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EXISTENCE OF HARTREE-FOCK EXCITED STATES FOR

ATOMS AND MOLECULES

MATHIEU LEWIN

Abstract. For neutral and positively charged atoms and molecules,
we prove the existence of infinitely many Hartree-Fock critical points
below the first energy threshold (that is, the lowest energy of the same
system with one electron removed). This is the equivalent, in Hartree-
Fock theory, of the famous Zhislin-Sigalov theorem which states the
existence of infinitely many eigenvalues below the bottom of the essen-
tial spectrum of the N-particle linear Schrödinger operator. Our result
improves a theorem of Lions in 1987 who already constructed infinitely
many Hartree-Fock critical points, but with much higher energy. Our
main contribution is the proof that the Hartree-Fock functional satisfies
the Palais-Smale property below the first energy threshold. We then
use minimax methods in the N-particle space, instead of working in the
one-particle space.

The Hartree-Fock model is an important nonlinear approximation of the
N -particle Schrödinger linear equation which describes the N electrons in an
atom or a molecule. Its successes and limitations for approximating the first
eigenfunction of the N -body Hamiltonian (“ground state”) are well known,
but its ability to describe excited states has probably been underestimated
until recently. In a recent numerical work [10], a Hartree-Fock calculation
has given very good predictions for 10 of the 11 first excited states of the H2

molecule. For other recent works on Hartree-Fock and Kohn-Sham excited
states in Chemistry, we refer for instance to [56, 32] and the references
therein.

These recent developments suggest that Hartree-Fock excited states need
further mathematical and numerical investigation. The purpose of this pa-
per is to give a rigorous definition of these excited states, and to show that
neutral and positively charged atoms and molecules have infinitely many
stable Hartree-Fock excited states below the first energy threshold (that is,
the lowest energy of the same system with one electron removed).

The spectral properties of the Schrödinger linear operator describing the
N electrons are well known since the sixties. Hunziker, Van Winter and
Zhislin have proved in [61, 57, 25] that the bottom of the essential spectrum
is given by the lowest energy of the same molecule with one electron re-
moved. Using this characterization of the first energy threshold, Zhislin and
Sigalov have shown in [61, 62] that the N -particle Hamiltonian of a neutral
or positively charged atom or molecule has infinitely many eigenvalues below
its essential spectrum.

Date: October 18, 2017. c© 2017 by the author. This paper may be reproduced, in its
entirety, for non-commercial purposes.
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In a nonlinear theory such as Hartree-Fock, there is no clear equivalent of
the essential spectrum. But it has recently been discovered in [21, 31] that
the lowest Hartree-Fock energy of N −1 electrons plays a similar role as the
bottom of the essential spectrum in the linear case. More precisely, calling
JV (N) the minimum Hartree-Fock energy, it was shown in [21, 31] that

JV (N) < JV (N − 1)

is a necessary and sufficient condition for the compactness of all the mini-
mizing sequences for JV (N). This result is based on the fundamental fact
that the Hartree-Fock model is obtained by restricting theN -particle Hamil-
tonian to the manifold of Slater determinants. The proof indeed relies on
“geometric methods” in the N -particle space, inspired of the linear case.
There is no result of this kind for other similar nonlinear models, like the
reduced Hartree-Fock model (where the exchange term is dropped [51]) or
Kohn-Sham models.

The first mathematical study of the Hartree-Fock model dates back to
1977, when Lieb and Simon proved in [35] the existence of a minimizer for
neutral and positively charged atoms and molecules, working in the one-
particle space. Other important results on Hartree-Fock minimizers include
estimates on the validity of the Hartree-Fock model for large atoms [3, 4]
and the proof of the ionization conjecture [51, 53]. Minimizers for the Kohn-
Sham model were constructed in [2].

In [36, 39, 40], Lions was the first to construct infinitely many Hartree-
Fock excited states, but those have an energy converging to 0, which does
not correspond to the picture of the Zhislin-Sigalov theorem. As we have
recalled, in the linear case, the eigenvalues converge to the bottom of the
essential spectrum, which is negative. In this respect, the physical inter-
pretation of Lions’ critical points is not clear. To obtain his result, Li-
ons used a bound on the Morse index of min-maxing sequences to infer
their compactness. This method has then been further developed mathe-
matically in [18, 19, 23], and later used in several models of quantum me-
chanics, including Dirac-Fock [15, 16, 42, 14] and multiconfiguration theo-
ries [29, 30, 12].

Here we construct different critical points by working in the N -particle
space. We think they are better candidates for representing molecular ex-
cited states since their energies converge to JV (N − 1) < 0 and not to 0.
We do not use the Morse index to obtain the compactness of minimizing se-
quences. We actually prove that the Hartree-Fock energy satisfies the usual
Palais-Smale condition below the first energy threshold JV (N − 1), which
allows us to use more classical techniques of nonlinear analysis. The validity
of the Palais-Smale condition below the first energy threshold JV (N − 1) is
another property of Hartree-Fock theory, similar to the linear case, which
allows us to think of JV (N−1) as the bottom of a kind of nonlinear essential
spectrum.

The paper is organized as follows. After recalling the spectral properties
of theN -particle Schrödinger model in Section 1.1, we introduce the Hartree-
Fock energy and discuss its minimizers in Section 1.2. Then we state our
main results for excited states in Section 1.3. The rest of the paper is devoted
to the proof of our results.
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1. Main results

1.1. The N-particle Schrödinger Hamiltonian. Before turning to non-
linear Hartree-Fock theory, we start by recalling well known facts about the
linear N -particle Schrödinger equation. For simplicity, we work in R

3 and
neglect the spin variable, but it will be clear to the reader that our results
can easily be extended to much more general situations (dimension d > 1,
particles with spin, pseudo-relativistic kinetic energy, etc). Let

V,w ∈ L3/2(R3,R) + L∞
ε (R3,R), with w even, (1.1)

be two real-valued potentials.1 We consider N fermions in the external
potential V and interacting by pairs through the potential w. The corre-
sponding N -particle Schrödinger Hamiltonian is defined by

HV (N) =

N∑

j=1

−∆xj + V (xj) +
∑

16j<k6N

w(xj − xk) (1.2)

in the Hilbert space
∧N

1 L2(R3,C), which is the subspace of anti-symmetric
functions in L2(R3N ,C). Under our assumption (1.1) the potentials V and w
are infinitesimally (−∆)–form bounded, hence the quadratic form associated
with the operator HV (N), defined by

EV (Ψ) :=
〈
Ψ,HV (N)Ψ

〉

=

ˆ

R3N

|∇Ψ|2 +
ˆ

R3N

( N∑

j=1

V (xj)

+
∑

16j<k6N

w(xj − xk)

)
|Ψ(x1, ..., xN )|2 dx1 · · · dxN , (1.3)

is continuous and closed on the (antisymmetric) Sobolev space
∧N

1 H
1(R3,C).

More precisely, we have for some constant C > 0

1

2

ˆ

R3N

|∇Ψ|2 − C

ˆ

R3N

|Ψ|2 6 EV (Ψ) 6 2

ˆ

R3N

|∇Ψ|2 + C

ˆ

R3N

|Ψ|2. (1.4)

In the following, we always work with the associated Friedrichs self-adjoint
realization of HV (N) and call

EV (N) := minσ
(
HV (N)

)
= inf

Ψ∈
∧N

1
H1(R3)

||Ψ||L2=1

EV (Ψ)

the bottom of its spectrum. It is known that the essential spectrum of
HV (N) is a half line in the form

σess
(
HV (N)

)
= [ΣV (N),∞)

where
ΣV (N) = inf

{Ψn}⊂
∧N

1
H1(R3)

||Ψn||L2=1
Ψn⇀0

lim inf
n→∞

EV (Ψn)

1The notation f ∈ L3/2 + L∞

ε means that for any ε > 0 we can write f = f3/2 + f∞
with ‖f∞‖L∞ 6 ε, see [45]. Such potentials are relative form-compact (hence infinitesimal
form-bounded) perturbations of −∆ by [44, Sec. X.2] and [45, Sec. XIII.4].
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is the lowest possible limiting energy of sequences {Ψn} tending weakly to
zero. The HVZ theorem [61, 57, 25, 45, 31] states that such sequences {Ψn}
have to loose at least one particle at infinity, leading to the formula

ΣV (N) = min
k=1,...,N

{
EV (N − k) + E0(k)

}
(1.5)

where one minimizes over the number k of particles which have been sent to
infinity. These do not feel the external field V anymore, hence their lowest
energy is E0(k).

In this paper we are interested in excited states, which correspond to the
eigenvalues of HV (N) below the threshold ΣV (N). We therefore introduce
the kth min-max level

λVk (N) = inf
W⊂

∧N
1
H1(R3,C)

dim(W )=k

max
Ψ∈W

‖Ψ‖L2=1

EV (Ψ)

= sup
W⊂

∧N
1
H1(R3,C)

codim(W )=k−1

inf
Ψ∈W

‖Ψ‖L2=1

EV (Ψ), (1.6)

which is the kth eigenvalue of HV (N) counted with multiplicity when it
exists, or is equal to ΣV (N) otherwise [45]. Note that since HV (N) is real,
the eigenfunctions can be chosen real, when they exist. One can indeed
restrict to real-valued functions Ψ in (1.6) without changing anything, and
this is what we do in the rest of the paper.

The situation is slightly simplified for a repulsive interaction potential w,
that is, under the additional assumption that

w > 0.

In this case we have E0(k) = 0 for all k > 1 and, therefore,

ΣV (N) = EV (N − 1).

In other words, the essential spectrum starts when one particle is sent to
infinity. We are in this situation for atoms and molecules in the Born-
Oppenheimer approximation, for which

w(x) =
1

|x| , V (x) = −
M∑

m=1

zm
|x−Rm|

where zm > 0 and Rm ∈ R
3 are, respectively, the charges and locations

of the M classical nuclei in the molecule (or the atom, when there is only
M = 1 nucleus). It has been proved by Zhislin and Sigalov [61, 62] that

λVk (N) < ΣV (N) = EV (N − 1), ∀k > 1,

under the condition that

N − 1 <
M∑

m=1

zm.

Hence neutral and positively charged molecules have infinitely many excited
states below the first energy threshold EV (N − 1). Our goal in this paper
is to extend this fundamental result to Hartree-Fock theory. When N >

1+
∑M

m=1 zm, it has been shown in [60, 59, 48] that λVk (N) = EV (N −1) for
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k large enough. In fact, for N large enough we have EV (N) = EV (N − 1)
and there are no eigenvalues at all [33, 41, 46, 48, 49, 34, 47, 20, 27].

1.2. Hartree-Fock theory. In Hartree-Fock theory, the N -particle wave-
functions Ψ are assumed to be as much uncorrelated as possible, that is,
they are given by a Slater determinant

Ψ(x1, ..., xN ) = ϕ1 ∧ · · · ∧ ϕN (x1, ..., xN ) :=
1√
N !

det(ϕi(xj)). (1.7)

Here the N real-valued functions ϕ1, ..., ϕN ∈ H1(R3,R) form an orthonor-
mal system

ˆ

R3

ϕjϕk = δjk.

For a given Ψ in the form (1.7) the corresponding ϕj ’s are not unique. They

can be replaced by
∑N

k=1 Ujkϕk with U ∈ O(N), without changing Ψ (up

to a sign when det(U)N = −1).
The energy of a Hartree-Fock state (1.7) is computed to be [35]

J V (ϕ1, ..., ϕN )

:= EV (ϕ1 ∧ · · · ∧ ϕN )

=

N∑

j=1

ˆ

R3

|∇ϕj |2 + V |ϕj |2

+
1

2

¨

R6

w(x− y)




N∑

j=1

|ϕj(x)|2
N∑

k=1

|ϕk(y)|2 −
∣∣∣∣
N∑

j=1

ϕj(x)ϕj(y)

∣∣∣∣
2

 dx dy

=

N∑

j=1

ˆ

R3

|∇ϕj |2 + V |ϕj |2 +
∑

16j<k6N

¨

R6

w(x− y) |ϕj ∧ ϕk(x, y)|2 dx dy,

(1.8)

where we recall that all the functions are real-valued and that

ϕj ∧ ϕk(x, y) =
ϕj(x)ϕk(y)− ϕj(y)ϕk(x)√

2
.

The set of Hartree-Fock states with finite kinetic energy

M :=
{
Ψ = ϕ1 ∧ · · · ∧ ϕN ∈ H1(R3N ,R), 〈ϕj , ϕk〉 = δjk

}

is a smooth manifold in
∧N

1 H1(R3,R) and the unit sphere of L2(R3N ,R).

A Hartree-Fock critical point is by definition a critical point of EV on the
manifold M, that is, such that the restriction of HV (N)Ψ ∈ H−1(R3N ) to
the tangent space to M at Ψ vanishes. The tangent space is given by

T MΨ = span

{
ϕi1 ∧ · · · ∧ ϕiN−1

∧ ψ, 1 6 i1 < · · · < iN−1 6 N

ψ ∈ H1(R3,R) ∩ span(ϕ1, ..., ϕN )⊥
}
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and contains all the possible excitations of one of the N particles to the space
orthogonal to the ϕj ’s. Computing the Gâteaux derivative in the direction
where ϕj is excited into ψ gives, after varying over all ψ, that

hΨϕj ∈ span(ϕ1, ..., ϕN ) (1.9)

where

hΨf :=


−∆+ V +

N∑

j=1

|ϕj |2 ∗ w


 f −

N∑

j=1

(
(ϕjf) ∗ w

)
ϕj

is the one-particle mean-field Hamiltonian [35]. Note that this Hamilton-
ian does not depend on the basis set ϕj used to represent Ψ as a Slater
determinant, since the two nonlinear terms are invariant under rotations.
From (1.9) there exists a (symmetric) matrix of Lagrange multipliers µjk
such that

hΨϕj =

N∑

k=1

µjkϕk, 1 6 j 6 N.

Applying a rotation U ∈ SO(N) to the ϕj ’s, we can diagonalize the matrix
µjk and we arrive at the well known Hartree-Fock equations

hΨϕj = µj ϕj , j = 1, ..., N. (1.10)

This is a system of N coupled nonlinear eigenvalue equations.
Before we turn to excited states, we now discuss the existence of mini-

mizers. We call

JV (N) := inf
Ψ∈M

EV (Ψ) = inf
ϕ1,...,ϕN∈H1(R3,R)

〈ϕj ,ϕk〉=δjk

J V (ϕ1, ..., ϕN ) (1.11)

the Hartree-Fock ground state energy. Because M is a subset of the sphere
in the N -particle space, the Hartree-Fock ground state energy has to be
greater than the first N -particle Schrödinger eigenvalue:

EV (N) 6 JV (N).

The following was proved in [21, 31].

Theorem 1 (Hartree-Fock ground state [21, 31]). Assume that

V,w ∈ L3/2(R3,R) + L∞
ε (R3,R)

with w even. Then the following are equivalent:

(i) All the minimizing sequences {Ψn} ⊂ M for JV (N) are precom-

pact in H1(R3N ) and converge, after extraction, to a Hartree-Fock

minimizer;

(ii) JV (N) < JV (N − k) + J0(k) for all k = 1, ..., N .

The condition (ii) is a nonlinear version of the HVZ theorem recalled
before in (1.5) for the N -particle Hamiltonian HV (N). Although there is no
clear notion of essential spectrum on the Hartree-Fock manifold M, we find
that “scattering states” do start at the energy min{JV (N −k)+J0(k), k =
1, ..., N} obtained when some of the particles escape to infinity. Of course,
when w > 0 we have J0(k) = 0 and (ii) reduces to the simpler condition
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JV (N) < JV (N−1). For atoms and molecules, it can be proved by induction

that JV (N) < JV (N − 1) as soon as N < 1 +
∑M

m=1 zm, exactly like for

HV (N), see [35, 39, 21, 31].
That we obtain finitely many conditions (ii) for the compactness of min-

imizing sequences was the main finding of [21], and may be surprising at
first. Nonlinear models often lead to binding conditions involving a con-
tinuous parameter, in particular after using the concentration-compactness
principle [37, 38, 39]. For (ii) to hold, it is essential that the Hartree-Fock
model is the restriction of the N -particle problem to the manifold M. There
is no equivalent of Theorem 1 in reduced Hartree-Fock theory or in Kohn-
Sham models.

Remark 1 (Eigenvalues of minimizers). For a minimizer, the Lagrange mul-
tipliers in (1.10) must be the N first eigenfunctions of hΨ. If w > 0, it has
been shown in [5, 6] that µN < µN+1, that is, the last shell of the mean-field
operator hΨ is always completely filled.

1.3. Hartree-Fock excited states. For atoms and molecules, it seems rea-
sonable to expect that the Hartree-Fock energy has infinitely many critical
points in the interval (JV (N), JV (N − 1)), as is the case for HV (N). Lions
has shown in [36, 39] the existence of infinitely many Hartree-Fock critical

points Ψ(k) ∈ M, but those satisfy

lim
k→∞

EV (Ψ(k)) = 0

and there are therefore only finitely many such states below JV (N − 1).
In [28], Léon has studied excited states defined by orthogonality conditions
but those are in general not critical points.

Here we use methods from critical point theory in the N -body space and
define nonlinear minimax values which are all less or equal to JV (N − 1).
We get a critical point under the assumption that they are strictly below
JV (N−1), which we prove is true for atoms and molecules. This is different
from Lions who worked in the one-particle space and obtained critical points
with a much higher energy.

1.3.1. Palais-Smale condition. Our main contribution in this article is the
proof that, when w > 0, EV|M satisfies the Palais-Smale (PS) condition on the

interval
[
JV (N), JV (N−1)

)
. In [39, Rmk. (5) p. 68] and [40, Rmk 3) p. 307],

Lions mentions that J V does not satisfy the PS property on (−∞, 0) because
some particles can be lost. It surely does not satisfy (PS) on

[
JV (N −1), 0

)

but we prove it does below JV (N − 1).

Theorem 2 (Palais-Smale condition below JV (N−1)). Assume that V,w ∈
L3/2(R3,R) + L∞

ε (R3,R) with w even and, in addition, that w > 0. If

JV (N) < JV (N − 1), then the Hartree-Fock energy J V satisfies the Palais-

Smale condition on the interval
[
JV (N), JV (N − 1)

)
. That is, if we have a

sequence Ψn = ϕ1,n ∧ · · · ∧ ϕN,n ∈ M such that

• EV (Ψn) → c ∈
[
JV (N), JV (N − 1)

)
,

• hΨnϕj,n − µj,nϕj,n → 0 in H−1(R3) for all j = 1, ..., N and some

µj,n ∈ R,
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then the sequence {Ψn} is precompact in H1(R3N ) and converges strongly,

after extraction of a subsequence, to some Ψ = ϕ1 ∧ · · · ∧ ϕN ∈ M which is

a Hartree-Fock critical point. In particular, the critical sets

K6c :=
{
Ψ ∈ M : EV (Ψ) 6 c,

(
EV|M

)′
(Ψ) = 0

}

are all compact in H1(R3N ), for c < JV (N − 1).

The proof of Theorem 2 is given in Section 2 below and it relies very
much on the assumption that w > 0. It seems reasonable to expect that the
Palais-Smale condition is verified below the energy threshold min{JV (N −
k) + J0(k), k = 1, ..., N} for any potential w, but our proof does not allow
to deal with this case.

Remark 2. The quadratic form qA of a linear bounded-below self-adjoint
operator A satisfies the Palais-Smale condition on the unit sphere at some
level c, if and only if c does not belong to the essential spectrum of A.
In particular, the N -particle energy EV satisfies the (PS) property on the
interval

[
EV (N), EV (N − 1)

)
when w > 0: if {Ψn} is such that (HV (N)−

c)Ψn → 0 strongly in H−1(R3N ) with c < ΣV (N) = EV (N − 1), then {Ψn}
is precompact in

∧N
1 H

1(R3). Theorem 2 gives the exact same property for

the nonlinear Hartree-Fock model, with of course EV (N − 1) replaced by
JV (N − 1) and the full derivative of EV by its projection onto the Hartree-
Fock tangent plane. �

1.3.2. A new definition of Hartree-Fock excited states. With the Palais-
Smale property at hand, we can now use standard techniques from critical
point theory on the smooth manifold M [1, 11, 43, 54]. The main point

of our approach is to work in the N -particle space
∧N

1 H
1(R3,R), on the

contrary to Lions who worked in the space H1(R3,R)N containing N -tuple
of one-particle functions.

For instance, we can introduce the nonlinear minimax level

cVk (N) := inf
f : Sk−1→M

continuous and odd

sup
Ψ∈f(Sk−1)

EV (Ψ) (1.12)

which consists in minimizing over all the possible odd continuous images of
spheres of dimension k−1 in M (we will show below that there are such sets,
hence the set in the infimum is not empty). These minimax levels satisfy
some simple properties which we summarize in the following

Lemma 3 (Properties of cVk (N)). Assume that V,w ∈ L3/2(R3,R)+L∞
ε (R3,R)

with w even. Then we have

(i) cV1 (N) = JV (N);

(ii) cVk (N) 6 cVk+1(N) for all k > 1;

(iii) λVk (N) 6 cVk (N) 6 JV (N − 1) for all k > 1.

If in addition w > 0, then

(iv) lim
k→∞

cVk (N) = JV (N − 1).
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The property that cVk (N) > λVk (N) is important for practical applications.
It means that the Hartree-Fock critical levels are always an upper bound to
the true Schrödinger eigenvalues. Our main result is the following theorem.

Theorem 4 (Existence of Hartree-Fock excited states). Assume that V,w ∈
L3/2(R3,R) + L∞

ε (R3,R) with w even and, in addition, that w > 0. If

cVk (N) < JV (N − 1)

then cVk (N) is a critical value of EV|M. In addition, there exists a Hartree-

Fock critical point in the level set {EV (Ψ) = cVk (N), Ψ ∈ M} which has a

Morse index 6 k − 1. The corresponding orbitals satisfy the Hartree-Fock

equations

hΨϕj = µjϕj

where the µj 6 0 are all less than the (N + k − 1)th eigenvalue of hΨ.

Remark 3. The information on the Morse index was used by Lions in [39] to
get compactness, see also [19, 23]. Here we have the Palais-Smale property
and we do not need this for compactness, but the Morse information holds
anyway. �

Remark 4 (Other minimax levels). It is classical [1, 11, 43, 54, 23] to define
another nonlinear minimax level by

bVk (N) := inf
F⊂M compact
and symmetric,

γ(F )>k

sup
Ψ∈F

EV (Ψ) (1.13)

where

γ(F ) = inf
{
j > 1 : ∃f : A→ S

j−1 odd and continuous
}

is the Krasnosel’skii genus of the compact set F . By the Borsuk-Ulam
theorem, we have γ(Sk−1) = k, and since γ

(
f(Sk−1)

)
> γ(Sk−1) = k, we

have

bVk (N) 6 cVk (N)

for all k > 1. Lemma 3 and Theorem 4 hold exactly the same for bVk (N),
with the exception on the upper bound on the Morse index. From [43,
Prop. 8.1] we know that if bVk+j(N) = bVk (N), then the critical set at this
level has genus at least j + 1:

γ
({

Ψ ∈ M : EV (Ψ) = bVk (N),
(
EV|M

)′
(Ψ) = 0

})
> j + 1,

which is reminiscent of the multiplicity of degenerate eigenvalues in the linear
case.

Following [58, 13, 23], we could as well introduce another minimax level
based on Z2-equivariant homology classes, and obtain all the same results,
this time including the Morse index bound.

Finding the relation between all these possible minimax levels is probably
a difficult question. The Hartree-Fock functional may have plenty of critical
points, even with a given Morse index. �
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1.3.3. Application to atoms and molecules. For neutral and positively charged
atoms and molecules we are able to prove that cVk (N) < JV (N − 1) for all
k > 1, and hence obtain infinitely many Hartree-Fock excited states below
JV (N − 1).

Theorem 5 (Existence of infinitely many Hartree-Fock excited states for
atoms and molecules). Assume that V and w are given by

V (x) = −
M∑

m=1

zm
|x−Rm|

and w(x) =
1

|x| ,

where zm > 0 and Rm ∈ R
3. If N < 1 +

∑M
m=1 zm, then we have

cVk (N) < JV (N − 1)

for all k > 1. In particular, the Hartree-Fock energy has infinitely many

critical points in the interval
(
JV (N), JV (N − 1)

)
, with energies converging

to JV (N − 1).

This result is the Hartree-Fock equivalent of the famous Zhislin-Sigalov
theorem in the linear N -particle Schrödinger case.

Remark 5 (Negatively charged molecules). When N > 1 +
∑M

m=1 zm, we

expect that bVk (N) = cVk (N) = JV (N −1) for k large enough, similarly as in

the linear case [60, 59, 48]. Lieb has proved in [33] that JV (N) = JV (N−1)

when N > 1+2
∑M

m=1 zm (the proof, written in the Schrödinger case works
the same in Hartree-Fock theory). For M = 1, Solovej has shown in [52, 53]
that there exists a constant C such that JV (N) = JV (N − 1) when N >

C + z1. �

The rest of the paper is devoted to the proof of our results.

2. Proof of Theorem 2 on the Palais-Smale property

2.1. Geometric properties of Hartree-Fock states. We will freely make
use of the “geometric techniques” for N -particle states introduced in [31], to
which we refer for details (see also [21]). The following lemma summarizes
what is needed for our purposes.

Lemma 6 (Geometric properties of weakly convergent Hartree-Fock se-

quences [31]). Assume that V,w ∈ L3/2(R3,R) + L∞
ε (R3,R) with w even

and, in addition, that w > 0. Let Ψn = ϕ1,n ∧ · · ·ϕN,n ∈ M be a sequence

of Hartree-Fock states, such that 〈ϕj,n, ϕk,n〉 = δjk and ϕj,n ⇀ ϕj weakly in

H1(R3). Let

Ψ := ϕ1 ∧ · · · ∧ ϕN
be the weak limit of {Ψn} in H1(R3N ), which is such that

´

R3N |Ψ|2 6 1.
Then we have

lim inf
n→∞

EV (Ψn) >
(
1− ‖Ψ‖2

)
JV (N − 1) + EV (Ψ). (2.1)

Remark 6. Without the assumption on the sign of w, it was proved in [31]
that

lim inf
n→∞

EV (Ψn) >
(
1− ‖Ψ‖2

)
min

k=1,...,N

{
JV (N − k) + J0(k)

}
+ EV (Ψ) (2.2)
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but the argument is longer and this more general inequality is not needed
for our purposes. Note that Theorem 1 follows immediately from (2.2)
(from (2.1) when w > 0), using that EV (Ψ) > ‖Ψ‖2JV (N) since Ψ/‖Ψ‖2 is
a Slater determinant. �

Proof. Since V is relatively (−∆)–form-compact under our assumptions, we
find

lim
n→∞

ˆ

R3

V |ϕj,n|2 =
ˆ

R3

V |ϕj |2, j = 1, ..., N

see, e.g., [21, Lem. 1.2] and [31, Lem. 5]. The other terms being weakly
lower continuous by Fatou’s lemma (since w > 0 by assumption), we find
from (1.8) that

lim inf
n→∞

EV (Ψn) >

N∑

j=1

ˆ

R3

|∇ϕj |2 + V |ϕj |2

+
∑

16j<k6N

¨

R6

w(x− y) |ϕj ∧ ϕk(x, y)|2 dx dy. (2.3)

It is not easy to interpret the right side of (2.3) since the weak limits ϕj do
not necessarily form an orthonormal system. Applying an appropriate (n-
independent) rotation to the ϕj,n, we may always assume that

´

R3 ϕjϕk = 0
for j 6= k. The functions are however not necessarily normalized and we
only have ‖ϕj‖L2 6 1. For such an orthogonal system, a simple but tedious
calculation gives

EV (Ψ) =
N∑

j=1

∏

ℓ 6=j

‖ϕℓ‖2
ˆ

R3

|∇ϕj |2 + V |ϕj |2

+
∑

16j<k6N

∏

ℓ/∈{j,k}

‖ϕℓ‖2
¨

R6

w(x− y) |ϕj ∧ ϕk(x, y)|2 dx dy, (2.4)

which is different from (2.3). We now have to study the difference and prove
that it can be bounded from below by (1− ‖Ψ‖2)JV (N − 1).

This is exactly what has been done in [31]. In [31, Lemma 10] it is shown
that the right side of (2.3) can be written in the form

r.h.s. of (2.3) =
N−1∑

n=1

Tr
(
HV (n)Gn

)
+ EV (Ψ)

where each Gn = (Gn)
∗ > 0 is a convex combination of n-particle Hartree-

Fock states and

G0 +
N−1∑

n=1

Tr (Gn) + ‖Ψ‖2 = 1,

with 0 6 G0 6 1. More precisely, the operators Gn are given by

Gn =
∑

I={i1<···<in}⊂{1,...,N}

∏

ℓ∈{1,...,N}\I

(
1− ||ϕℓ||2

) ∣∣ϕi1∧· · ·∧ϕin
〉〈
ϕi1∧· · ·∧ϕin

∣∣,

(2.5)
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see [31, Example 16]. We have

Tr
(
HV (n)Gn

)
> JV (n)Tr (Gn)

since Gn is the convex combination (2.5) of n-particle Slater determinants
and JV (n) is the lowest n-particle Hartree-Fock energy. Using that 0 >

JV (n) > JV (N − 1) for n 6 N − 1, we get (2.3) as stated. �

2.2. Proof of Theorem 2. From the assumption that EV (Ψn) → c, we
deduce that {Ψn} is bounded in H1(R3N ) and hence that {ϕj,n} is bounded
in H1(R3) for j = 1, ..., N . We then have

−∆

2
− C 6 hΨn 6 −2∆ + C

where C is independent of n, and therefore

〈ϕj,n, hΨnϕj,n〉 = µj,n + o(1)

are uniformly bounded for all j = 1, ..., N . Up to extraction of a sub-
sequence, we may assume that µj,n = µj is independent of n, and that
ϕj,n ⇀ ϕj weakly in H1(R3). We denote by

Ψ = ϕ1 ∧ · · · ∧ ϕN

the weak limit of Ψn, as in Lemma 6. From (2.3) we see that

c >
(
1− ‖Ψ‖2

)
JV (N − 1) + EV (Ψ). (2.6)

If Ψ = 0 we already get a contradiction with c < JV (N − 1), so we may
assume that Ψ 6= 0, which implies that ϕj 6= 0 for all 1 6 j 6 N . Our goal
is to prove that EV (Ψ) > c‖Ψ‖2 in order to conclude that ‖Ψ‖ = 1. For this
we have to use the fact that Ψn is almost a critical point of EV on M.

Passing to the weak limit in the Hartree-Fock equation, we get

hΨϕj = µjϕj , j = 1, ..., N. (2.7)

This implies that the ϕj corresponding to distinct eigenvalues µj must be
orthogonal to each other. If several µj coincide, then we can apply an n-
independent rotation to the corresponding ϕj,n (this preserves the property
that hΨnϕj,n−µjϕj,n → 0), and assume that the limiting ϕj are orthogonal
to each other. So, from now on we assume that 〈ϕj , ϕk〉 = 0 for k 6= j. Of
course, we a priori only have 0 < ‖ϕj‖ 6 1 and our goal is to show that
‖ϕj‖ = 1 for all j = 1, ..., N .

Taking the scalar product with ϕj in (2.7) we obtain

ˆ

R3

|∇ϕj |2 + V |ϕj |2 +
N∑

k=1

¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy = µj ||ϕj ||2 .
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Summing over j and symmetrizing the double sum, we infer that

N∑

j=1

‖ϕj‖−2

ˆ

R3

|∇ϕj |2 + V |ϕj |2

=

N∑

j=1

µj−
∑

16j<k6N

(
‖ϕj‖−2 + ‖ϕk‖−2

)¨

R6

w(x−y)|ϕj∧ϕk(x, y)|2 dx dy.

(2.8)

Since ||Ψ||2 = ∏N
j=1 ‖ϕj‖2, we have, inserting (2.8) in (2.4) ,

EV (Ψ)

‖Ψ‖2 =

N∑

j=1

‖ϕj‖−2

ˆ

R3

|∇ϕj |2 + V |ϕj |2

+
∑

16j<k6N

‖ϕj‖−2‖ϕk‖−2

¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy

=

N∑

j=1

µj −
∑

16j<k6N

¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy

+
∑

16j<k6N

(
‖ϕj‖−2 − 1

) (
‖ϕk‖−2 − 1

)¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy

>

N∑

j=1

µj −
∑

16j<k6N

¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy.

In the last line we have used that ‖ϕj‖ 6 1 and that w > 0. Using now our
assumption that

hΨnϕj,n − µjϕj,n → 0 strongly in H−1(R3),

we find after similar manipulations

c = lim
n→∞

EV (Ψn)

= lim
n→∞

( N∑

j=1

ˆ

R3

|∇ϕj,n|2 + V |ϕj,n|2

+
∑

16j<k6N

¨

R6

w(x− y)|ϕj,n ∧ ϕk,n(x, y)|2 dx dy
)

=
N∑

j=1

µj − lim
n→∞

∑

16j<k6N

¨

R6

w(x− y)|ϕj,n ∧ ϕk,n(x, y)|2 dx dy

6

N∑

j=1

µj −
∑

16j<k6N

¨

R6

w(x− y)|ϕj ∧ ϕk(x, y)|2 dx dy.

In the last line we have used Fatou’s Lemma and the assumption that w > 0.
At this point we have shown that

EV (Ψ)

‖Ψ‖2 > c,
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as desired.
Coming back to (2.6), we get

c >
(
1− ‖Ψ‖2

)
JV (N − 1) + EV (Ψ) >

(
1− ‖Ψ‖2

)
JV (N − 1) + ‖Ψ‖2c.

Due to our assumption that c < JV (N − 1), this implies EV (Ψ) = c and
‖Ψ‖ = 1 hence that Ψn → Ψ strongly in L2(R3N ). Similarly, we have
ϕj,n → ϕj strongly in L2(R3), hence in Lp(R3) for all 2 6 p < 6, by the
Sobolev inequality. This strong convergence implies that we can pass to the
limit in the quartic term involving w. We then deduce from the fact that
EV (Ψn) → EV (Ψ) that

lim
n→∞

ˆ

R3N

|∇Ψn|2 =
ˆ

R3N

|∇Ψ|2.

This gives the sought-after strong convergence Ψn → Ψ in H1(R3N ). Simi-
larly, ϕj,n → ϕj strongly in H1(R3) and we already know that hΨϕj = µjϕj ,
that is, Ψ is a Hartree-Fock critical point. �

3. Proof of Lemma 3 on the properties of cVk (N)

Since (i) and (ii) are obvious from the definition, we only show that

(iii) λVk (N) 6 cVk (N) 6 JV (N − 1) for all k > 1,

and

(iv) lim
k→∞

cVk (N) = JV (N − 1), when w > 0.

For completeness, we also prove the corresponding results for the minimax
levels bVk (N) defined in (1.13) using the Krasnosel’skii genus.

Proof that cVk (N) > bVk (N) > λVk (N). It is well known that in the linear
case all the minimax levels coincide, that is,

λVk (N) = inf
f : Sk−1→S

continuous and odd

sup
Ψ∈f(Sk−1)

EV (Ψ) = inf
F⊂S compact
and symmetric,

γ(F )>k

sup
Ψ∈F

EV (Ψ),

(3.1)
where

S =

{
Ψ ∈

N∧

1

H1(R3,R) : ‖Ψ‖L2 = 1

}

is the class of fermionic N -particle states with finite kinetic energy. Then
obviously

cVk (N) > bVk (N) > λVk (N).

To prove (3.1), we take the unit sphere of any k-dimensional space in∧N
1 H

1(R3) and deduce from the usual min-max principle that λVk (N) is
larger or equal to the first minimax on the right side (which is itself larger
than the last). Conversely, if F has genus γ(F ) > k, then it must intersect
any space of co-dimension k− 1 by [43, Prop. 7.8]. This implies the reverse
inequality, by the linear max-min formula

λVk (N) = sup
W⊂

∧N
1
H1(R3,C)

codim(W )=k−1

inf
Ψ∈W

‖Ψ‖L2=1

EV (Ψ).
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Proof that cVk (N) 6 JV (N − 1). Let ϕ1, ..., ϕN−1 be a system of N − 1
orthonormal functions in H1(R3) with support in the ball BR0

of radius R0.
Let E be an arbitrary space of dimension k in C∞

c (B1), with orthonormal

basis ψ1, ..., ψk. Denote by ER := {R−3/2ψ(x/R − 2ν), ψ ∈ V } its dilate
by a coefficient R, and translate in the direction ν ∈ S

2 at the distance 2R.
When R > R0, the functions in ER have a support disjoint from that of
the ϕj ’s. Let ψR,j(x) = R−3/2ψj(x/R− 2ν) be the corresponding basis. We
then look at the continuous odd map

f : Sk−1 → M
ω 7→ ϕ1 ∧ · · · ∧ ϕN−1 ∧ ψR(ω),

where

ψR(ω) =

k∑

j=1

ωj ψR,j

runs over the whole unit sphere of ER. Since ψR(ω) has a support disjoint
from that of the ϕj ’s for R > R0, we obtain after a calculation that

cVk (N) 6 EV (ϕ1 ∧ · · · ∧ ϕN−1) + max
ψ∈ER
‖ψ‖=1

(
ˆ

R3

|∇ψ|2 + V ψ2

+
N−1∑

j=1

¨

R6

w(x− y)ϕj(x)
2ψ(y)2 dx dy

)
. (3.2)

Since the term in the parenthesis on the right tends to 0 when R → ∞, we
conclude that

cVk (N) 6 EV (ϕ1 ∧ · · · ∧ ϕN−1).

Optimizing over ϕ1, ..., ϕN−1 (and taking R0 → ∞) finally gives the claimed
inequality cVk (N) 6 JV (N − 1).

Proof of the convergence to JV (N−1) when w > 0. Since bVk (N) 6 cVk (N) 6

JV (N − 1), it suffices to show that

lim inf
k→∞

bVk (N) > JV (N − 1).

For this, we fix an arbitrary orthonormal basis {Ψj}j>1 of the N -particle

space
∧N

1 L2(R3,R). Let Fk be a symmetric compact set in M, such that
γ(Fk) > k and

max
Fk

EV 6 bVk (N) +
1

k
.

From the intersection property [43, Prop. 7.8], we know that Fk must in-

tersect {Ψ1, ...,Ψk−1}⊥, at a point that we call Ψ̃k ∈ Fk. The sequence

{Ψ̃k} ⊂ M then satisfies Ψ̃k ⇀ 0 weakly in
∧N

1 L
2(R3) and

EV (Ψ̃k) 6 max
Fk

EV 6 bVk (N) +
1

k
.

In particular, Ψ̃k is bounded in H1(R3N ) and converges weakly to 0 in that

space. Since w > 0 and Ψ̃k ⇀ 0, we infer from (2.1) in Lemma 6 that

lim inf
k→∞

EV (Ψ̃k) > JV (N − 1),
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hence JV (N − 1) 6 lim infk→∞ bVk (N), as we wanted. �

4. Proof of Theorem 4

The proof follows from classical arguments in critical point theory. We
use for instance [22, Thm. (4) p. 53], but there are many other related
results of the same kind [7, 24, 8, 9, 39, 26, 58, 50, 55, 23, 19, 17]. From
the Palais-Smale property shown in Theorem 2 and the assumption that
cVk (N) < JV (N − 1), we obtain the existence of a critical point at the level

cVk (N), with a Morse index 6 k − 1. Computing the second-order variation
when only one ϕj is moved, we find as in [39] and [23] that

〈ψ, (hΨ − µj)ψ〉 > 0

for all ψ which is both orthogonal to ϕ1, ..., ϕN and in a space of codimension
6 k − 1. In total this must hold in a space of codimension 6 N + k − 1.
By [39, Lemma II.2], this shows that µj is less than the (N + k − 1)th
eigenvalue of hΨ, as we claimed. �

5. Proof of Theorem 5

We know that there is a Hartree-Fock minimizer Ψ = ϕ1 ∧ · · · ∧ϕN−1 for
JV (N − 1). The corresponding orbitals satisfy

hΨϕj = µjϕj

where µ1 6 · · · 6 µN−1 < 0 are the N − 1 first eigenvalues of the one-
particle mean-field operators hΨ, see [35, 39]. The strict negativity of µN−1

gives that the functions ϕj decay exponentially fast at infinity, as well as
their gradient [35, Theorem 3.2]. So we can truncate the ϕj ’s and, after

orthonormalization, we obtain an orthonormal family ϕ
(R)
j with support in

a ball BR/2, such that

EV (ϕ(R)
1 ∧ · · · ∧ ϕ(R)

N−1) 6 JV (N − 1) +O(e−aR)

and
N∑

j=1

∣∣∣
∣∣∣ϕ(R)
j − ϕj

∣∣∣
∣∣∣
H1(R3)

= O(e−aR).

We then use (3.2) with these functions and R0 = R/2. We obtain

cVk (N) 6 JV (N − 1) +O(e−aR) + max
ψR∈ER
‖ψR‖=1

(
ˆ

R3

|∇ψR|2 + V ψ2
R

+

N−1∑

j=1

¨

R6

ϕ
(R)
j (x)2ψR(y)

2

|x− y| dx dy

)
. (5.1)

For ψR(x) = R−3/2ψ(x/R − 2ν) with ψ ∈ E, we have by scaling
ˆ

R3

|∇ψR|2 =
1

R2

ˆ

R3

|∇ψ|2
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and

ˆ

R3


V +

N−1∑

j=1

|ϕ(R)
j |2 ∗ 1

| · |


ψ2

R =
N − 1− Z

2R

ˆ

R3

ψ(x)2

|x| dx+O

(
1

R2

)

where Z =
∑M

m=1 zm. So we obtain

cVk (N) 6 JV (N − 1) +
N − 1− Z

2R
min
ψ∈E

‖ψ‖L2=1

ˆ

R3

ψ(x)2

|x| dx+O

(
1

R2

)
.

This is negative for R large enough, under our assumption that N < Z +1,
since E is finite-dimensional. �
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pp. 223–283.

[39] , Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math.
Phys., 109 (1987), pp. 33–97.

[40] , Hartree-Fock and related equations, in Nonlinear partial differential equations
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