Existence of Hartree-Fock excited states for atoms and molecules - Archive ouverte HAL
Article Dans Une Revue Letters in Mathematical Physics Année : 2018

Existence of Hartree-Fock excited states for atoms and molecules

Résumé

For neutral and positively charged atoms and molecules, we prove the existence of infinitely many Hartree-Fock critical points below the first energy threshold (that is, the lowest energy of the same system with one electron removed). This is the equivalent, in Hartree-Fock theory, of the famous Zhislin-Sigalov theorem which states the existence of infinitely many eigenvalues below the bottom of the essential spectrum of the $N$-particle linear Schrödinger operator. Our result improves a theorem of Lions in 1987 who already constructed infinitely many Hartree-Fock critical points, but with much higher energy. Our main contribution is the proof that the Hartree-Fock functional satisfies the Palais-Smale property below the first energy threshold. We then use minimax methods in the $N$-particle space, instead of working in the one-particle space.
Fichier principal
Vignette du fichier
HF_excited_states_v03.pdf (259.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01570624 , version 1 (31-07-2017)
hal-01570624 , version 2 (03-08-2017)
hal-01570624 , version 3 (18-10-2017)

Identifiants

Citer

Mathieu Lewin. Existence of Hartree-Fock excited states for atoms and molecules. Letters in Mathematical Physics, 2018, 108 (4), pp.985-1006. ⟨10.1007/s11005-017-1019-y⟩. ⟨hal-01570624v3⟩
215 Consultations
195 Téléchargements

Altmetric

Partager

More