γ ∞ d v, where γ ∞ (v) = M (v) -1 , as a functional analytic framework (the subscript ∞ will make sense later). We shall need the microscopic coercivity property (H4) -

R d f Lf d γ ∞ ≥ λ m R d f -M ρ f 2 d γ ∞ ,
with some λ m > 0. In Case (a) it is equivalent to the Poincaré inequality with weight M ,

R d |∇ v h| 2 M d v ≥ λ m R d h - R d h M d v 2 M d v ,
for all h = f /M ∈ H 1 (M d v). It holds as a consequence of the exponential decay assumption in (H1) (see, e.g., [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF][START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF]). For the normalized Gaussian (2) the optimal constant is known to be λ m = 1 (see for instance [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF] and references therein). In Case (b), (H4) means

1 2 R d ×R d σ(v, v ′ ) M (v) M (v ′ ) u(v) -u(v ′ ) 2 d v ′ d v ≥ λ m R d u -ρ u M 2 M d v ,
for all u = f /M ∈ L 2 (M d v), and it holds with λ m = 1 as a consequence of the lower bound for σ in Assumption (H2).

Although the transport operator does not contribute to entropy dissipation, its dispersion in the x-direction in combination with the dissipative properties of the collision operator yields the desired decay results. In order to perform a modeby-mode hypocoercivity analysis, we introduce the Fourier representation with respect to x,

f (t , x, v) = R d f (t , ξ, v) e +i x•ξ d µ(ξ) ,
where d µ(ξ) = (2π) -d d ξ and d ξ is the Lesbesgue measure on R d . The normalization of d µ(ξ) is chosen such that Plancherel's formula reads

f (t , •, v) L 2 (d x) = f (t , •, v) L 2 (dµ(ξ))
with a straightforward abuse of notations. The Cauchy problem [START_REF] Achleitner | On linear hypocoercive BGK models[END_REF] in Fourier variables is now decoupled in the ξ-direction:

(3)

∂ t f + i (v • ξ) f = L f , f (0, ξ, v) = f0 (ξ, v) .
Our main results are devoted to hypocoercivity without confinement: when the variable x is taken in R d , we assume that there is no potential preventing the runaway corresponding to |x| → +∞. So far, hypocoercivity results have been obtained either in the compact case corresponding to a bounded domain in x, for instance T d , or in the whole Euclidean space with an external potential V such that the measure e -V d x admits a Poincaré inequality. Usually other technical assumptions are required on V and there are many variants (for instance one can assume a stronger logarithmic Sobolev inequality instead of a Poincaré inequality), but the common property is that some growth condition on V is assumed and in particular the measure e -V d x is bounded. Here we consider the case V ≡ 0, which is obviously a different regime. By replacing the Poincaré inequality by Nash's inequality or using direct estimates in Fourier variables, we adapt the L 2 hypocoercivity methods and prove that an appropriate norm of the solution decays at a rate which is the rate of the heat equation. This observation is compatible with diffusion limits, which have been a source of inspiration for building Lyapunov functionals and establishing the L 2 hypocoercivity method of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. Before stating any result, we need some notation to implement the factorization method of [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H -theorem[END_REF] and obtain estimates in large functional spaces.

Let us consider the measures (4)

d γ k := γ k (v) d v where γ k (v) = 1 + |v| 2 k/2 and k > d , such that 1/γ k ∈ L 1 (R d ). The condition k ∈ (d , ∞]
then covers the case of weights with a growth of the order of |v| k , when k is finite, and we denote k = ∞ the case when the weight γ ∞ = M -1 grows at least exponentially fast.

Theorem 1. -Assume (H1)-(H4), x ∈ R d , and k ∈ (d , ∞].
Then there exists a constant C > 0 such that solutions f of [START_REF] Achleitner | On linear hypocoercive BGK models[END_REF] 2 .

with initial datum f 0 ∈ L 2 (d x d γ k ) ∩ L 2 (d γ k ; L 1 (d x)) satisfy, for all t ≥ 0, f (t , •, •) 2 L 2 (dx dγ k ) ≤ C f 0 2 L 2 (dx dγ k ) + f 0 2 L 2 (dγk;L 1 (d x)) (1 + t ) d/
For the heat equation improved decay rates can be shown by Fourier techniques, if the modes with slowest decay are eliminated from the initial data. The following two results are in this spirit.

Theorem 2. -Let the assumptions of Theorem 1 hold, and let

R d ×R d f 0 d x d v = 0 .
Then there exists C > 0 such that solutions f of (1) with initial datum f 0 satisfy, for all t ≥ 0,

f (t , •, •) 2 L 2 (d x dγ k ) ≤ C f 0 2 L 2 (dγ k+2 ; L 1 (d x)) + f 0 2 L 2 (dγk;L 1 (|x| d x)) + f 0 2 L 2 (d x dγ k ) (1 + t ) d/2+1
,

with k ∈ (d , ∞).
The case of Theorem 2, but with k = ∞, is covered in Theorem 3 under the stronger assumption that M is a Gaussian. For the formulation of a result corresponding to the cancellation of higher order moments, we introduce the set R ℓ [X ,V ] of polynomials of order at most ℓ in the variables X , V ∈ R d (the sum of the degrees in X and in V is at most ℓ). We also need that the kernel of the collision operator is spanned by a Gaussian function in order to keep polynomial spaces invariant. This means that for any P

∈ R ℓ [X ,V ], one has (L -T) (P M ) ∈ R ℓ [X ,V ]M .
Since the transport operator mixes both variables x and v, one needs moments with respect to both x and v variables. Theorem 3. -In Case (a), let M be the normalized Gaussian [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF]. In Case (b), we assume that σ ≡ 1. Let k ∈ (d , ∞], ℓ ∈ N and assume that the initial datum

f 0 ∈ L 1 (R d × R d ) is such that (5) R d ×R d f 0 (x, v) P (x, v) d x d v = 0 for all P ∈ R ℓ [X ,V ].
Then there exists a constant c k > 0 such that any solution f of (1) with initial datum f 0 satisfies, for all t ≥ 0,

f (t , •, •) 2 L 2 (d x dγ k ) ≤ c k f 0 2 L 2 (dγ k+2 ; L 1 (d x)) + f 0 2 L 2 (dγk;L 1 (|x| d x)) + f 0 2 L 2 (d x dγ k ) (1 + t ) d/2+1+ℓ
.

The outline of this paper goes as follows. In Section 2, we slightly strengthen the abstract hypocoercivity result of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] by allowing complex Hilbert spaces and by providing explicit formulas for the coefficients in the decay rate (Proposition 4). In Corollary 5, this result is applied for fixed ξ to the Fourier transformed problem [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF], where integrals are computed with respect to the measure d γ ∞ in the velocity variable v. Since the frequency ξ can be considered as a parameter, we shall speak of a mode-by-mode hypocoercivity result. It provides exponential decay, however with a rate deteriorating as ξ → 0.

In Section 3, we state a special case (Proposition 6) of the factorization result of [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H -theorem[END_REF] with explicit constants which corresponds to an enlargement of the space, and also a shrinking result (Proposition 7) which will be useful in Section 6.2. By the enlargement result, the estimate corresponding to the exponential weight γ ∞ is extended in Corollary 8 to larger spaces corresponding to the algebraic weights γ k with k ∈ (d , ∞). As a straightforward consequence, in Section 4, we recover an exponential convergence rate in the case of the flat torus T d (Corollary 9), and then give a first proof of the algebraic decay rate of Theorem 1 in the whole space without confinement.

In Section 5, an hypocoercivity method, where the Poincaré inequality, or the so-called macroscopic coercivity condition, is replaced by the Nash inequality, provides an alternative proof of Theorem 1. Such a direct approach is also applicable to problems with non-constant coefficients like scattering operators with xdependent scattering rates σ, or Fokker-Planck operators with x-dependent diffusion constants like

∇ v • D(x) M ∇ v (M -1 f ) .
The improved algebraic decay rates of Theorem 2 and Theorem 3 are obtained by direct Fourier estimates in Section 6. As we shall see in the Appendix A, the rates of Theorem 1 are optimal: the decay rate is the rate of the heat equation on R d . Our method is consistent with the diffusion limit and provides estimates which are asymptotically uniform in this regime: see Appendix B. We also check that the results of Theorem 2 and Theorem 3 are uniform in the diffusive limit in Appendix B.

We conclude this introduction by a brief review of the literature: On the whole Euclidean space, we refer to [START_REF] Vázquez | Asymptotic behaviour methods for the Heat Equation[END_REF] for recent lecture notes on available techniques for capturing the large time asymptotics of the heat equation. Some of our results make a clear link with the heat flow seen as the diffusion limit of the kinetic equation. We also refer to [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF] for recent results on the diffusion limit, or overdamped limit (see Appendix B).

The mode-by-mode analysis is an extension of the hypocoercivity theory of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], which has been inspired by [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF], but is also close to the Kawashima compensating function method: see [START_REF] Kawashima | The Boltzmann equation and thirteen moments[END_REF] and [15, Chapter 3, Section 3.9]. We also refer to [START_REF] Duan | Hypocoercivity of linear degenerately dissipative kinetic equations[END_REF] where the Kawashima approach is applied to a particular case of the scattering model (b).

The word hypocoercivity was coined by T. Gallay and widely disseminated in the context of kinetic theory by C. Villani. In [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF][START_REF] Villani | Hypocoercive diffusion operators[END_REF][START_REF] Villani | [END_REF], the method deals with large time properties of the solutions by considering a H 1 -norm (in x and v variables) and taking into account cross-terms. This is very well explained in [START_REF] Villani | Hypocoercive diffusion operators[END_REF]Section 3], but was already present in earlier works like [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF]. Hypocoercivity theory is inspired by and related to the earlier hypoellipticity theory. The latter has a long history in the context of the kinetic Fokker-Planck equation. One can refer for instance to [START_REF] Eckmann | Spectral properties of hypoelliptic operators[END_REF][START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] and much earlier to Hörmander's theory [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. The seed for such an approach can even be traced back to Kolmogorov's computation of Green's kernel for the kinetic Fokker-Planck equation in [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF], which has been reconsidered in [START_REF] Il′in | On the equations of Brownian motion[END_REF] and successfully applied, for instance, to the study of the Vlasov-Poisson-Fokker-Planck system in [START_REF] Victory | On classical solutions of Vlasov-Poisson Fokker-Planck systems[END_REF][START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF].

Linear Boltzmann equations and BGK (Bhatnagar-Gross-Krook, see [START_REF] Bhatnagar | A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[END_REF]) models also have a long history: we refer to [START_REF] Degond | Diffusion limit for nonhomogeneous and non-microreversible processes[END_REF][START_REF] Cáceres | Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles[END_REF] for key mathematical properties, and to [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF][START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] for first hypocoercivity results. In this paper we will mostly rely on [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. However, among more recent contributions, one has to quote [START_REF] Han-Kwan | Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium[END_REF][START_REF] Achleitner | On linear hypocoercive BGK models[END_REF][START_REF] Bouin | Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt[END_REF] and also an approach based on the Fisher information which has recently been implemented in [START_REF] Evans | Hypocoercivity in Phi-entropy for the linear Boltzmann equation on the torus[END_REF][START_REF] Monmarché | A note on Fisher Information hypocoercive decay for the linear Boltzmann equation[END_REF].

With the exponential weight γ ∞ = M -1 , Corollary 9 can be obtained directly by the method of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. In this paper we also obtain a result for weights with polynomial growth in the velocity variable based on [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H -theorem[END_REF]. For completeness, let us mention that recently the exponential growth issue was overcome for the Fokker-Planck case in [START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF][START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF] by a different method. The improved decay rates established in Theorem 2 and in Theorem 3 generalize to kinetic models similar results known for the heat equation, see for instance [START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF]Remark 3.2 (7)] or [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF].

Mode-by-mode hypocoercivity

Let us consider the evolution equation [START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF] d F d t

+ TF = LF ,
where T and L are respectively a general transport operator and a general linear collision operator. We shall use the abstract approach of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. Although the extension of the method to Hilbert spaces over complex numbers is rather straightforward, we carry it out here for completeness. For details on the Cauchy problem or, e.g., on the domains of the operators, we refer to [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. Notice that we do not ask that L is a Hermitian operator but simply assume that L * A = 0. where * denotes the adjoint with respect to 〈•, •〉. We assume that L * A = 0 and that there are positive constants λ m , λ M , and C M exist, such that, for any F ∈ H , the following properties hold:

⊲ microscopic coercivity: (A1) -〈LF, F 〉 ≥ λ m (1 -Π)F 2 , ∀ F ∈ D(L) , ⊲ macroscopic coercivity: (A2) TΠF 2 ≥ λ M ΠF 2 , ∀ F ∈ D(T ) ,
⊲ parabolic macroscopic dynamics:

(A3) ΠTΠ F = 0, ∀ F ∈ D(T ) ,
⊲ bounded auxiliary operators:

(A4) AT(1 -Π)F + ALF ≤ C M (1 -Π)F , ∀ F ∈ D(L) ∩ D(T ) .
Then L -T generates a C 0 -semigroup and for any t ≥ 0, we have

(7) e (L-T) t 2 ≤ 3 e -λ t where λ = λ M 3 (1 + λ M ) min 1, λ m , λ m λ M (1 + λ M )C 2 M .
Proof. -For some δ > 0 to be determined later, the Lyapunov functional

H[F ] := 1 2 F 2 + δ Re〈AF, F 〉 is such that d d t H[F ] = -D[F ] if F solves (6), with D[F ] := -〈LF, F 〉 + δ 〈ATΠF, F 〉 + δ Re〈AT(1 -Π)F, F 〉 -δ Re〈TAF, F 〉 -δ Re〈ALF, F 〉 .
Note that we have used the fact that Re〈AF, LF 〉 = 0 because of the assumption L * A = 0, and also that 〈ATΠF, F 〉 is real because ATΠ is self-adjoint by construction. Since the Hermitian operator ATΠ can be interpreted as the application of the map z → (1 + z) -1 z to (TΠ) * TΠ and as a consequence of the spectral theorem [30, Theorem VII.2, p. 225], the conditions (A1) and (A2) imply that

-〈LF, F 〉 + δ 〈ATΠF, F 〉 ≥ λ m (1 -Π)F 2 + δ λ M 1 + λ M ΠF 2 .
As in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]Lemma 1], if G = AF , i.e., G + (TΠ) * TΠG = (TΠ) * F , one has

AF 2 + TAF 2 = 〈G,G + (TΠ) * TΠG〉 = 〈G, (TΠ) * F 〉 = 〈TAF, (1 -Π)F 〉 where we have used A = ΠA and ΠT Π = 0. Using |〈TAF, (1 -Π)F 〉| ≤ TAF 2 + 1 4 (1 -Π)F 2 , one gets (8) AF 2 ≤ 1 4 (1 -Π)F 2 ,
which implies that |Re〈AF, F 〉| ≤ AF F ≤ 1 2 F 2 and provides us with the norm

equivalence of H[F ] and F 2 , (9) 1 2 
(

1 -δ) F 2 ≤ H[F ] ≤ 1 2 (1 + δ) F 2 .
With X := (1 -Π)F and Y := ΠF , it follows from (A4) that

D[F ] ≥ (λ m -δ) X 2 + δ λ M 1 + λ M Y 2 -δC M X Y . The choice δ = 1 2 min 1, λ m , λ m λ M (1+λ M )C 2 M implies that D[F ] ≥ λ m 4 X 2 + δ λ M 2 (1 + λ M ) Y 2 ≥ 1 4 min λ m , 2 δ λ M 1 + λ M F 2 ≥ 2 δ λ M 3 (1 + λ M ) H[F ] .
With λ defined in [START_REF] Bouin | Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt[END_REF], using δ ≤ 1/2 and (1 + δ)/(1 -δ) ≤ 3, we get

F (t ) 2 ≤ 2 1 -δ H[F ](t ) ≤ 1 + δ 1 -δ e -λ t F (0) 2 ≤ 3 e -λ t F (0) 2 .
For any fixed ξ ∈ R d , let us apply Proposition 4 to (3) with F = f and

H = L 2 d γ ∞ , F 2 = R d |F | 2 d γ ∞ , ΠF = M R d F d v = M ρ F , TF = i (v•ξ) F .
Here we are in a mode-by-mode framework in which the transport operator T is a simple multiplication operator.

Corollary 5. -Assume (H1)-(H4), and take

ξ ∈ R d . If f is a solution of (3) such that f0 (ξ, •) ∈ L 2 (d γ ∞ )
, then for any t ≥ 0, we have

f (t , ξ, •) 2 L 2 (dγ∞) ≤ 3 e -µ ξ t f0 (ξ, •) 2 L 2 (dγ∞)
, where [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF] µ

ξ := Λ |ξ| 2 1 + |ξ| 2 and Λ = 1 3 min 1, Θ min 1, λ m Θ 2 K + Θ κ 2 , with (11) Θ := R d (v •e) 2 M (v) d v , K := R d (v •e) 4 M (v) d v , θ := 4 d R d ∇ v M 2 d v ,
for an arbitrary e ∈ S d-1 , and with κ = θ in Case (a) and κ = 2 σ Θ in Case (b).

Proof. -We check that the assumptions of Proposition 4 are satisfied with F = f .

The property L

* A = 0 is a consequence of the mass conservation R d Lf d v = 0 because ΠA = A. Assumption (H4) implies (A1).
Concerning the macroscopic coercivity (A2), since

TΠF = i (v • ξ) ρ F M , one has TΠF 2 = |ρ F | 2 R d |v • ξ| 2 M (v) d v = Θ |ξ| 2 |ρ F | 2 = Θ |ξ| 2 ΠF 2 ,
and thus (A2) holds with λ M = Θ |ξ| 2 . By assumption M (v) depends only on |v|, so it is unbiased: R d v M (v) d v = 0, which means that (A3) holds.

Let us now prove (A4). Since (TΠ)

* F = -Π TF = -i (ξ • R d v ′ F (v ′ ) d v ′ ) M , we obtain that 1 + (TΠ) * TΠ ρ M = 1 + R d ξ • v ′ 2 M (v ′ ) d v ′ ρ M = 1 + Θ |ξ| 2 ρ M
and the operator A, defined in Proposition 4, is given mode-by-mode by

AF = -i ξ • R d v ′ F (v ′ ) d v ′ 1 + Θ |ξ| 2 M .
As a consequence, A satisfies the estimate

AF = A(1 -Π)F ≤ 1 1 + Θ |ξ| 2 R d |(1 -Π)F | M |v • ξ| M d v ≤ (1 -Π)F 1 + Θ |ξ| 2 R d (v • ξ) 2 M d v 1/2 = Θ |ξ| 1 + Θ |ξ| 2 (1 -Π)F .
In Case (b) the collision operator L is obviously bounded:

LF ≤ 2 σ (1 -Π)F
and, as a consequence,

ALF ≤ 2 σ Θ |ξ| 1 + Θ |ξ| 2 (1 -Π)F .
We also notice that L * A = 0 according to (H3). For estimating AL in Case (a), we note that

R d v LF d v = 2 R d ∇ v M F M d v
and obtain as above that

ALF ≤ 2 1 + Θ |ξ| 2 R d |(1 -Π)F | M ξ • ∇ v M d v ≤ θ |ξ| 1 + Θ |ξ| 2 (1 -Π)F .
For both cases we finally obtain

ALF ≤ κ |ξ| 1 + Θ |ξ| 2 (1 -Π)F . Similarly we can estimate AT(1 -Π)F = R d (v ′ •ξ) 2 (1-Π)F (v ′ ) d v ′ 1+Θ |ξ| 2 M by AT(1 -Π)F = R d v ′ • ξ 2 (1 -Π)F (v ′ ) d v ′ 1 + Θ |ξ| 2 ≤ R d v ′ • ξ 4 M (v ′ ) d v ′ 1/2 1 + Θ |ξ| 2 (1 -Π)F = K |ξ| 2 1 + Θ |ξ| 2 (1 -Π)F , meaning that we have proven (A4) with C M = κ |ξ|+ K |ξ| 2 1+Θ |ξ| 2 .
With the elementary estimates

Θ |ξ| 2 1 + Θ |ξ| 2 ≥ min 1, Θ |ξ| 2 1 + |ξ| 2 and λ M (1 + λ M )C 2 M = Θ 1 + Θ |ξ| 2 κ + K |ξ| 2 ≥ Θ 2 K + Θ κ 2 ,
the proof is completed using [START_REF] Bouin | Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt[END_REF].

Enlarging and shrinking spaces by factorization

Square integrability against the inverse of the local equilibrium M is a rather restrictive assumption on the initial datum. In this section it will be relaxed with the help of the abstract factorization method of [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H -theorem[END_REF] in a simple case (factorization of order 1). Here we state the result and sketch a proof in a special case, for the convenience of the reader. We shall then give a result based on similar computations in the opposite direction: how to establish a rate in a stronger norm, which correspond to a shrinking of the functional space. We will conclude with an application to the problem studied in Corollary 5. Let us start by enlarging the space. Proposition 6. -Let B 1 , B 2 be Banach spaces and let B 2 be continuously imbed-

ded in B 1 , i.e., • 1 ≤ c 1 • 2 .
Let B and A + B be the generators of the strongly continuous semigroups e B t and e (A+B) t on B 1 . Assume that there are positive constants c 2 , c 3 , c 4 , λ 1 and λ 2 such that, for all t ≥ 0,

e (A+B) t 2→2 ≤ c 2 e -λ 2 t , e Bt 1→1 ≤ c 3 e -λ 1 t , A 1→2 ≤ c 4 ,
where • i → j denotes the operator norm for linear mappings from B i to B j . Then there exists a positive constant C = C (c 1 , c 2 , c 3 , c 4 ) such that, for all t ≥ 0,

e (A+B) t 1→1 ≤ C 1 + |λ 1 -λ 2 | -1 e -min{λ 1 ,λ 2 } t for λ 1 = λ 2 , C (1 + t ) e -λ 1 t for λ 1 = λ 2 .
Proof. The proof is completed by the straightforward computation

-
e (A+B) t 1→1 ≤ c 3 e -λ 1 t + c 1 t 0 e (A+B) s Ae B (t -s) 1→2 d s ≤ c 3 e -λ 1 t + c 1 c 2 c 3 c 4 e -λ 1 t t 0 e (λ 1 -λ 2 ) s d s .
The second statement of this section is devoted to a result on the shrinking of the functional space. It is based on a computation which is similar to the one of the proof of Proposition 6. Proposition 7. -Let B 1 , B 2 be Banach spaces and let B 2 be continuously imbedded in B 1 , i.e., • 1 ≤ c 1 • 2 . Let B and A + B be the generators of the strongly continuous semigroups e B t and e (A+B) t on B 1 . Assume that there are positive constants c 2 , c 3 , c 4 , λ 1 and λ 2 such that, for all t ≥ 0,

e (A+B) t 1→1 ≤ c 2 e -λ 1 t , e Bt 2→2 ≤ c 3 e -λ 2 t , A 1→2 ≤ c 4 ,
where • i → j denotes the operator norm for linear mappings from B i to B j . Then there exists a positive constant C = C (c 1 , c 2 , c 3 , c 4 ) such that, for all t ≥ 0,

e (A+B) t 2→2 ≤ C 1 + |λ 2 -λ 1 | -1 e -min{λ 2 ,λ 1 } t for λ 2 = λ 1 , C (1 + t ) e -λ 1 t for λ 1 = λ 2 .
Proof The proof is completed by the straightforward computation

e (A+B) t 2→2 ≤ c 3 e -λ 2 t + t 0 e B (t -s) Ae (A+B) s 2→2 d s ≤ c 3 e -λ 2 t + c 1 t 0 e B (t -s) Ae (A+B) s 1→2 d s ≤ c 3 e -λ 2 t + c 1 t 0 e B (t -s) 2→2 A 1→2 e (A+B) s 1→1 d s ≤ c 3 e -λ 2 t + c 1 c 2 c 3 c 4 e -λ 2 t t 0 e (λ 2 -λ 1 ) s d s .
We will use Proposition 7 in Section 6.2. Coming back to the problem studied in Corollary 5, Proposition 6 applies to (3) with the spaces

B 1 = L 2 (d γ k ), k ∈ (d , ∞), and B 2 = L 2 (d γ ∞ )
corresponding to the weights defined by (4). The exponential growth of γ ∞ guarantees that B 2 is continuously imbedded in B 1 .

Corollary 8. -Assume (H1)-(H4), k ∈ (d , ∞], and ξ ∈ R d .
Then there exists a constant C > 0, such that solutions f of (3) with initial datum f0 (ξ, •) ∈ L 2 (d γ k ) satisfy, with µ ξ given by [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF], 

f (t , ξ, •) 2 L 2 (dγ k ) ≤ C e -µ ξ t f0 (ξ, •) 2 L 2 (dγ k ) ∀ t ≥ 0 .
R d (L -A)(F ) F d γ k ≤ -λ 1 R d F 2 d γ k
holds for some λ 1 > 0. Moreover, λ 1 can be chosen arbitrarily large for R and N large enough. The boundedness of A : B 1 → B 2 follows from the compactness of the support of χ and Proposition 6 applies with λ 2 = µ ξ /2 ≤ 1/4, where µ ξ is given by [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF].

In Case (b), we consider A and B such that

AF (v) = M (v) R d σ(v, v ′ ) F (v ′ ) d v ′ , BF (v) = -i (v • ξ) + R d σ(v, v ′ ) M (v ′ ) d v ′ F (v) .
The boundedness of A : B 1 → B 2 follows from (H2) and

AF L 2 (dγ ∞ ) ≤ σ F L 1 (d v) ≤ σ R d γ -1 k d v 1/2 F L 2 (dγ k ) .
Proposition 6 applies with

λ 2 = µ ξ 2 ≤ 1 4 and λ 1 = 1 because R d σ(v, v ′ ) M (v ′ ) d v ′ ≥ 1.

Asymptotic behavior based on mode-by-mode estimates

In this section we consider (1) and use the estimates of Corollary 5 with weight γ ∞ = 1/M and Corollary 8 for weights with O(|v| k ) growth to get decay rates with respect to t . We shall consider two cases for the spatial variable x. In Section 4.1, we assume that x ∈ T d , where T d is the flat d -dimensional torus (represented by [0, 2π) d with periodic boundary conditions) and prove an exponential convergence rate. In Section 4.2, we assume that x ∈ R d and establish algebraic decay rates.

4.1. Exponential convergence to equilibrium in T d . -In the periodic case x ∈ T d there is a unique non-zero normalized equilibrium given by

f ∞ (x, v) = ρ ∞ M (v) with ρ ∞ = 1 |T d | T d ×R d f 0 d x d v . Corollary 9. -Assume (H1)-(H4) and k ∈ (d , ∞].
Then there exists a constant C > 0, such that the solution f of (1) on

T d × R d with initial datum f 0 ∈ L 2 (d x d γ k )
satisfies, with Λ given by [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF],

f (t , •, •) -f ∞ L 2 (d x dγ k ) ≤ C f 0 -f ∞ L 2 (d x dγ k ) e -Λ t 4 ∀ t ≥ 0 .
Proof. -We represent the flat torus T d by [0, 2π) d with periodic boundary conditions, and the Fourier variable is denoted ξ ∈ Z d . For ξ = 0, the microscopic coercivity (see Section 2) implies

f (t , 0, •) -f∞ (0, •) L 2 (dγ ∞ ) ≤ f0 (0, •) -f∞ (0, •) L 2 (dγ ∞ ) e -t .
For all other modes, f∞ (ξ, •) = 0 for any ξ = 0 (that is, for any ξ such that |ξ| ≥ 1). We can use Corollary 5 with µ ξ ≥ Λ/2, with the notations of [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF]. An application of Parseval's identity then proves the result for k = ∞, and C = 3. If k is finite, the result with the weight γ k follows from Corollary 8.

Note that the latter result can also alternatively be proved by directly applying Proposition 4 to (1), as in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF]. 

Algebraic decay rates in

f (t , •, •) 2 L 2 (d x dγ k ) ≤ C R d R d e -µ ξ t f0 2 d ξ d γ k . We know that |ξ|≤1 e -µ ξ t d ξ ≤ R d e -Λ 2 |ξ| 2 t d ξ = 2 π Λ t d/2 and thus, for all v ∈ R d , |ξ|≤1 e -µ ξ t f0 2 d ξ ≤ C f 0 (•, v) 2 L 1 (d x) R d e -Λ 2 |ξ| 2 t d ξ ≤ C f 0 (•, v) 2 L 1 (d x) t -d 2 .
Using the fact that µ ξ ≥ Λ/2 when |ξ| ≥ 1 and Plancherel's formula, we know that,

for all v ∈ R d , |ξ|>1 e -µ ξ t f0 2 d ξ ≤ C e -Λ 2 t f 0 (•, v) 2 L 2 (d x) ,
which completes a first proof of Theorem 1.

Hypocoercivity and the Nash inequality

In view of the proof of Theorem 1 in Section 4.2 and of the rate, it is natural to wonder if the hypocoercivity can be controlled by the use of Nash's inequality. Here we temporarily abandon the Fourier variable ξ and consider the direct variable x ∈ R d : throughout this section, the transport operator on the position space is defined as

T f = v • ∇ x f .
We rely on the abstract setting of Section 2, applied to (1) with the scalar product 〈•, •〉 on L 2 (d x d γ ∞ ) and the induced norm • . Notice that this norm includes the x variable, which was not the case in the mode-by-mode analysis of Section 2. It is then easy to check that (TΠ)

f = M Tρ f = v •∇ x ρ f M , (TΠ) * f = -∇ x • R d v f d v M and (TΠ) * (TΠ) f = -Θ ∆ x ρ f M so that g = A f = 1 + (TΠ) * TΠ -1 (TΠ) * f ⇐⇒ g = u M where u-Θ ∆u = -∇ x • R d v f d v . Since M is unbiased, A f = A(1 -Π) f .
For some δ > 0 to be chosen later, we redefine the entropy by

H[ f ] := 1 2 f 2 + δ 〈A f , f 〉. Proof of Theorem 1. -If f solves (1), the time derivative of H[ f (t , •, •)] is given by (12) d d t H[ f ] = -D[ f ]
where, as in the proof of Proposition 4,

D[ f ] := -〈L f , f 〉+δ 〈ATΠ f , f 〉+δ Re〈AT(1-Π) f , f 〉-δ Re〈TA f , f 〉-δ Re〈ALf , f 〉 .
Here we use the fact that 〈A f , Lf 〉 = 0. The first term in D[ f ] satisfies the microscopic coercivity condition

-〈L f , f 〉 ≥ λ m (1 -Π) f 2 .
The second term in ( 12) is computed as follows. Solving g = ATΠ f is equivalent to solving (1 + (TΠ) * TΠ) g = (TΠ) * TΠ f , i.e.,

(13) v f -Θ ∆ x v f = -Θ ∆ x ρ f , where g = v f M . Hence 〈ATΠ f , f 〉 = R d v f ρ f d x .
A direct application of the hypocoercivity approach of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] to the whole space problem fails by lack of a macroscopic coercivity condition. Although the second term in [START_REF] Duan | Hypocoercivity of linear degenerately dissipative kinetic equations[END_REF] is not coercive, we observe that the last three terms in [START_REF] Duan | Hypocoercivity of linear degenerately dissipative kinetic equations[END_REF] can still be dominated by the first two for δ > 0, small enough, as follows. 1) As in [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], we use the adjoint operators to compute

〈AT(1 -Π) f , f 〉 = -〈(1 -Π) f , TA * f 〉 .
We observe that

A * f = TΠ 1 + (TΠ) * TΠ -1 f = T 1 + (TΠ) * TΠ -1 Π f = M Tu f = v M • ∇ x u f
where u f is the solution in H 1 (d x) of ( 14)

u f -Θ ∆ x u f = ρ f .
With K defined by [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF], we obtain that

TA * f 2 ≤ K ∇ 2 x u f 2 L 2 (d x) = K ∆ x u f 2 L 2 (d x) .
On the other hand, we observe that v f = -Θ ∆u f solves [START_REF] Eckmann | Spectral properties of hypoelliptic operators[END_REF]. Hence by multiplying ( 14) by v f = -Θ ∆u f and integrating by parts, we know that

(15) Θ ∇ x u f 2 L 2 (d x) + Θ 2 ∆ x u f 2 L 2 (d x) = R d v f ρ f d x = 〈ATΠ f , f 〉 .
Notice that a central feature of our method is the fact that quantities of interest involving the operator A can be computed by solving an elliptic equation (for instance [START_REF] Eckmann | Spectral properties of hypoelliptic operators[END_REF] in case of ATΠf or ( 14) in case of A * f ). Altogether we obtain that

|〈AT(1 -Π) f , f 〉| ≤ (1 -Π) f TA * f ≤ K Θ (1 -Π) f 〈ATΠ f , f 〉 1/2 .
2) By ( 8), we have

〈TA f , f 〉 = 〈TA(1 -Π) f , (1 -Π) f 〉 ≤ (1 -Π) f 2 .
3) It remains to estimate the last term on the right hand side of [START_REF] Duan | Hypocoercivity of linear degenerately dissipative kinetic equations[END_REF]. Let us consider the solution u f of ( 14). If we multiply ( 13) by u f and integrate, we observe that

Θ ∇ x u f 2 L 2 (d x) = R d u f v f d x ≤ R d u f v f d x + R d |v f | 2 d x = R d v f ρ f d x because v f = -Θ ∆u f , so that A * f 2 = Θ ∇ x u f 2 L 2 (d x) ≤ 〈ATΠ f , f 〉 . In Case (a), we compute 〈AL f , f 〉 = 〈L(1 -Π) f , A * f 〉 = R d ×R d ∇ x u f • ∇ v M M (1 -Π) f d x d v .
It follows from the Cauchy-Schwarz inequality that

R d |∇ v M | |(1 -Π) f | d γ ∞ ≤ ∇ v M L 2 (dγ∞) (1 -Π) f L 2 (dγ∞) = d θ (1 -Π) f L 2 (dγ∞)
and

|〈AL f , f 〉| ≤ ∇ x u f L 2 (d x) R d 1 d R d |∇ v M | |(1 -Π) f | d γ 2 d x 1 2
.

Altogether, we obtain that

|〈AL f , f 〉| ≤ θ Θ (1 -Π) f 〈ATΠf , f 〉 1 2 .
In Case (b), we use (H2) to get that

|〈AL f , f 〉| ≤ Lf A * f ≤ 2 σ (1 -Π) f A * f ≤ 2 σ (1 -Π) f 〈ATΠf , f 〉 1 2 
. In both cases, (a) and (b), the estimate can be written as

|〈ALf , f 〉| ≤ 2 σ (1 -Π) f 〈ATΠ f , f 〉 1 2
with the convention that σ = 1 2 θ/Θ in Case (a). Summarizing, we know that

- d d t H[ f ] ≥ (λ m -δ) X 2 + δ Y 2 + 2 δ b X Y with X := (1 -Π) f , Y := 〈ATΠ f , f 〉 1/2 and b := K 2 Θ + 2 σ. The largest a > 0 such that (λ m -δ) X 2 + δ Y 2 + 2 δ b X Y ≥ a X 2 + 2 Y 2
holds for any X , Y ∈ R is given by the conditions ( 16)

a < λ m -δ , 2 a < δ , δ 2 b 2 -(λ m -δ -a)(δ -2 a) ≤ 0
and it is easy to check that there exists a positive solution if δ > 0 is small enough.

To fulfill the additional constraint δ < 1, we can for instance choose Altogether we obtain that

- d d t H[ f ] ≥ a (1 -Π) f 2 + 2 〈ATΠ f , f 〉 .
Using ( 14) and ( 15), we control

Π f 2 = ρ f 2 L 2 (d x) by 〈ATΠ f , f 〉 according to Π f 2 = u f 2 L 2 (d x) + 2 Θ ∇ x u f 2 L 2 (d x) + Θ 2 ∆ x u f 2 L 2 (d x) ≤ u f 2 L 2 (d x) + 2 〈ATΠ f , f 〉 . We observe that, for any t ≥ 0, u f (t , •) L 1 (d x) = ρ f (t , •) L 1 (d x) = f 0 L 1 (d x d v) , ∇ x u f 2 L 2 (d x) ≤ 1 Θ 〈ATΠ f , f 〉 .
According to [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF], we recall the Nash inequality

(17) u 2 L 2 (d x) ≤ C Nash u 4 d+2 L 1 (d x) ∇u 2 d d+2 L 2 (d x)
for any function u ∈ L 1 ∩ H 1 (R d ). We use [START_REF] Han-Kwan | Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium[END_REF] with u = u f to get

Π f 2 ≤ Φ -1 2 〈ATΠ f , f 〉 with Φ -1 (y) := y + y c d d+2 ∀ y ≥ 0 where c = 2 Θ C -1-2 d Nash f 0 -4 d L 1 (d x d v) . The function Φ : [0, ∞) → [0, ∞) satisfies Φ(0) = 0 and 0 < Φ ′ < 1, so that (1 -Π) f 2 + 2 〈ATΠ f , f 〉 ≥ Φ( f 2 ) ≥ Φ 2 1+δ H[ f ]
where the last inequality holds as a consequence of [START_REF] Degond | Diffusion limit for nonhomogeneous and non-microreversible processes[END_REF]. From

z = Φ -1 (y) = y + y c d d+2 ≤ y 2 d+2 0 y d d+2 + y c d d+2 = y 2 d+2 0 + c -d d+2 y d d+2 ,
as long as y ≤ y 0 , for y 0 to be chosen later, we have

y = Φ(z) ≥ Φ(z 0 ) 2 d+2 + c -d d+2 -d+2 d z 1+ 2 d , as long as z ≤ z 0 := Φ -1 (y 0 ). Since d d t H[ f ] ≤ 0, we have 2 1+δ H[ f ] ≤ 2 1+δ H[ f 0 ]. We
thus apply the previous inequalities with z 0 = 2 1+δ H[ f 0 ] together with the fact that

Φ(z 0 ) ≥ z 0 ≥ 1-δ 1+δ f 0 2 and that c is proportional to f 0 -4/d L 1 (d x d v) , to get Φ 2 1+δ H[ f ] f 0 4 d+2 L 2 (dx dγ ∞ ) + f 0 4 d+2 L 1 (d x d v) -d+2 d H[ f ] 1+ 2 d .
We deduce the entropy decay inequality [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] -

d d t H[ f ] f 0 4 d+2 L 2 (dx dγ ∞ ) + f 0 4 d+2 L 1 (d x d v) -d+2 d H[ f ] 1+ 2 d .
A simple integration from 0 to t shows that

H[ f ] H[ f 0 ] -2 d + f 0 4 d+2 L 2 (dx dγ ∞ ) + f 0 4 d+2 L 1 (d x d v) -d+2 d t -d 2 .
The result of Theorem 1 then follows from elementary considerations.

Using moments instead of the mass, it is possible to state an improved Nash inequality: there exists a positive constant C ⋆ such that

u 2 L 2 (d x) ≤ C ⋆ x u 4 d+4 L 1 (d x) ∇u d+2 d+4 L 2 (d x) for any u ∈ H 1 (d x) ∩ L 1 ((1 + |x|) d x) such that R d u d x = 0.
The proof follows from a minor modification of Nash's original proof (attributed by Nash himself to Stein) in [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] and uses Fourier variables. As a consequence, any solution of the heat equation with zero average decays in L 2 (d x) like O t -1-d/2 as t → +∞. It is the topic of the following section to use Fourier variables in the spirit of Nash's proof to get improved rates of decay at the level of the kinetic equation.

Algebraic decay rates in R d by Fourier estimates and improvements

We prove Theorem 2 in Section 6.1 and Theorem 3 in Section 6.2.

Improved decay rates. -Let us prove Theorem 2 by

Fourier methods inspired by the proof of Nash's inequality.

• Step 1: Decay of the average in space by a factorization argument. -We define [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] f

• (t , v) := R d f (t , x, v) d x
and observe that f • solves

∂ t f • = Lf • .
As a consequence, we have that 0

= R d f • (t , v) d v.
From the microscopic coercivity property (H4), we deduce that

f • (t , •) 2 L 2 (dγ ∞ ) = R d f • (t ,v) M 2 M d v ≤ f • (0, •) 2 L 2 (dγ ∞ ) e -λ m t ∀ t ≥ 0 .
With k ∈ (d , ∞), Proposition 6 applies like in the proof of Corollary 8 or in [START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF].

We observe that f

• (0, •) L 2 (|v| 2 dγ k ) ≤ f 0 L 2 (|v| 2 dγ k ; L 1 (d x))
. For some positive constants C and λ, we get that

(20) f • (t , •) 2 L 2 (|v| 2 dγ k ) ≤ C f 0 2 L 2 (|v| 2 dγ k ; L 1 (d x)) e -λ t , ∀ t ≥ 0 . • Step 2: Improved decay of f . -Let us define g (t , x, v) := f (t , x, v) -f • (t , v) ϕ(x),
where ϕ is a given positive function satisfying

R d ϕ(x)d x = 1 , e.g. ϕ(x) := (2π) -d/2 e -|x| 2 /2 , ∀ x ∈ R d . Since ∂ t f • = Lf • , the Fourier transform ĝ (t , ξ, v) of g (t , x, v) solves ∂ t ĝ + T ĝ = L ĝ -f • T φ , where T φ = i (v • ξ) φ. Using Duhamel's formula ĝ = e (L-T) t ĝ0 - t 0 e (L-T) (t -s) f • (s, v) T φ(ξ) d s ,
Corollary 5, and Proposition 6, for some generic constant C > 0 which will change from line to line, we get [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF] ĝ (t , ξ,

•) L 2 (dγk) ≤ C e -1 2 µ ξ t ĝ0 (ξ, •) L 2 (dγk) +C t 0 e - µ ξ 2 (t -s) f • (s, •) L 2 (|v| 2 dγ k ) |ξ| | φ(ξ)| d s .
The key observation is ĝ0 (0, v) = 0, so that ĝ0 (ξ, v)

= |ξ| 0 ξ |ξ| • ∇ ξ ĝ0 η ξ |ξ| , v d η yields | ĝ0 (ξ, v)| ≤ |ξ| ∇ ξ ĝ0 (•, v) L ∞ (dξ) ≤ |ξ| g 0 (•, v) L 1 (|x| d x) ∀ (ξ, v) ∈ R d × R d .
We know from [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF] that

µ ξ = Λ |ξ| 2 /(1 + |ξ| 2 )
. The first term of the r.h.s. of ( 21) can therefore be estimated for any t ≥ 1 by

|ξ|≤1 R d e (L-T) t ĝ0 2 d γ k d ξ 1/2 ≤ R d |ξ| 2 e -Λ 2 |ξ| 2 t d ξ 1/2 g 0 L 2 (dγk;L 1 (|x| d x)) ≤ C (1 + t ) 1+ d 2 g 0 L 2 (dγk;L 1 (|x| d x)) ,
which is the leading order term as t → ∞, and we have that

|ξ|>1 e -µ ξ t ĝ0 (ξ, •) 2 L 2 (dγk) d ξ ≤ C e -Λ 2 t g 0 2 L 2 (dx dγ k )
for any t ≥ 0, using the fact that µ ξ ≥ Λ/2 when |ξ| ≥ 1 and Plancherel's formula. Using [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF], the second term of the r.h.s. of ( 21) is estimated by

R d t 0 e - µ ξ 2 (t -s) f • (s, •) L 2 (|v| 2 dγ k ) |ξ| | φ(ξ)| d s 2 d ξ ≤ C f 0 2 L 2 (|v| 2 dγ k ; L 1 (d x)) R d |ξ| 2 | φ(ξ)| 2 t 0 e - µ ξ 2 (t -s) e -λ 2 s d s 2 d ξ .
On the one hand, we use the Cauchy-Schwarz inequality to get

|ξ|≤1 |ξ| 2 | φ(ξ)| 2 t 0 e - µ ξ 2 (t -s) e -λ 2 s d s 2 d ξ ≤ ϕ 2 L 1 (d x) |ξ|≤1 |ξ| 2 t 0 e -µ ξ (t -s) e -λ 2 s d s t 0 e -λ 2 s d s d ξ ≤ 2 λ ϕ 2 L 1 (d x) t 0 |ξ|≤1 |ξ| 2 e -Λ 2 |ξ| 2 (t -s) d ξ e -λ 2 s d s ≤ C 1 t -d 2 -1 +C 2 e -λ 4 t ,
where the last inequality is obtained by splitting the integral in s on (0, t /2) and (t /2, t ). On the other hand, using µ ξ ≥ Λ/2 when |ξ| ≥ 1, we obtain

|ξ|≥1 |ξ| 2 | φ(ξ)| 2 t 0 e - µ ξ 2 (t -s) e -λ 2 s d s 2 d ξ ≤ t 2 e -min{Λ/2,λ} t ∇ϕ 2 L 2 (d x) .
By collecting all terms, we deduce that g (t , •, •)

2 L 2 (dx dγ k ) is bounded by C g 0 2 L 2 (dγk;L 1 (|x| d x)) + f 0 2 L 2 ((|v| 2 dγ k ;L 1 (d x)) (1 + t ) -1+ d 2 ,
for some constant C > 0. Recalling that f = g + f • ϕ, the proof of Theorem 2 is completed using (20).

6.2. Improved decay rates with higher order cancellations. -We prove Theorem 3, which means that from now on we assume in Case (a) that M is a normalized Gaussian (2), and in Case (b) that σ ≡ 1. Moreover, the initial data satisfies [START_REF] Bhatnagar | A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[END_REF], that is,

R d ×R d f 0 P d x d v = 0 ∀ P ∈ R ℓ [X ,V ] .
For any P ∈ R ℓ [X ], let

P [ f ](t , v) := R d P (x) f (t , x, v) d x , so that R d P [ f ](0, v) d v = 0.
In this section we use the notation k to express inequalities up to a constant which depends on k.

• Step 1: Conservation of zero moments. -For a solution f of (1) we compute

d d t R d ×R d f (t , x, v) P (x, v) d x d v = - R d ×R d (v • ∇ x f ) P d x d v + R d ×R d (L f ) P d x d v = R d ×R d (v • ∇ x P ) f d x d v + R d ×R d (L f ) P d x d v .
In Case (a) of a Fokker-Planck operator, we may write

R d ×R d (L f ) P d x d v = R d ×R d 1 M ∇ v • (M ∇ v P ) f d x d v = R d ×R d (∆ v P -v • ∇ v P ) f d x d v . By definition of R ℓ [X ,V ], it turns out that ∆ v P -v •∇ v P ∈ R ℓ [X ,V ].
For the scattering operator of Case (b), one has

R d ×R d (L f ) P d x d v = R d ×R d R d M (v) f (t , x, v ′ ) -M (v ′ ) f (t , x, v) d v ′ P (x, v) d x d v = R d ×R d ×R d M (v) f (t , x, v ′ ) -M (v ′ ) f (t , x, v) P (x, v) d x d v d v ′ = R d ×R d R d M (v) P (x, v) d v f (t , x, v ′ ) d x d v ′ - R d ×R d f (x, v)P (x, v) d x d v . One can check that R d M (v) P (x, v) d v ∈ R ℓ [X ]. Since also v • ∇ x P ∈ R ℓ [X ,V ],
the evolution of moments of order lower or equal than ℓ is equivalent to a linear ODE of the form Ẏ (t ) = Q Y (t ), where Q is a matrix resulting from the previous computations. Consequently, if Y (0) = 0 initially, it remains null for all times.

• Step 2: Decay of polynomial averages in space.-We claim that for any j ≤ ℓ, there exists λ > 0 such that, for any P ∈ R j [X ] and q ∈ N,

P [ f ](t , •) L 2 (dγk+q ) j ,q f 0 L 2 (dγk+q+2j ; L 1 ((1+|x| j ) d x)) (1 + t ) j e -λ t ∀ t ≥ 0 . (21) 
Let us prove it by induction.

1. The case j = 0. Notice that j = 0 means that P is a real number and P [ f ] = f • as defined in [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF], up to a multiplication by a constant. Since

R d f • (t , v) d v = 0
for any t ≥ 0, one has ∂ t f • = Lf • , thus we deduce from the microscopic coercivity property as above that

f • (t , •) L 2 (dγ ∞ ) ≤ f • (0, •) L 2 (dγ ∞ ) e -λ m t ∀ t ≥ 0 .
We also obtain that

(22) f • (t , •) L 2 (dγk+q ) q f 0 L 2 (dγk+q ; L 1 (d x)) e -λ t ∀ t ≥ 0 ,
but this requires some comments. The case k ∈ (d , ∞) is covered by Corollary 8.

The case k = ∞ in ( 22) is given by the following lemma.

Lemma 10. -Under the assumptions of Theorem 3, one has

f • (t , •) L 2 ((1+|v| q ) dγ ∞) q f 0 L 2 ((1+|v| q ) dγ ∞ ; L 1 (d x)) e -λ t ∀ t ≥ 0 .
Proof. -We rely on Proposition 7 with the Banach spaces

B 1 = L 2 (d γ ∞ ) and B 2 = L 2 (1 + |v| q ) d γ ∞ .
In Case (a), let us define A and B by AF = N χ R F and BF = LF -AF . In Case (b), we consider A and B such that

AF (v) = M (v) R d F (v ′ ) d v ′ , BF (v) = - R d M (v ′ ) d v ′ F (v) .
The semi-group generated by A + B is exponentially decreasing in B 1 by the microscopic coercivity property, as above. The semi-group generated by B is exponentially decreasing in B 2 . In Case (b), it is straightforward. In Case (a),

F (t ) = e Bt F 0 is such that 1 2 d d t R d |F | 2 1 + |v| q d γ ∞ = R d (BF ) F 1 + |v| q d γ ∞ = R d ∇ v M ∇ v F M F 1 + |v| q d γ ∞ - R d N χ R (v) |F | 2 1 + |v| q d γ ∞ = - R d ∇ v F M 2 1 + |v| q M d v - R d q |v| q-2 v • ∇ v F M F M M d v - R d N χ R (v) |F | 2 1 + |v| q d v M ≤ R d q 2 ∇ v •(|v| q-2 v M) (1+|v| q )M -N χ R (v) |F | 2 1 + |v| q d v M ≤ - λ 2 R d |F | 2 1 + |v| q d γ ∞
for some λ > 0, by choosing N and R large enough.

The operator A : B 1 → B 2 is bounded. This is straightforward in Case (a) and follows from the boundedness of R d M (v) 1 + |v| q d γ ∞ in Case (b). Proposition 7 applies which concludes the proof.

Induction.

Let us assume that ( 21) is true for some j ≥ 0, consider P ∈ R j +1 [X ] and observe that P [ f ] solves

∂ t P [ f ] = LP[ f ] - R d (v • ∇ x P ) f d x .
Since ∇ x P ∈ R j [X ], the induction hypothesis at step j (applied with q replaced by q + 2) gives

v • R d (∇ x P ) [ f ] d x L 2 (dγk+q ) R d (∇ x P ) [ f ] d x L 2 (dγk+q+2) j ,q f 0 L 2 (dγk+q+2(j+1);L 1 ((1+|x| j ) d x)) (1 + t ) j e -λ t .
By Duhamel's formula, we have

P [ f ](t , v) = e Lt P [ f ](0, v) - t 0 e L(t -s) v • R d (∇ x P ) [ f s ] d x d s . Note that R d v • R d (∇ x P ) [ f ] d x d v = R d ×R d (v • ∇ x P ) [ f ] d x d v = 0 for all t ≥ 0 since v •∇ x P ∈ R ℓ [X ,V ].
As a consequence, the decay of the semi-group associated with L can be estimated by

e L(t -s) v • R d (∇ x P ) [ f s ] d x L 2 (dγ ∞ ) ≤ v • R d (∇ x P ) [ f s ] d x L 2 (dγ ∞ )
e -λ m (t -s) .

As in the case j = 0, we deduce from Corollary 8 that

e L(t -s) v • R d (∇ x P ) [ f s ] d x L 2 ((1+|v| q ) dγ k ) ≤ v • R d (∇ x P ) [ f s ] d x L 2 (dγ k+q )
e -λ (t -s) q,k f 0 L 2 (dγk+q+2(j+1);L 1 ((1+|x| j ) d x)) (1 + s) j e -λ t . Moreover, since R d ×R d f 0 (x, v) P (x) d x d v = 0, for the same reasons we also have that

e Lt P [ f ](0, •) L 2 (dγk+q ) ≤ P [ f 0 ] L 2 ((1+|v| q ) dγ k ) e -λ t
for some λ > 0. We deduce from Duhamel's formula that

P [ f ] L 2 (dγk+q ) e Lt P [ f ](0, •) L 2 (dγk+q ) + t 0 e -L (t -s) v • R d ∇ x P [ f s ] d x L 2 (dγk+q ) d s k f 0 L 2 (dγk+q ; L 1 ((1+|x| j +1 ) d x
)) e -λ t + t 0 (1 + s) j e -λ t f 0 L 2 (dγk+q+2(j+1);L 1 ((1+|x| j ) d x)) d s k f 0 L 2 (dγk+q+2(j+1);L 1 ((1+|x| j +1 ) d x)) (1 + t ) j +1 e -λ t , which proves the induction.

• Step 3: Improved decay of f .-Let us choose some t 0 > 0. In order to estimate

f (t , •, •) 2 L 2 (d x dγ k ) = e (L-T)t f 0 2 L 2 (d x dγ k )
, we compute its evolution on (0, 2 t 0 ) and split the interval on (0, t 0 ) and (t 0 , 2 t 0 ) using the semi-group property

e (L-T) (2 t 0 ) f 0 2 L 2 (d x dγ k ) = e (L-T) t 0 e (L-T) t 0 f 0 2 L 2 (d x dγ k ) .
Up to the end of this section, T = v • ∇ x denotes the transport operator in position and velocity variables. We decompose f t 0 = e (L-T) t 0 f 0 into

f t 0 = |α|≤ℓ 1 α! X α [ f t 0 ] ∂ α ϕ + g 0 with g 0 := f t 0 - |α|≤ℓ 1 α! X α [ f t 0 ] ∂ α ϕ where α = (α 1 , α 2 , . . . α i . . . α d ) ∈ N d is a multi-index such that |α| = d i =1 α i ≤ ℓ and ϕ is given by ϕ(x) := (2π) -d/2 e -|x| 2 /2 ∀ x ∈ R d . Here we use the notation ∂ α ϕ = ∂ α 1 x 1 ∂ α 2 x 2 . . . ∂ α d x d ϕ and X α = n i X α i i .
According to [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF], we know that X α [ f t 0 ] L 2 (dγ k ) j f 0 L 2 (dγk+2j ; L 1 ((1+|x| j ) d x)) (1 + t 0 ) j e -λ t 0 , so that, by considering the evolution of the first term on (t 0 , 2 t 0 ), we obtain ( 23)

e (L-T) t 0 |α|≤ℓ 1 α! X α [ f t 0 ] ∂ α ϕ L 2 (d x dγ k ) |α|≤ℓ X α [ f t 0 ] L 2 (dγ k ) ∂ α ϕ L 2 (d x) e -λ 2 t 0 .
Next, let us consider the second term and define, on t + t 0 ∈ (t 0 , 2 t 0 ), the function

g := f t +t 0 - |α|≤ℓ 1 α! X α [ f t +t 0 ] ∂ α ϕ .
With initial datum g 0 , it solves on(0, t 0 ) the equation

∂ t g = ∂ t f t +t 0 - |α|≤ℓ 1 α! ∂ t X α [ f t +t 0 ] ∂ α ϕ = (L -T)(f t +t 0 ) -L |α|≤ℓ 1 α! X α [ f t +t 0 ] ∂ α ϕ + |α|≤ℓ 1 α! R d (v • ∇ x x α ) f t +t 0 d x ∂ α ϕ = (L -T)(g ) -T |α|≤ℓ 1 α! X α [ f t +t 0 ] ∂ α ϕ + |α|≤ℓ 1 α! R d (v • ∇ x x α ) f t +t 0 d x ∂ α ϕ = (L -T)(g ) + v • |α|≤ℓ 1 α! ∇ x X α [ f ] ∂ α ϕ -X α [ f t +t 0 ] ∇ x (∂ α ϕ) where α! = d i =1 α i ! is associated with the multi-index α = (α i ) d i =1 and ∇ x X α [ f ] = ∂ x i X α [ f ] d i =1 := R d ∂ x i x α f d x d i =1 = R d α i x α ∧i f d x d i =1
, Here the notation α ∧i denotes the multi-index (α 1 , α 2 . . .

α i -1 , α i -1, α i +1 . . . α d )
with the convention that X α ∧i ≡ 0 if α i = 0. We also define the opposite transformation α ∨i := (α 1 , α 2 . . .

α i -1 , α i + 1, α i +1 . . . α d ) so that ∂ x i (∂ α ϕ) = ∂ α ∨i ϕ.
Let us consider the last term and start with the case d = 1. In that case,

v • |α|≤ℓ 1 α! ∇ x X α [ f ] ∂ α ϕ -X α [ f t +t 0 ] ∇ x (∂ α ϕ) = v 1 ℓ α 1 =0 1 α 1 ! R α 1 x α 1 -1 f t +t 0 d x ∂x α 1 1 ϕ - R x α 1 f t +t 0 d x ∂x α 1 +1 1 ϕ = - v 1 ℓ! R x ℓ f t +t 0 d x ∂x ℓ+1 1 ϕ
because it is a telescoping sum. We adopt the convention that α! = 1 if α i ≤ 0 for some i = 1, 2 . . . d . The same property holds in higher dimensions:

|α|≤ℓ 1 α! ∂ x i X α [ f ] ∂ α ϕ -X α [ f t +t 0 ] ∂ x i (∂ α ϕ) = |α|≤ℓ 1 α ∧i ! X α ∧i [ f ] ∂ α ϕ - 1 α! X α [ f t +t 0 ] ∂ α ∨i ϕ = - |α|=ℓ 1 α! X α [ f t +t 0 ] ∂ x i (∂ α ϕ) .
We deduce that

∂ t g = (L -T)(g ) -v • |α|=ℓ 1 α! X α [ f t +t 0 ] ∇ x (∂ α ϕ) .
Duhamel's formula in Fourier variables gives ĝ (t 0 , ξ, v) = e (L-T) t 0 ĝ0 -

t 0 0 e (L-T) (t 0 -s) v • |α|=ℓ 1 α! X α [ f s+t 0 ] ∇ x (∂ α ϕ) d s
up to a straightforward abuse of notations. Hence

ĝ (t 0 , ξ, •) L 2 (dγk) e -1 2 µ ξ t 0 ĝ0 (ξ, •) L 2 (dγk) + t 0 0 e - µ ξ 2 (t 0 -s) |α|=ℓ 1 α! X α [ f s+t 0 ] L 2 (|v| 2 dγ k ) | ∇ x (∂ α ϕ)| d s .
Recall that [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF] gives

X α [ f s+t 0 ] L 2 (|v| 2 dγ k ) ℓ f 0 L 2 (dγk+2ℓ+2;L 1 ((1+|x| ℓ ) d x)) e -λ 2 s .
On the other hand we use

| ∇ x (∂ α ϕ)| ≤ |ξ| ℓ+1 | φ| and observe that | ĝ0 (ξ, v)| |ξ| ℓ+1 g 0 (•, v) L 1 (|x| ℓ d x) ∀ (ξ, v) ∈ R d × R d .
Collecting terms, we have that

ĝ (t 0 , ξ, •) L 2 (dγk) e -1 2 µ ξ t 0 |ξ| ℓ+1 1 |ξ|<1 g 0 (•, v) L 2 (dγk;L 1 (|x| ℓ d x)) + e -1 2 µ ξ t 0 1 |ξ|≥1 ĝ0 (ξ, •) L 2 (dγk) + |ξ| ℓ+1 | φ(ξ)| f 0 L 2 (dγk+2ℓ+2;L 1 ((1+|x| ℓ ) d x)) t 0 0 e - µ ξ 2 (t 0 -s) e -λ 2 s d s .
We know from [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF] that

µ ξ = Λ |ξ| 2 /(1 + |ξ| 2 ) so that µ ξ ≥ Λ 2 |ξ| 2 if |ξ| < 1 and µ ξ ≥ Λ/2 if |ξ| ≥ 1. Hence, for any t 0 ≥ 1, e -1 2 µ ξ t 0 |ξ| ℓ+1 1 |ξ|<1 L 2 (dξ) ≤ R d e -Λ 2 |ξ| 2 t 0 |ξ| 2(ℓ+1) d ξ 1/2 t -(1+ℓ+ d 2 ) 0 , |ξ|≥1 e -µ ξ t 0 ĝ0 (ξ, •) 2 L 2 (dγk) d ξ e -Λ 2 t 0 g 0 2 L 2 (dx dγ k )
by Plancherel's formula. We conclude by observing that

|ξ|≤1 |ξ| ℓ+1 | φ(ξ)| t 0 0 e - µ ξ 2 (t 0 -s) e -λ 2 s d s d ξ ≤ ϕ L 1 (d x) t 0 0 |ξ|≤1 |ξ| ℓ+1 e -Λ 2 |ξ| 2 (t 0 -s) d ξ e -λ 2 s d s t -(1+ℓ+ d 2 ) 0 , |ξ|≥1 |ξ| ℓ+1 | φ(ξ)| t 0 0 e - µ ξ 2 (t 0 -s) e -λ 2 s d s d ξ |ξ| ℓ+1 φ(ξ) L 1 (dξ) t 0 e -1 4 min{Λ,2λ} t 0 .
Altogether, we obtain that

g (t 0 , •, •) 2 L 2 (dx dγ k ) = ĝ (t 0 , •, •) 2 L 2 (dξdγk) t -(1+ℓ+ d 2 ) 0 .
The decay result of Theorem 3 is then obtained by writing

f 2t 0 2 L 2 (dx dγ k ) g (t 0 , •, •) 2 L 2 (dx dγ k ) + e (L-T) t 0 |α|≤ℓ 1 α! X α [ f t 0 ] ∂ α ϕ L 2 (d x dγ k )
and using [START_REF] Kavian | The Fokker-Planck equation with subcritical confinement force[END_REF] for any t 0 ≥ 1, with t = 2 t 0 . For t ≤ 2, the estimate of Theorem 3 is straightforward by Corollary 8, which concludes the proof. 1

2π (a c -b 2 ) d/2 exp - a |x| 2 -2 b x • v + c|v| 2 2 (a c -b 2 )
.

The method is standard and goes back to [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF] (also see [START_REF] Il′in | On the equations of Brownian motion[END_REF][START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] and [START_REF] Victory | On classical solutions of Vlasov-Poisson Fokker-Planck systems[END_REF][START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF]).

Proof. -By a Fourier transformation in x and v, with associated variables ξ and η, we find that

logC -log Ĝ(t , ξ, η) = (η, ξ) • D(η, ξ) = 1 2 a |η| 2 + 2 bη • ξ + c|ξ| 2 = 1 2 a η + b a ξ 2 + 1 2 A |ξ| 2 , A = c -b 2 a
for some constant C > 0 which is determined by the mass normalization condition

G(t , • , •) L 1 (R d ×R d ) = 1.
Let us take the inverse Fourier transform with respect to η,

(2π) -d R d e i v•η Ĝ(t , ξ, η) d η = C (2π a) d/2 e -|v| 2 2 a -i b a v•ξ e -1 2 A |ξ| 2 = C (2π a) d e -|v| 2 2 a e - 1 2 A ξ+i b a A v 2 - b 2 2 a 2 A |v| 2 ,
and then the inverse Fourier transform with respect to ξ, so that we obtain

G(t , x, v) = C (2π a) d 2 (2π A) d 2 e -1+ b 2 aA |v| 2 2 a e -|x| 2 2 A e b aA x•v = C (4π 2 a A) d 2 e -1 2 A x- b a v 2 e -|v| 2 2 a .
It is easy to check that C = 1.

Let us consider a solution g of ( 25) with initial datum g

0 ∈ L 1 (R d ×R d ). From the representation g (t , •, •) = G(t , •, •) * x,v g 0 , we obtain the estimate g (t , •, •) L ∞ (R d ×R d ) ≤ G(t , •, •) L ∞ (R d ×R d ) g 0 L 1 (R d ×R d ) = g 0 L 1 (R d ×R d ) 8 π 2 d/2 t -d 2 e -d t 1 + O t -1
as t → ∞. As a consequence, we obtain that the solution of ( 24) with a nonnegative initial datum f 0 satisfies

f (t , •, •) L ∞ (R d ×R d ) = f 0 L 1 (R d ×R d ) 8 π 2 t d/2 1 + o(1) as t → ∞ .
Using the simple Hölder interpolation inequality

f L p (R d ×R d ) ≤ f 1/p L 1 (R d ×R d ) f 1-1/p L ∞ (R d ×R d )
, we obtain the following decay result.

Corollary 12.

-If f is a solution of (24) with a nonnegative initial datum f 0 ∈ L 1 (R d × R d ), then for any p ∈ (1, ∞] we have the decay estimate

f (t , •, •) L p (R d ×R d ) ≤ f 0 L 1 (R d ×R d ) 8 π 2 t d 2 1-1 p 1 + o(1) as t → ∞ .
By taking f 0 (x, v) = G (1, x, v), it is moreover straightforward to check that this estimate is optimal. With p = 2, this also proves that the decay rate obtained in Theorem 1 for the Fokker-Planck operator, i.e., Case (a), is the optimal one because, again with f 0 (x, v) = G(1, x, v), we observe that

f (t , •, •) 2 L 2 (dx dγ k ) = e d t G(t , •, •) 2 L 2 (d x d v) = O t -d/2
as t → +∞ .

Appendix B Consistency with the decay rates of the heat equation

In the whole space case, the abstract approach of [START_REF] Dolbeault | Hypocoercivity for linear kinetic equations conserving mass[END_REF] is inspired by the diffusion limit of (1). We consider the scaled equation ( 26)

ε d F d t + TF = 1 ε LF ,
which formally corresponds to a parabolic rescaling given by t → ε 2 t and x → ε x, and investigate the limit as ε → 0 + . Let us check that the rates are asymptotically independent of ε and consistent with those of the heat equation.

B.1. Mode-by-mode hypocoercivity. -It is straightforward to check that in the estimate [START_REF] Bouin | Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt[END_REF] for λ, the gap constant λ m has to be replaced by λ m /ε while, with the notations of Proposition 4, C M can be replaced by C M /ε for ε < 1. In the asymptotic regime as ε → 0 + , we obtain that

ε d d t H[F ] ≤ -D[F ] ≤ - λ M 3 (1 + λ M ) λ m λ M ε (1 + λ M )C 2 M D[F ]
which proves that the estimate of Proposition 4 becomes

λ ≥ λ m λ 2 M 3 (1 + λ M ) 2 C 2 M .
We observe that this rate is independent of ε.

B.2. Decay rates based on Nash's inequality in the whole space case. -In the proof of Theorem 1, σ has to be replaced by σ/ε and in the limit as ε → 0 + , we get that b ∼ 4 σ/ε and ( 16) is satisfied with 4 a = δ ∼ λ m 8 σ 2 ε. Hence (18) asymptotically becomes, as ε → 0 + ,

- d d t H[ f ] ≥ λ m 4 σ 2 c 2 1+δ H[ f ] 1+ 2 d ,
which again gives a rate of decay which is independent of ε. The algebraic decay rate in Theorem 1 is the one of the heat equation on R d and it is independent of ε in the limit as ε → 0 + .

B.3.

Decay rates in the whole space case for distribution functions with moment cancellations. -The improved rate of Theorem 2 is consistent with a parabolic rescaling: if f solves (1), then f ε (t , x, v) = ε -d f ε -2 t , ε -1 x, v solves [START_REF] Mischler | Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation[END_REF]. With the notations of Section 6.1, let

g ε = f ε -f ε • ϕ(•/ε), with ϕ ε = ε -d ϕ(•/ε). The Fourier transform of g ε solves ε 2 ∂ t ĝ ε + εT ĝ ε = L ĝ ε -ε f ε • T φε .
The decay rate λ in (20) becomes λ/ε 2 and the decay rate of the semi-group generated by L-εT is, with the notations of Corollary 5, µ εξ . Moreover, Λ in (10) is given by Λ = 1 3 min 1, Θ for any ε > 0, small enough. Duhamel's formula [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF] has to be replaced by ĝ ε (t , ξ, •) L 2 (dγk) ≤ C e while the square of the second term is bounded by .

f ε • (t = 0, •) 2 L 2 (|v| 2 dγ k ) R d | ε ξ| 2 | φ(ε ξ)| 2 ε -2 t 0 e -
By collecting all terms and using Plancherel's formula, we conclude that the rate of convergence of Theorem 2 applied to the solution of ( 26) is independent of ε. We also notice that the scaled spatial density

ρ f ε = R d f ε d v satisfies ρ f ε (t , •) 2 L 2 (d x) ≤ C 0 (1 + t ) 1+ d 2 ∀ t ≥ 0
for some positive constant C 0 which depends on f 0 but is independent of ε. This is the decay of the heat equation with an initial datum of zero average. Similar estimates can be obtained in the framework of Theorem 3.

Proposition 4 .

 4 -Let L and T be closed unbounded linear operators on the complex Hilbert space (H , 〈•, •〉) with dense domains D(L) and D(T ). Assume that T is anti-Hermitian. Let Π be the orthogonal projection onto the null space of L and define A := 1 + (TΠ) * TΠ -1 (TΠ) *

  Proof. -In Case (a), let us define A and B by AF = N χ R F and BF = -i (v • ξ) F + LF -AF , where N and R are two positive constants, χ is a smooth function such that 1 B 1 ≤ χ ≤ 1 B 2 , and χ R := χ(•/R). Here B r is the centered ball of radius r . It has been established in [26, Lemma 3.8] that if k > d , then the inequality

  R d . -With the result of Corollary 5 and Corollary 8 we obtain a first proof of Theorem 1 as follows. Let C > 0 be a generic constant which is going to change from line to line. Plancherel's formula implies

2 1+ε 2 |ξ| 2 = 2 L 2 (dγ k ) d ξ ≤ g ε 0 2 L 2 (

 222222 t -s) f ε • (s, •) L 2 (|v| 2 dγ k ) |ε ξ| | φ(ε ξ)| d s . Using lim ε→0 + µ εξ ε 2 = lim ε→0 + Λ| ξ| Λ| ξ|2 , a computation similar to the one of Section 6.1 shows that the first term of the r.h.s. is estimated by dγk;L1 (|x| d x)) R d |ξ| 2 e -Λ 2 |ξ| 2 t d ξ + g ε

  1 2 µ εξ( ε -2 t -s) e -1 2 λ s d s

				2
				d ξ
	≤ f 0	2 L 2 (|v| 2 dγ ε d+1 t d 2 +1 +	C 2 ε 3 e	-min{ Λ 2 ,λ} t ε 2

k ; L 1 (d x)) C 1
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Appendix A

An explicit computation of Green's function for the kinetic Fokker-Planck equation and consequences

In the whole space case, when M is the normalized Gaussian function, let us consider the kinetic Fokker-Planck equation of Case (a) [START_REF] Kawashima | The Boltzmann equation and thirteen moments[END_REF] ∂

). The characteristics associated with the equations

suggest to change variables and consider the distribution function g such that

The kinetic Fokker-Planck equation is changed into a heat equation in both variables x and v with t dependent coefficients, which can be written as ( 25)

where ∇g = (∇ v g , ∇ x g ) and Ḋ is the t -derivative of the bloc-matrix

, and c = e 2t -4 e t + 2 t + 3. Here Id is the identity matrix on R d . We observe that Ḋ is degenerate: it is nonnegative but its lowest eigenvalue is 0. However, the change of variables allows the computation of a Green function.

Lemma 11.

-The Green function of (25) is given for any (t , x, v) ∈ (0, ∞)×R d ×R d by