Adaptive Estimation of Nonparametric Geometric Graphs - Archive ouverte HAL
Article Dans Une Revue Mathematical Statistics and Learning Année : 2019

Adaptive Estimation of Nonparametric Geometric Graphs

Résumé

This article studies the recovery of graphons when they are convolution kernels on compact (symmetric) metric spaces. This case is of particular interest since it covers the situation where the probability of an edge depends only on some unknown nonparametric function of the distance between latent points, referred to as Nonparametric Geometric Graphs (NGG). In this setting, adaptive estimation of NGG is possible using a spectral procedure combined with a Goldenshluger-Lepski adaptation method. The latent spaces covered by our framework encompass (among others) compact symmetric spaces of rank one, namely real spheres and projective spaces. For these latter, explicit computations of the eigen-basis and of the model complexity can be achieved, leading to quantitative non-asymptotic results. The time complexity of our method scales cubicly in the size of the graph and exponentially in the regularity of the graphon. Hence, this paper offers an algorithmically and theoretically efficient procedure to estimate smooth NGG. As a by product, this paper shows a non-asymptotic concentration result on the spectrum of integral operators defined by symmetric kernels (not necessarily positive).
Fichier principal
Vignette du fichier
Graph20.pdf (864.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01570489 , version 1 (31-07-2017)
hal-01570489 , version 2 (25-03-2022)

Identifiants

Citer

Yohann de Castro, Claire Lacour, Thanh Mai Pham Ngoc. Adaptive Estimation of Nonparametric Geometric Graphs. Mathematical Statistics and Learning, 2019, ⟨10.4171/MSL/15⟩. ⟨hal-01570489v2⟩
410 Consultations
193 Téléchargements

Altmetric

Partager

More