Pré-Publication, Document De Travail Année : 2017

Morita equivalence of pointed fusion categories of small rank

Résumé

We classify pointed fusion categories C(G, ω) up to Morita equivalence for 1 < |G| < 32. Among them, the cases |G| = 2 3 , 2 4 and 3 3 are emphasized. Although the equivalence classes of such categories are not distinguished by their Frobenius-Schur indicators, their categorical Morita equivalence classes are distinguished by the set of the indicators and ribbon twists of their Drinfeld centers. In particular, the modular data are a complete invariant for the modular categories Z(C(G, ω)) for |G[< 32. We use the computer algebra package GAP and present codes for treating complex-valued group cohomology and calculating Frobenius-Schur indicators.
Fichier principal
Vignette du fichier
paper.pdf (544.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01573708 , version 1 (10-08-2017)
hal-01573708 , version 2 (12-08-2017)

Identifiants

Citer

Michaël Mignard, Peter Schauenburg. Morita equivalence of pointed fusion categories of small rank. 2017. ⟨hal-01573708v2⟩
161 Consultations
194 Téléchargements

Altmetric

Partager

More