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This article studies the recovery of graphons when they are convolution kernels on compact (symmetric) metric spaces. This case is of particular interest since it covers the situation where the probability of an edge depends only on some unknown nonparametric function of the distance between latent points, referred to as Nonparametric Geometric Graphs (NGG). In this setting, adaptive estimation of NGG is possible using a spectral procedure combined with a Goldenshluger-Lepski adaptation method. The latent spaces covered by our framework encompass (among others) compact symmetric spaces of rank one, namely real spheres and projective spaces. For these latter, explicit computations of the eigen-basis and of the model complexity can be achieved, leading to quantitative non-asymptotic results. The time complexity of our method scales cubicly in the size of the graph and exponentially in the regularity of the graphon. Hence, this paper offers an algorithmically and theoretically efficient procedure to estimate smooth NGG. As a by product, this paper shows a non-asymptotic concentration result on the spectrum of integral operators defined by symmetric kernels (not necessarily positive).

Introduction

Over the recent years, the study of networks has become prevailing in many fields. Through the advent of social networks, biological neural networks, food webs, protein interaction in genomics and World wide web for instance, large scale data have become available. Extracting information from those repositories of data is a true challenge. Random graphs prove to be particularly relevant to model real-world networks. They are capable to capture complex interactions between actors of a system. Vertices of a random graph usually represent entities of a system and the edges stand for the presence of a specified relation between those entities. An important statistical problem is seeking better and more informative representations of random graphs.

Following the seminal work of [START_REF] Erdős | On the evolution of random graphs[END_REF] various random graphs models have been suggested, see [START_REF] Bollobás | Random graphs[END_REF]; [START_REF] Newman | The structure and function of complex networks[END_REF]; [START_REF] Kolaczyk | Statistical analysis of network data[END_REF]; [START_REF] Hoff | Latent space approaches to social network analysis[END_REF]; [START_REF] Matias | Modeling heterogeneity in random graphs through latent space models: a selective review[END_REF] and references therein. Aside from classical random graphs, random geometric graphs, see [START_REF] Penrose | Random geometric graphs[END_REF]; [START_REF] Liben-Nowell | The Link-Prediction Problem for Social Networks[END_REF]; [START_REF] Parthasarathy | A quest to unravel the metric structure behind perturbed networks[END_REF] have emerged as an interesting alternative to model real networks having spatial content. Examples include the Internet (where the nodes are the routers) and other physical communication networks such as road networks or neural networks in the brain. Recall that a random geometric graph is an undirected graph in which each vertex is assigned a latent (unobservable) random label in some metric spaces S. Two vertices are connected by an edge if the distance between them is smaller than some threshold. Assuming that the underlying metric is the unit sphere S d-1 and latent variables drawn from the uniform distribution on S d-1 , the paper [START_REF] Bubeck | Testing for high-dimensional geometry in random graphs[END_REF] considered the problem of testing if the observed graph is an Erdös-Rényi one (no geometric structure) or a geometric graph on the sphere where points are connected if their distance is smaller than some threshold.

More generally, random graphs with latent space can be characterized by the so-called graphon. In fact, graphons can be seen as kernel functions for latent position graphs. For more insight about the theory of graphon, we refer to the excellent monograph of [START_REF] Lovász | Large networks and graph limits 60[END_REF]. In the case of graphons defining positive definite kernels, the paper [START_REF] Tang | Universally consistent vertex classification for latent positions graphs[END_REF] proved that the eigen-decomposition of the adjacency matrix yields consistent estimator of the graphon feature maps involving the latent variables. Besides, nonparametric representations of graphons has gained attention. Statistical approaches on estimating graphons have been developed using Least-Squares estimation [START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF] or Maximum Likelihood estimation [START_REF] Wolfe | Nonparametric graphon estimation[END_REF]. Dealing with estimation of (sparse) graphons from the observation of the adjacency matrix, the paper [START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF] derives sharp rates of convergence for the L 2 loss for the Stochastic Block Model. We mention also the general methodology, referred to as USVT algorithm, of [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] that can be invoked to control the L 2 loss between the probability matrix and a eigenvalue-tresholded version of the adjacency matrix. However, note that the present paper is more concerned (see Theorem 2) by controlling the distance between the probability matrix and its integral operator. The USVT point of view has been further investigated in [START_REF] Xu | Rates of convergence of spectral methods for graphon estimation[END_REF] that gives rates of convergence for the so-called "probability matrix " estimation problem (see Section 2.1), under smoothness assumptions. Motivated by sharp control of individual eigenvalues behavior (invoking Weyl's perturbation Theorem, see (Bhatia, 2013, page 63)), we choose to control the difference between the adjacency matrix and the probability matrix in operator norm, see Proposition 1.

A Statistical Pledge for Structured Latent Spaces

The graphons are limiting objects that describe large dense graphs. The graphon model [START_REF] Lovász | Large networks and graph limits 60[END_REF] is standardly and without loss of generality formulated choosing [0, 1] as latent space. In this model, given latent points x 1 , . . . , x n ∈ [0, 1], the probability to draw an edge between i and j is W (x i , x j ) where W is a function from [0, 1] 2 onto [0, 1], referred to as a graphon. This model is general and well referenced in the literature-as mentioned earlier, the reader may consult the book [START_REF] Lovász | Large networks and graph limits 60[END_REF] for further details.

However, this model may underneath intrinsic features of a random graph. For instance, recall the prefix attachment graph model (Lovász, 2012, page 190) where the nodes are added one at a time and each new node connects to a random previous node and all its predecessors. In this model, the graph sequence converges in cut distance (Lovász, 2012, Proposition 11.42) to the graphon W pref defined as, for all (x 1 , y 1 ), (x 2 , y 2 ) ∈ [0, 1] 2 , W pref ((x 1 , y 1 ), (x 2 , y 2 )) = 1(x 1 < x 2 y 2 ) + 1(x 2 < x 1 y 1 ) ,

up to a measure preserving homomorphism of the latent space [0, 1] 2 . From a statistical point of view, the estimation of the function ((x 1 , y 1 ), (x 2 , y 2 )) → 1(x 1 < x 2 y 2 ) from sample points ((x k , y k )) k uniformly distributed on [0, 1] 2 is a well understood standard task. Yet one may also represent this graphon on the standard latent space [0, 1]. And, in this case, one cannot represent this graphon using the indicator function of two symmetric convex sets with piecewise smooth border as done in (1). Actually, in this case, a fractal-like structure appear and the statistical estimation of this function seems more difficult than in (1). Our statement may be loose here but one may emphasize that there may exist better latent spaces than [0, 1] on which the graphon may present a simple and better estimable formulation.

An other important statistical issue is that, by construction, graphons are defined on an equivalent class "up to a measure preserving homomorphism" and it can be challenging to have a simple description from an observation given by sampled graph-since one has to deal with all possible composition of a bivariate function by any measure preserving homomorphism. In this paper, we circumvent this disappointing statistical issue restraining our attention to graph models for which the probability of appearance of an edge depends as a nonparametric function of the distance between latent points.

Main results

In this paper, we focus on latent metric spaces for which the distance is invariant by translation (or conjugation) of pairs of points. This natural assumption leads to consider that the latent space S has some group structure, namely it is a compact Lie group or some compact symmetric space ("Intuitively, a symmetric space is a Riemannian manifold where geodesics are "nicely" arranged in a symmetric way around any point" (Méliot, 2017, Chapter 3)). Hence, consider graphons defined as functions p of (the cosine of) the distance γ (normalized so that the range of γ equals [0, π]) of some compact Lie group S, or more generally of some compact symmetric space, see Section 4. In this case, the graphon is given by ∀x, y ∈ S, W (x, y) = p(cos γ(x, y)) = p(cos γ(z, e)) and z = xy -1 , where y -1 is the inverse of y, e denotes the identity element of S and p is a function from [-1, 1] onto [0, 1] referred to as the "envelope". In the case when S is the Euclidean sphere, we consider graphons that are a function p of cosine of the distance, namely cos γ(x, y) = x, y , between latent points x, y ∈ S. In this case e is the north pole and p( x, y ) = p( z, e ) where z is the image of x by the rotation which maps y to e.

First, note that W , viewed as an integral operator on square-integrable functions, is a compact convolution (on the left) operator:

f ∈ L 2 (S) → S p(cos γ(x, .))f (x)dx ∈ L 2 (S)
Then the main point is that there exists an L 2 -decomposition of the Hilbert space of square integrable functions such that the eigenfunctions basis of the convolution kernel (and the graphon W viewed as a integral operator) depends only on the latent space S and does not depend on the function p. This basis is the irreducible characters in the (Lie) Group case and the zonal spherical functions in the non-Group case, see Cartan's Classification of "sscc" Lie Groups and "ssccss" in Section 4 for further details. This decomposition can be pushed on [-1, 1] and one gets an L 2decomposition of the envelope function p such that the orthonormal basis (Z ) depends only on the latent space S and does not depend on p, see (2). Furthermore, the eigenvalues λ = (λ k ) k≥0 of the kernel W are exactly (up to some known multiplicities and up to some known multiplicative constants) the coefficients of p onto the orthonormal basis (Z ) ≥0 . Hence, the graphon W is entirely described by the univariate function p defined on [-1, 1]. It follows that this subclass of graphons may be well suited for estimation since it reduces to estimate a simple univariate function on [-1, 1]. Now, consider the case when S is one of the compact symmetric space of rank one-namely real spheres or real/complex/quaternionic/octonionic projective spaces. In this case, one can explicitly give the decomposition of the envelope function p. One can prove that the orthonormal polynomials (Z ) ≥0 are the orthonormal polynomials (more precisely, normalized Jacobi polynomials) of some Beta law with known shape parameters (α, β), see Table 1 in the Appendix for the explicit values. This decomposition is given by

p = ≥0 d p Z and p = 1 √ d p, Z L 2 ([-1,1],w) , (2) 
in L 2 ([-1, 1], w) where w denotes the density function of the Beta distribution. We further assume that there exists s > 0, a (Sobolev) regularity parameter, such that

∀R ≥ 1 , >R d (p ) 2 ≤ C(p, s, S) R -2s .
for some constant C(p, s, S) > 0 and for some known dimensions (d ) ∈N (given by the representation of the group/quotient S) that depend only on S, see Table 1 in the Appendix. This assumption governs the regularity of the kernel W and it can be understood that the derivative of order s (in the Laplacian on S sense) of W is square-integrable. In this case, one can build an estimator λ R (from the spectrum of the adjacency matrix of the graph) of the spectrum λ of W (viewed as an integral operator) such that

E δ 2 2 λ R , λ = O n log n - 2s 2s+(d-1)
, where n is the size of the graph, d is the dimension of the latent space (actually, S is a (d -1)manifold) and δ 2 is the 2 distance between spectra, see (9) for a definition. We uncover for the minimax risk, the rate of estimating a s-regular function on a space of (Riemannian) dimension d-1 up to a multiplicative log factor. This result is stated in Theorem 6 without adaptation to the smoothness parameter, Theorem 7 and Corollary 8 with smoothness adaptation, and Theorem 9 and Corollary 10 for adaptive estimation of the envelope function p at rate O(log n/n) when p is a polynomial. The general statement for compact symmetric spaces is given by Theorem 11.

Note that our results hold for general convolution kernels and not necessarily semidefinite positive kernels. Indeed, it is often assumed in the literature, see for instance [START_REF] Ferreira | Integral operators on the sphere generated by positive definite smooth kernels[END_REF]; [START_REF] Rosasco | On learning with integral operators[END_REF]; [START_REF] Tang | Universally consistent vertex classification for latent positions graphs[END_REF][START_REF] Tang | A nonparametric two-sample hypothesis testing problem for random graphs[END_REF], that the graphon W is a semidefinite positive kernel. If one assumes that the graphon is a positive definite kernel (leading to a RKHS representation) then the probability matrix (see Section 2.1) of the random graph is almost surely semidefinite positive (by definition of positive definite kernels). In this case, the empirical eigenvalues (the eigenvalues of the adjacency matrix) might be negative but these negative empirical eigenvalues converge to nonnegative limiting eigenvalues as the graph size grows, which is a strong requirement. See also Remark 1 on this point. To bypass this limitation, our approach does not use any RKHS representation but a new non-asymptotic concentration result on the integral operator, see Theorem 2 and Corollary 3. In particular, this framework is consistent with negative empirical eigenvalues clustering around negative limiting eigenvalues. The rates uncovered by these results allow us to introduce an adaptive estimation procedure of the spectrum of the graphon.

From a computational point of view, Theorem 5 enlightens on the time complexity of our estimator. Remarkably, the time complexity is n 3 + (R max + 2)!, that is cubic in the graph size n (as any spectral method) and exponential in the number of coefficients p one has to estimate. The spatial complexity is quadratic in n as one has to store the adjacency matrix of the graph.

Outline

The convergence of the spectrum of the "matrix of probabilities" towards the spectrum of the integral operator in a non-asymptotic frame is given in Section 2.

Then, we begin our study by a comprehensive example on the d-dimensional sphere in Section 3. Interestingly, we uncover that the spectrum of the graphon (viewed as a kernel operator) presents a structure: the eigenvalues have prescribed multiplicities and the eigenvectors are fixed-they are the spherical harmonics.

Adaptive estimation of the spectrum of the graphon W (viewed as an integral operator) is proved and computational complexities are discussed.

Extensions to compact symmetric spaces is done in Section 4. Numerical experiments are presented in Section 5.

The proofs are given in the appendix.

Spectral Convergence of the Sampled graphons

Estimating the Matrix of Probabilities

We denote [n] := {1, . . . , n} for all n ≥ 1. Consider a random undirected graph G with n nodes and assume that we observe its n × n adjacency matrix A given by entries A ij ∈ {0, 1} where A ij = 1 if the nodes i and j are connected and A ij = 0 otherwise.

We set A ii = 0 on its diagonal entries for all i ∈ [n] and we assume that A ij are independent Bernoulli random variables with

(Θ 0 ) ij := P{A ij = 1} for 1 ≤ i < j ≤ n.
We denote by Θ 0 the n × n symmetric matrix with entries (Θ 0 ) ij for 1 ≤ i < j ≤ n and zero diagonal entries. This is a matrix of probabilities associated to the random graph G.

Throughout this paper, we denote by

T n := (1/n) A and T n := (1/n) Θ 0 . (3) 
Our analysis leverages the operator norm • loss to account for the distance between the observation T n and the target parameter T n . Furthermore, a near optimal error bound can be derived for the operator norm • loss as shown in [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF].

Proposition 1 [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF]). There exists a universal constant C 0 > 0 such that for all α ∈ (0, 1), it holds

P T n -T n ≥ 3 √ 2D 0 n + C 0 log(n/α) n ≤ α (4)
where

D 0 = max i∈[n] j∈[n] (Θ 0 ) ij (1 -(Θ 0 ) ij ) ≤ n/4.
A proof is recalled in Appendix A.1. Proposition 1 is of particular interest giving an error bound on each eigenvalue λ k (T n ) of T n , where λ k (M ) denotes the k-th largest eigenvalue of the symmetric matrix M . Indeed, it holds, with probability greater that 1 -n exp(-n),

∀k ∈ [n], |λ k ( T n ) -λ k (T n )| ≤ T n -T n = O(1/ √ n) , (5) 
by Weyl's perturbation Theorem, see (Bhatia, 2013, page 63) for instance.

On the Kernel Spectrum

We understand that the spectrum of T n can be a good approximation of the spectrum of T n in the sense of (5). Assuming a graphon W model we can link the spectrum of T n (sampled graphon onto the latent points X 1 , . . . , X n see below) to the spectrum of an integral operator T W defined by the graphon W viewed as a symmetric kernel. More precisely, we consider J := (S, A, σ) a probability space on S endowed with measure σ on the σ-algebra A, and W : S × S → [0, 1] a symmetric σ-measurable function. The couple (J, W ) is referred to as a graphon, see for instance (Lovász, 2012, Chapter 13). We then define a probabilistic model on Θ 0 setting (Θ 0 ) i,j = W (X i , X j ) for i = j and 0 otherwise where X 1 , . . . , X n are i.i.d. drawn w.r.t. σ. Assume that the kernel satisifies W ∈ L 2 (S ×S, σ ⊗σ), so that ∀x ∈ S, ∀g ∈ L 2 (S, σ), (T W g)(x) = S W (x, y)g(y)dσ(y) , defines a symmetric Hilbert-Schmidt operator T W on L 2 (S, σ) and we can invoke the spectral theorem. Hence, it holds that, in the L 2 (S × S, σ ⊗ σ)-sense,

for almost every x, y ∈ S, W (x, y) = k≥1 λ k φ k (x)φ k (y) , (6) 
for an L 2 (S, σ)-orthonormal basis (φ i ) i≥1 . This operator has a discrete spectrum, i.e. a countable multiset λ of nonzero (real) labeled eigenvalues (λ k ) k≥1 such that λ k → 0. In particular, every nonzero eigenvalue has finite multiplicity. We are free to choose any labeling of the target eigenvalues (λ k ) k≥1 and observe that our results are valid for any choice of labeling. For instance, we can standardly label the eigenvalues in decreasing order with respect to their absolute values such that |λ 1 | ≥ |λ 2 | ≥ • • • and this gives results whose error rates (typically W -W R 2 see below) are in terms of the best L 2 -approximation of rank R of the kernel W . An other choice may result in labeling the eigenvalues in increasing order of "frequencies". This labeling is natural for instance when we have a representation by spherical harmonics of the kernel as in Section 3. This gives results whose error rates are in terms of the best approximation by low frequency (i.e. the R first frequencies) kernels.

The relatively sparse model

Note that the average degree of node i is j∈[n] (Θ 0 ) ij which is of the order of the graph size n in the graphon model for which (Θ 0 ) ij = W (X i , X j ). To gain in realism, one may consider a model where

(Θ 0 ) ij = ζ n W (X i , X j )
where ζ n is a sequence of positive real numbers that may converge to zero. In this model, the average degree of one node is of the order of nζ n . One standard interpretation is that edges are drawn independently with probability W (X i , X j ) and we independently suppress these edges with probability 1 -ζ n . The relatively sparse model [START_REF] Wolfe | Nonparametric graphon estimation[END_REF] is given by sequences

ζ n such that lim inf n nζ n log n ≥ Z , (7) 
where Z > 0 is a universal positive constant. In this model, the average degree of one node is at least O(log n). This latter rate is a standard threshold on connectedness in random graphs [START_REF] Bollobás | Random graphs[END_REF]. More precisely, it is known that in the Erdös-Rényi model, the sharp threshold on connectedness is ζ n = log(n)/n. The interested reader may also consult further works on percolation on graphons in the sparse regime (where ζ n = c/n for some constant c > 0), see [START_REF] Bollobás | Percolation on dense graph sequences[END_REF] for instance. Note that if ζ n = 1 then we recover the previous model, referred to as the "dense " regime. Note that

T ζnW = ζ n T W and T n := (ζ n W (X i , X j )/n) i,j = ζ n (W (X i , X j )/n) i,j .
By homogeneity, we understand that one may consider that ζ n = 1 when studying the convergence of T n towards T ζnW . However, the situation is more intricate for the convergence of T n towards T n . Given a fixed graphon model W , one has the bound

T n = ζ n (W (X i , X j )/n) i,j = O P (ζ n ) ,
where O P denotes stochastic boundedness and since the operator norm of (W (X i , X j )/n) i,j converges to the largest absolute eigenvalue of T W , see Section 2.4. On the other hand, the control (4) is given by: There exists a universal constant C 0 > 0 such that for all α ∈ (0, 1), it holds

P T n -T n ≥ 3 2ζ n n + C 0 log(n/α) n ≤ α (8) using that D 0 = max i∈[n] j∈[n] (Θ 0 ) ij (1 -(Θ 0 ) ij ) ≤ nζ n . It gives T n -T n = O P ζ n n + √ log n n .
Under the relatively sparse model assumption ( 7), one has

T n -T n = O P ζ n n and T n = O P (ζ n )
entailing that T n is a better approximation of T n than the null matrix. While, for faster rate, namely

ζ n = o( √ log n/n) one has T n -T n = O P √ log n n and T n = O P (ζ n ) = o P √ log n n
entailing that the null matrix is a better approximation of T n than the observation T n . This short argumentation shows that the relatively sparse model ( 7) ensures the observation T n is at least more informative than the null matrix for the operator norm topology.

To conclude, we will adopt two conventions. First, we will consider that ζ n = 1 when studying the convergence of T n towards T ζnW . Second, every results based on statistics of T n will be presented in the relatively sparse model ( 7) in a joint remark, see Section 3.4.

Non-Asymptotic Error Bounds in δ 2 -metric

Given two sequences x and y of real numbers-completing finite sequences by zeros-such that it holds

x 2 i + y 2 i < ∞, we standardly define the 2 -rearrangement distance δ 2 (x, y) as

δ 2 (x, y) := inf π∈P (x i -y π(i) ) 2 1 2 ,
where the infimum is taken over P the set of permutations with finite support. Using Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368), it is standard to observe that

δ 2 (x, y) = lim N →∞ N k=-N (x k -y k ) 2 1 2 , (9) 
with the convenient notation x -1 ≤ x -2 ≤ . . . ≤ 0 ≤ . . . ≤ x 2 ≤ x 1 ≤ x 0 (respectively y -1 ≤ y -2 ≤ . . . ≤ 0 ≤ . . . ≤ y 2 ≤ y 1 ≤ y 0 ) where we denote x = (x k ) k∈Z (respectively y = (y k ) k∈Z ) completing with zeros if necessary. Using this metric we can compare the (finite) spectrum λ(T n ) of T n to the (infinite) spectrum λ of T W .

Remark 1. To the best of our knowledge, existing results on this issue assume that W is a positive kernel and use a RKHS representation and/or Mercer theorem. This assumption might seem meaningless for a graphon. Indeed, it implies that T W is semi-definite (contrary to the present paper) and if W = W H is a "step-function" kernel representing a finite graph H, it implies that the adjacency matrix of H is semi-definite which might be seen as restrictive. In this article, we bypass this limitation with the next result based on the analysis developed in [START_REF] Koltchinskii | Random matrix approximation of spectra of integral operators[END_REF] and some recent development in random matrix concentration, see [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] for instance.

Theorem 2. Let W ∈ L 2 (S × S, σ ⊗ σ) be a symmetric kernel and let (φ k ) k≥1 be an orthonormal eigenbasis as in (6). Let R ≥ 1 and α ∈ (0, 1/3). Set

ρ(R) := max 1, R r=1 φ 2 r ∞ -1 and W R (x, y) := R i=1 λ i φ i (x)φ i (y).
Then, for all n 3 ≥ ρ(R) log(2R/α), it holds

δ 2 (λ(T n ), λ ) ≤2 W -W R 2 + W -W R ∞ 2 log(2/α) n 1 4 + W R 2 ρ(R) log(2R/α) n 1 2 + 2ρ(R) n 1 + max 1≤r≤R ||φ 2 r || ∞ log(R/α) 2n 1 2
, with probability at least 1 -3α.

A proof of Theorem 2 can be found in Appendix A.2. This result shows that for all n ≥ n 0

(R), it holds that δ 2 (λ(T n ), λ ) ≤ 2 W -W R 2 + C 0 (R) n -1
4 with probability at least 1 -3α, where the constants n 0 (R) ≥ 1 and C 0 (R) > 0 may depend on R, the orthogonal basis (φ k ) k∈[R] , α and the graphon W .

We have the following improvement for canonical kernels, see (De la Pena and Giné, 2012, Definition 3.5.1) for a definition.

Remark 2. Under the relatively sparse model (7), Theorem 2 becomes: for all n 3 ≥ ρ(R) log(2R/α), it holds

δ 2 (ζ n λ(T n ), ζ n λ ) ≤2 ζ n W -W R 2 + ζ n W -W R ∞ 2 log(2/α) n 1 4 + ζ n W R 2 ρ(R) log(2R/α) n 1 2 + 2ρ(R) n 1 + max 1≤r≤R ||φ 2 r || ∞ log(R/α) 2n 1 2
, with probability at least 1 -3α. In the aforementioned setting, we have denoted the eigenvalues of T W by λ (as before) so that ζ n λ are the eigenvalues of T ζnW , and their empirical counterpart (based on the probability matrix) by

ζ n λ(T n ), namely the eigenvalues of ζ n T n . Corollary 3. Assume further that the kernel (W -W R ) 2 (x, y) -E (W -W R ) 2 is canonical, namely For almost every x ∈ S, E (W -W R ) 2 (x, X 1 ) = E (W -W R ) 2 (X 1 , X 2 ) ,
then there exist universal constants C 1 , C 2 > 0 such that for all n 3 ≥ ρ(R) log(2R/α), it holds

δ 2 (λ(T n ), λ ) ≤2 W -W R 2 + W -W R ∞ C 1 log(C 2 /α) n 1 2 + W R 2 ρ(R) log(2R/α) n 1 2 + 2ρ(R) n 1 + max 1≤r≤R ||φ 2 r || ∞ log(R/α) 2n 1 2
, with probability at least 1 -3α.

A proof of this corollary can be found in Appendix A.6.

Remark 3. Under the relatively sparse model (7), Corollary 3 becomes: for all

n 3 ≥ ρ(R) log(2R/α), it holds δ 2 (ζ n λ(T n ), ζ n λ ) ≤2ζ n W -W R 2 + ζ n W -W R ∞ C 1 log(C 2 /α) n 1 2 + ζ n W R 2 ρ(R) log(2R/α) n 1 2 + 2ρ(R) n 1 + max 1≤r≤R ||φ 2 r || ∞ log(R/α) 2n 1 2
, with probability at least 1 -3α. In the aforementioned setting, we have denoted the eigenvalues of T W by λ (as before) so that ζ n λ are the eigenvalues of T ζnW , and their empirical counterpart (based on the probability matrix) by ζ n λ(T n ), namely the eigenvalues of ζ n T n .

The Sphere Example, Prelude of Symmetric Compact Spaces

From a general point of view, this article focuses on the case where the value W (x, y) depends on a nonparametric function p of the distance between the points x and y of a latent space S assumed a compact Lie group or a compact symmetric space, see Section 4 for further details. Such assumptions on the graphon W allow to lead the spectral analysis a step further. In this section, we restrict our analysis to the pleasant case of S := S d-1 the unit sphere of R d with d ≥ 3 equipped with the uniform probability measure σ and the usual scalar product •, • . In the literature, a popular model is given by the Random Geometric Graph for which the value W (x, y) depends on the distance between the points x and y of the latent space S d-1 and W (x, y) = 1 x,y ≥τ for some threshold τ ∈ (-1, 1) as in [START_REF] Devroye | High-dimensional random geometric graphs and their clique number[END_REF]; [START_REF] Bubeck | Testing for high-dimensional geometry in random graphs[END_REF]. From now on, assume that W only depends on the distance between latent points, namely

∀x, y ∈ S d-1 , W (x, y) = p( x, y )
where p : [-1, 1] → [0, 1] is an unknown function that is to be estimated. We refer to p as the "envelope" function.

Harmonic Analysis on S d-1

Let us start by providing a brief overview on Fourier analysis on S d-1 . As pointed out above, in this case the operator T W is a convolution (on the left) operator. Its spectral decomposition (6) satisfies that the orthonormal basis (φ k ) k does not depend on p and the spectrum λ(T W ) is exactly described by the Fourier coefficients (p ) of p, see (Dai and Xu, 2013, Lemma 1.2.3). This remark remains true when the latent space S is assumed a compact Lie group or a compact symmetric space, see Section 4 for further details.

In the spherical case, the orthonormal basis of eigenfunctions consists of the real spherical harmonics. The following material can be found in [START_REF] Dai | Approximation theory and harmonic analysis on spheres and balls[END_REF]. Let us denote H the space of real spherical harmonics of degree with orthonormal basis (Y j ) j∈ [d ] where

d := dim(H ) = + d -1 - + d -3 -2 (10) 
for ≥ 2 and d 0 = 1, d 1 = d. Note that the d 's are all distinct and of order d-2 . We discard S 1 from our analysis because in that case, the d 's are constant equal to 2. In the sequel we identify

(φ k ) k≥1 = (Y j ) ≥0, j∈[d ] so that the spectral decomposition (6) reads ∀x, y ∈ S d-1 , W (x, y) = p( x, y ) = ≥0 p d j=1 Y j (x)Y j (y) Zonal Harmonic , (11) 
where λ = {p 0 , p 1 , . . . , p 1 , . . . , p , . . . , p , . . .} and d j=1 Y j (x)Y j (y) is a zonal harmonic of degree . The eigenvalue p has multiplicity d if the eigenvalues are all distinct. Furthermore, it holds that

p := c b d d 1 -1 p(t)G β (t)w β (t)dt,
where G β denotes the Gegenbauer polynomial of degree defined for a parameter β = (d -2)/2

w β (x) := (1 -x 2 ) β-1 2 , c := 2 + d -2 d -2 and b d := Γ( d 2 ) Γ( 1 2 )Γ( d 2 -1 2 )
, with Γ the Gamma function. We recall that the Gegenbauer polynomials are orthogonal polynomials on the interval [-1, 1] with respect to the weight function w β . Besides, one can recover

p ∈ L 2 ([-1, 1], w β ) thanks to the identity p = ≥0 d p G β / G β L 2 ([-1,1],w β ) Z = ≥0 p c G β . ( 12 
)
Remark 4. Note that p is the eigenvalue of the operator T W associated to the eigenspace H ,

( √ d p ) ≥0 are the coordinates of p ∈ L 2 ([-1, 1], w β ) in the orthonormal basis (Z ) ≥0 , where Z := G β / G β L 2 ([-1,1],w β ) . Note that requiring W ∈ L 2 (S d-1 × S d-1 , σ ⊗ σ) is equivalent to p ∈ L 2 ([-1, 1], w β ).
Let R ≥ 0 and define

R := R =0 d = R + d -1 R + R + d -2 R -1 , ( 13 
)
where the last equality is obtained with the telescoping sum using (10). Furthermore, we get that

R ≤ 2(R + d -1) d-1 (d -1)! = O P (R d-1 ),
and this quantity is the dimension of Spherical Harmonics of degree less than R.

A Glimpse into Weighted Sobolev Spaces

Some of our result concern "smooth graphons" for which a regularity assumption is required. Following [START_REF] Nicaise | Jacobi Polynomials, Weighted Sobolev Spaces and Approximation Results of Some Singularities[END_REF], we can define our approximation space defining the Weighted Sobolev space with the eigenvalues of the Laplacian on the Sphere. More precisely, let s > 0 a regularity parameter and f ∈ L 2 ((-1, 1),

w β ) such that f = ≥0 f c G β in L 2 , we define f * Z s w β ((-1,1)) = ∞ =0 d |f | 2 (1 + ( ( + 2β)) s ) 1 2 and Z s w β ((-1, 1)) = f ∈ L 2 ((-1, 1), w β ) : f * Z s w β ((-1,1)) < ∞ . Then, if p belongs to the Weighted Sobolev Z s w β ((-1, 1)) with smoothness s > 0, it holds >R d (p ) 2 = >R d (p ) 2 1 + ( ( + 2β)) s 1 + ( ( + 2β)) s ≤ C(p, s, d)R -2s , (14) 
where C(p, s, d) > 0 is a constant that may depend on p, s or d.

Spectrum Consistency of the Matrix of Probabilities

Under this framework, Corollary 3 can be written as follows.

Proposition 4. There exists a universal constant C > 0 such that for all α ∈ (0, 1/3) and for all

n 3 ≥ R log(2 R/α), it holds δ 2 (λ(T n ), λ ) ≤ 2 >R d (p ) 2 1 2 + C R(1 + log( R/α))/n
with probability at least 1 -3α. Moreover, if p belongs to the Weighted Sobolev space Z s w β ((-1, 1)), then for n large enough

E[δ 2 2 (λ(T n ), λ )] ≤ C n log n - 2s 2s+(d-1)
where C only depends on s, d and p * Z s w β ((-1,1)) .

A proof can be found in Appendix A.7. These theoretical results show that the eigenvalues of T n converge towards the unknown spectrum λ .

Nonparametric Estimation of the Kernel Spectrum

Let us now define our estimation procedure. Recall that we observe a graph and then its n × n adjacency matrix A, where A ij are independent Bernoulli random variables. Our model is that

P{A ij = 1} = (Θ 0 ) ij = W (X i , X j ) = p( X i , X j ), 1 ≤ i < j ≤ n,
where X 1 , . . . , X n are i.i.d. uniform variables on S d-1 . Our aim is to recover the envelope function p using only observations A, the variables X i being unobserved. The idea is to estimate the coefficients p of p in the Gegenbauer polynomial basis, using that λ := p 0 , p 1 , . . . , p 1 , . . . , p , . . . , p , . . . is close to λ(T n ) and this latter is close to the spectrum

λ := λ( T n ) of our observable T n = (1/n)A.
Let us fix R ≥ 0 some resolution level, and denote

λ R := p 0 d0 , p 1 , . . . , p 1 d1 , . . . , p R , . . . , p R d R
the first coefficients of p, i.e., the first eigenvalues of T W -not necessarily the largest. In view of (11) and defining R as in (13), we understand that the R first eigenvalues of T W belong to the convex set

M R := ( u 0 d0 , u 1 , . . . , u 1 d1 , . . . , u R , . . . , u R d R ) ∈ R R . ( 15 
)
Remark 5. One can consider the convex set

M [0,1] R of admissible coefficients ( u 0 d0 , u 1 , . . . , u 1 d1 , . . . , u R , . . . , u R d R )
corresponding to a function between 0 and 1, namely

M [0,1] R := (u 0 , u 1 , . . . , u 1 , . . . , u R , . . . , u R ) ∈ R R s.t.
there exists an extension (u

) >R s.t. for a.e. t ∈ [-1, 1], 0 ≤ ∞ =0 u c G β (t) ≤ 1 . Then, note that λ R ∈ M [0,1] R and that for all x ∈ M R δ 2 (P M [0,1] R (x), λ R ) ≤ δ 2 (x, λ R )
where

P M [0,1] R denotes the L 2 -projection onto M [0,1] R .
It follows that all the results presented applies if we substitute M R by M [0,1] R . But, since we do not use the fact that the coefficients (u 0 , u 1 , . . . , u 1 , . . . , u R , . . . , u R ) correspond to a function between 0 and 1 in our proofs and our numerical study, we choose to alleviate presentation using M R instead of

M [0,1] R .
We assume that n ≥ R and we denote S n the set of all permutation of [n]. We define the estimator λ R as the closest sequence to λ which belongs to the set of "admissible" spectra M R as follows:

λ R ∈ arg min u∈M R min σ∈Sn R k=1 (u k -λ σ(k) ) 2 + n k= R+1 λ 2 σ(k) . ( 16 
)
where we recall that λ denotes the spectrum of T n . We denote p R the stage values of λ R , such

that λ R = ( λ R 1 , . . . , λ R R ) = ( p R 0 , p R 1 , . . . , p R 1 , . . . , p R R , . . . , p R R ). One can check that p R = 1 d k= -1 λ σ(k)
where σ (that depends on R) is a permutation achieving the minimum in ( 16) and we use the notation ( 13) with the convention -1 = 1. Furthermore, the true complexity of this estimator is not n! which matches the complexity of S n . The true computation complexity of our estimator is at most (R + 2)! as shown by the next theorem.

Theorem 5 (Computational Complexity). Let R ≥ 0 such that R ≤ n. For any sequence of real numbers

(λ k ) n k=1 such that λ 1 ≥ λ 2 ≥ . . . ≥ λ n it holds that ∃H R ⊆ S n s.t. ∀u ∈ M R , min σ∈Sn R k=1 (u k -λ σ(k) ) 2 + n k= R+1 λ 2 σ(k) = min σ∈H R R k=1 (u k -λ σ(k) ) 2 + n k= R+1 λ 2 σ(k)
where the set H R depends only on R and has size at most (R + 2)!.

A proof can be found in Appendix B.1. This proof is constructive and it gives the expression of H R . Remark 6. Remark that the hypothesis λ 1 ≥ λ 2 ≥ . . . ≥ λ n is not necessary and can be removed.

Indeed, if τ ∈ S n a permutation such that λ τ (1) ≥ λ τ (2) ≥ . . . ≥ λ τ (n) then it holds that ∃H R ⊆ S n s.t. ∀u ∈ M R , min σ∈Sn R k=1 (u k -λ σ(k) ) 2 + n k= R+1 λ 2 σ(k) = min σ∈H R R k=1 (u k -λ σ•τ (k) ) 2 + n k= R+1 λ 2 σ•τ (k)
where the set H R depends only on R and has size at most (R + 2)!.

Remark 7. Interestingly the computational complexity of our spectral estimator depends cubicly on the sample size n which is important when observing large networks. The presented algorithm (see Section 5.1) has exponential complexity in the dimension R of the model. Hence, it is relevant only for low degree R kernels stricto sensu. However, it can be accelerated:

• If the experimenter knows that the eigenvalues are monotone (when sorting the eigenvalues so that the corresponding eigen-spaces have increasing dimensions) then the complexity is linear in R; • If not, different clustering strategies might be used in place of Steps 2-5 in Section 5.1. One may consult Section 5.2 for further details, where we argue that hierarchical agglomerative clustering (HAC) with single linkage, of time complexity O(n 3 ), can be invoked here.

Using Proposition 1 and Theorem 4 we can prove that λ R is a relevant estimator of the true first eigenvalues λ R as shown in the next theorem. Theorem 6. There exists a universal constant κ 0 > 0 such that the following holds. For all α ∈ (0, 1), if

n 3 ≥ (2 R) 3 ∨ R log(2 R/α), with probability greater that 1 -3α, it holds δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ R , λ ) + κ 0 R 1 + log R/α /n.
Moreover, there exists a universal constant

κ 1 > 0 such that, if n ≥ 2 R then E[δ 2 2 ( λ R , λ R )] ≤ κ 1 δ 2 2 (λ R , λ ) + R log n n .
A proof can be found in Appendix A.8.

Remark 8. Possibly considering larger numerical constants κ 0 , κ 1 > 0, in the relatively sparse model (7), the previous result reads as follows: if

n 3 ≥ (2 R) 3 ∨ R log(2 R/α) then δ 2 ( λ R , ζ n λ R ) ≤ 4 ζ n δ 2 (λ R , λ ) + κ 0 ζ n R n 1 + ζ n (1 + log( R/α)) + log(n/α) nζ n . with probability at least 1 -3α. If n ≥ 2 R then E[δ 2 2 ( λ R , ζ n λ R )] ≤ κ 1 ζ 2 n δ 2 2 (λ R , λ ) + ζ n R (1 + ζ n log n) n .
In the aforementioned setting, we have denoted the eigenvalues of T W by λ (as before), and their estimation (based on the adjacency matrix) by λ. These latter are scaled by a factor O P (ζ n ) in the relatively sparse model (7).

To go further we need to analyze the behavior of the bias term δ 2 (λ R , λ ) as a function of R under some regularity conditions on the envelope p. Indeed we can write

δ 2 (λ R , λ ) 2 = k> R |λ k | 2 = >R d (p ) 2 .
Assume that p belongs to the weighted Sobolev space Z s w β ((-1, 1)) of regularity s > 0 defined in Section 3.2. Thus, since R = O(R d-1 ), using ( 14) and setting R opt = (n/log n)

1 2s+d-1 , we get E δ 2 2 ( λ Ropt , λ ) ≤ 2δ 2 2 (λ Ropt , λ ) + 2 E δ 2 2 ( λ Ropt , λ Ropt ) R -2s opt + R opt log n n n log n - 2s 2s+(d-1)
.

Thus we recover a classical nonparametric rate of convergence for estimating a function with smoothness s in a space of dimension d -1, see [START_REF] Hasminskii | On Density Estimation in the View of Kolmogorov's Ideas in Approximation Theory[END_REF] for instance. This is also the rate towards the probability matrix obtained by [START_REF] Xu | Rates of convergence of spectral methods for graphon estimation[END_REF]. However, assuring that this is the optimal rate of convergence is beyond the scope of the paper. Note that the present setting to estimate a graphon nonparametrically differs from the regression framework. First, the δ 2 loss is defined up to the action of the permutation group. Moreover, despite the number n 2 of observations, the problem suffers from the presence of latent variables. Indeed the design points X i 's are unobserved. This all contributes to a non standard estimation problem.

Remark 9. In the relatively sparse model (7), the same calculation leads to

R opt = nζ n 1 + ζ n log n 1 2s+d-1 and E δ 2 2 ( λ Ropt , ζ n λ ) ζ 2 n nζ n 1 + ζ n log n - 2s 2s+(d-1)
.

We also face a classical issue of nonparametric statistics: how to choose R, given that the best theoretical choice R opt depends on the unknown smoothness s? This is the point of the next section.

Adaptation to the Smoothness of p

Let us define R = {1, 2, . . . , R max } the possible values for R, with 2 R max ≤ n. Following the Goldenshluger-Lepski method [START_REF] Goldenshluger | General selection rule from a family of linear estimators[END_REF], set

B(R) := max R ∈R δ 2 ( λ R , λ R ∧R ) -κ R log n n , (17) 
where R ∧ R = min(R, R ) and κ > 0 is a constant to be specified later. This function can be seen as an estimation of the (unknown) bias δ 2 (λ R , λ ). Then we define our final resolution level R as a minimizer of an approximation of the risk as

R ∈ arg min R∈R B(R) + κ R log n n . ( 18 
)
The estimator of λ is then λ R , which depends on the choice of constant κ in ( 17) and ( 18). The following results show that this estimator is as good as the best one of the collection ( λ R ) R∈R , up to a constant C, provided that κ is large enough.

Theorem 7. Let λ R the estimator defined by ( 16), ( 17) and (18). There exist numerical constants C > 0 and κ 0 > 0 (as in Theorem 6) such that , if κ ≥ κ 0 √ 11, with probability 1 -3n -8

δ 2 ( λ R , λ ) ≤ C min R∈R δ 2 (λ R , λ ) + κ R log n n .
Moreover, for κ ≥ κ 0 √ 5, there exists a numerical constant C > 0 such that

E[δ 2 2 ( λ R , λ )] ≤ C min R∈R δ 2 2 (λ R , λ ) + κ 2 R log n n .
A proof can be found in Appendix A.10. Thus we choose κ ≥ κ 0 √ 5 in ( 17) and ( 18), the practical choice of the tuning constant κ will be tackled in Section 5. Note also that the interesting choice of R is such that R opt ∈ R which is the case for cn 1 2s+d-1 ≤ R max where c > 0 is a constant. A more simple choice of R max may be cn ≤ 2 R max ≤ n where 0 < c < 1 is a constant. In these cases, we get the following rate of convergence. Corollary 8. Assume that p belongs to the Weighted Sobolev space Z s w β ((-1, 1)). Then there exists a constant C > 0 depending only on p * Z s w β ((-1,1)) , s and d such that

E[δ 2 2 ( λ R , λ )] ≤ C n log n - 2s 2s+(d-1)
. This means that the algorithm automatically adapts R to the unknown smoothness s of p: it chooses a small resolution level for smooth functions and a greater R for irregular functions, that provides the best result in each case.

The final step is to define the following estimator of envelope p by

∀t ∈ [-1, 1], p R (t) := R =0 p R c G β (t) . (19) 

Estimating the envelope function

Inferring from the estimation of λ to the estimation of p, we face an identifiability problem. Indeed, consider for instance the case d = 3, which implies

β = 1/2, d = 2 + 1, c = 2 + 1. For µ > 0, let p a = 1 2 c 0 G β 0 + µc 1 G β 1 + 0 × c 2 G β 2 + 0 × c 3 G β 3 + µc 4 G β 4 , p b = 1 2 c 0 G β 0 + 0 × c 1 G β 1 + µc 2 G β 2 + µc 3 G β 3 + 0 × c 4 G β 4
Then the associated spectrum are

λ a = (1/2, µ, µ, µ 3 
, 0, 0, 0, 0, 0 5 , 0, 0, 0, 0, 0, 0, 0

)

λ b = (1/2, 0, 0, 0 3 , µ, µ, µ, µ, µ 5 , µ, µ, µ, µ, µ, µ, µ 7 
, 0, 0, 0, 0, 0, 0, 0, 0, 0

9

) which are indistinguishable in δ 2 metric, although p a -p b 2 = µ √ 24. Furthermore, note that, for µ ≤ 1/24, these functions have values in [0, 1].

Remark 10. A natural question is then: Can we recover the right eigenvalues labels from the empirical eigenvectors? Under stronger requirements (RKHS-type assumptions), convergence of the eigenvectors of A/n towards the eigenfunctions of the integral operator T W may be proved as in [START_REF] Tang | Universally consistent vertex classification for latent positions graphs[END_REF]. Essentially, it is possible to prove that the orthogonal projections Π onto eigenspaces of A/n are closed in operator norm to the n × n matrix with entries d j=1 Y j (X i )Y j (X j ) given by the Zonal Harmonics. Unfortunately, this statistics depends on the latent points and suffers from the "agnostic" error as explained in [START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF]. While possible theoretically, it seems difficult in practice to use the information of the observed eigenvectors to uncover the right labels of the eigenvalues.

Nevertheless we can state a result in the case of a finite spectrum of distinct eigenvalues.

Proposition 9. Assume that the envelope function p is polynomial of degree D, i.e., p = 0 for any > D and p D = 0. Assume also that all nonzeros p for ∈ {0, . . . , D} are distinct. If R ≥ D and n is large enough then

p R -p 2 2 ≤ 11κ 2 0 R log n n ,
with probability greater that 1 -3n -8 where κ 0 > 0 is the constant defined in Theorem 6. Furthermore, it holds

E[ p R -p 2 2 ] ≤ (18 + 4κ 2 0 ) R log n n ,
for n large enough.

A proof can be found in Appendix A.11. We actually prove that these upper bounds are true as soon as

n ≥ 2 R and 2κ 0 11 R log(n)/n < min 0≤i =j≤D; p i =0 |p i -p j | ∧ |p i |
Note that we uncover (up to a log factor) the parametric rate of estimation.

Remark 11. Under the same assumptions than Proposition 9, in the relatively sparse model (7), the previous result reads as follows: If R ≥ D and n is large enough then

p R -p 2 2 ≤ κ 2 0 ζ n R n (1 + 11ζ n log n)
with probability greater that 1 -3n -8 , for some constant κ 0 possibly large. Furthermore, we have

E[ p R -p 2 2 ] ≤ κ 1 ζ n R n (1 + 4ζ n log n) ,
for n large enough and for some constant κ 1 possibly large.

Let us now state what the adaptive procedure defined by ( 17) and ( 18) can do in this polynomial case.

Corollary 10. Assume that the envelope function p is polynomial of degree D, i.e., p = 0 for any > D and p D = 0. Assume also that all nonzeros p for ∈ {0, . . . , D} are distinct. If R max ≥ D, there exists a numerical constant C such that, if n large enough, then R ≥ D a.s. and

E[ p R -p 2 2 ] ≤ C D log n n .
More precisely, the result is true as soon as D log(n)/n is smaller than a constant times min 0≤i =j≤D; p i =0 |p i -p j | ∧ |p i |. A proof can be found in Appendix A.12. Here again, the parametric rate of estimation is attained by the adaptive procedure.

Extensions to Compact Symmetric Spaces

The aim of this section is to extend the previous result on spheres to numerous spaces such as compact Lie groups and compact symmetric spaces. A useful reference might be the books [START_REF] Wolf | Harmonic analysis on commutative spaces[END_REF]; [START_REF] Bump | Lie groups 225[END_REF] or the nice survey written in (Méliot, 2017, Chapter 3) (see also [START_REF] Méliot | The cut-off phenomenon for Brownian motions on compact symmetric spaces[END_REF] for a presentation of compact symmetric spaces) which has been useful to polish this section.

Harmonic Analysis on Compact Symmetric Spaces

In this section, we consider that (S, γ) is a compact Lie group with an invariant Riemannian metric γ, or more generally a compact symmetric space. The definitions will be given below when describing Cartan's Classification and, to be specific, this section focuses on (semi)simple connected compact Lie groups (sscc in short) and simple simply connected compact symmetric spaces (ssccss in short). These structures encompass spheres, projective spaces, Grassmannians, and orthogonal or unitary groups; and one can handle explicit eigenvectors computations in this framework.

Consider again that the graphon W (g, h) depends only on (the cosine of) the distance γ(g, h) (normalized so that the range of γ equals [0, π]) between points g, h ∈ S such that W (g, h) = p(cos γ(g, h)) = p(cos γ(gh -1 , e S )) =: p(gh -1 ) where e S denotes the identity element and p(g) = p(cos γ(g, e S )). Also we assume that 0 ≤ W ≤ 1 since W defines a probability matrix. In particular, W is square-integrable on the compact S × S. Observe that estimating W reduces to estimate p that reduces to estimate p and vice versa. By definition of the distance, note that • When S is a sscc Lie group, the function p is invariant by conjugation, namely p(hgh -1 ) = p(g) for any latent points g, h ∈ S. We denote by L 2 (S) S the space of square-integrable functions p on S that are invariant by conjugation. • When S = G/K is a ssccss, the function p is bi-K-invariant, namely p(k 1 gk 2 ) = p(g) for any k 1 , k 2 ∈ K and g ∈ G. We may denote by L 2 (K \G/K) the space of square-integrable functions on G that are bi-K-invariants.

In particular, Peter-Weyl's decomposition (presented below) gives an L 2 -decomposition of p in these settings. The measure on S is the Haar measure (normalized to be a probability measure), denoted dg, standardly defined for any compact topological group S. The harmonic analysis on S is based on the Fourier transform of the space L 2 (S, dg) of square integrable (complex valued) functions on S. This space L 2 (S, dg) is a Hilbert space for the scalar product

f 1 , f 2 = S f 1 (g)f 2 (g)dg .
We define also the convolution product

(f 1 * f 2 )(g) = S f 1 (gh -1 )f 2 (h)dh .
Now, recall that W defines a symmetric Hilbert-Schmidt operator T W on L 2 (S, dg) and the spectral theorem (6) gives

W (g, h) = k≥1 λ k φ k (g)φ k (h) ,
for an L 2 (S, dg)-orthonormal basis (φ i ) i≥1 . Remark also that

(T W (f ))(g 1 ) = S W (g 1 , g 2 )f (g 2 )dg 2 = S W (g 1 g -1 2 , e S )f (g 2 )dg 2 = S p(g 1 h -1 )f (h)dh = (p * f )(g 1 )
for all f ∈ L 2 (S, dg). We deduce that T W is the convolution on the left by p. We continue with a short reminder on harmonic analysis on compact groups and compact quotients.

Representation of Compact Groups and Irreducible Characters

The first ingredient is representations of any compact group S. It is defined by a finite dimensional complex vector space V and by a continuous morphism of groups ρ : S → GL(V ) where GL(V ) denotes the group of isomorphisms of V . A linear representation (V, ρ) is irreducible if one cannot find a subspace W such that 0 W V and that is S-stable, i.e., for all w ∈ W and all g ∈ S, one has ρ(g)(w) ∈ W . If V is a linear representation then one can always split it into irreducible components

V = r∈ S m r V r
where S is the countable set of isomorphism classes of irreducible representations r = (ρ r , V r ) of S and m r ≥ 1. Furthermore, we denote by ch r (g) = tr(ρ r (g)) ,

the irreducible characters associated to the irreducible representation r = (ρ r , V r ) of S where tr denotes the trace operator on End C (V r ) the set of (complex) endomorphisms of V r . In particular, since ρ r (g) is unitary, it holds

∀g ∈ S, |ch r (g)| ≤ d r = ch r (e S ) ,
where d r is the dimension of V r . Also, note that

ch r * ch s = δ rs d r ch r ,
where δ rs denotes the Kroneker delta. Peter-Weyl's Decomposition The Peter-Weyl's Decomposition shows that (ch r ) r∈ S is an orthonormal basis of L 2 (S) S . It follows that

p = r∈ S p, ch r ch r in L 2 (S) S .
Using that T W is a left convolution operator by p, we find that (ch r ) r∈ S is an eigenfunction basis of T W associated to the eigenvalues (λ r ) r∈ S given by

λ r = p, ch r d r ,
with multiplicity d 2 r = dim(End C (V r )).

Compact Gelfand Pairs and Zonal Spherical Functions

There is an extension of this decomposition to quotients S = G/K of a compact topological group G by a closed subgroup K.

The most convenient setting for this extension is the one of compact Gelfand pairs defined as follows.

Definition (Gelfand Pair). We say that (G, K) is a Gelfand pair if for any irreducible representation V r of G, the space of K-fixed vectors

V r,K = v ∈ V r : ∀k ∈ K , ρ r (k)(v) = v
has dimension at most one.

An irreducible representation V r is called spherical if dim C (V r,K ) = 1. We denote by G K the set of spherical representations of the Gelfand pair (G, K). If r ∈ G K then we denote by e r a unit vector vector in V r,K which is unique up to a multiplicative complex constant of modulus one. The zonal spherical functions zon r (g) = d r e r , ρ r (g)(e r ) V r where d r is the dimension of V r . In particular, since ρ r (g) is unitary and e r normalized, it

holds ∀g ∈ G, |zon r (g)| ≤ d r = zon r (e G ) , (20) 
where e G is the identity element of G. Also, note that

zon r * zon s = δ rs √ d r zon r .
Cartan's Extension of Peter-Weyl's Decomposition In the case of bi-K-invariant functions on G, an extension of Peter-Weyl's decomposition theorem shows that (zon r ) r∈ G K is an orthonormal basis of L 2 (K \G/K). It follows that

p = r∈ G K p, zon r zon r in L 2 (K \G/K).
Using that T W is a left convolution operator by p, we find that (zon r )) r∈ G K is an eigenfunction of T W associated to the eigenvalue (λ r ) r∈ G K given by

λ r = p, zon r √ d r .
with multiplicity d r = dim(V r ). The reader may recognize here the case of the sphere studied in the previous section.

Cartan's Classification of sscc Lie Groups and ssccss Now, a crucial question is how explicit are these decompositions. We begin with the notion of sscc Lie Groups that is based on Cartan's criterion for semisimplicity. It implies that a simply connected compact Lie group can always be written as a direct product of simple simply connected compact Lie group (in short sscc Lie group). Here, by simple we mean a Lie group S whose Lie algebra is simple, that is nonabelian and without non-trivial ideal. Interestingly, Cartan's classification of sscc Lie groups shows that any sscc Lie group fall into one of the following infinite families:

Group type

• Special unitary group SU(n + 1),

• Odd spin group Spin(2n + 1),

• Compact symplectic group USp(n),

• Even spin group Spin(2n),

or, it is one of the five exceptional compact Lie groups.

The sscc Lie groups belong to a larger class of compact Riemannian manifolds called symmetric spaces. Moreover, any simply connected compact symmetric space is isometric to a product of simple simply connected compact symmetric spaces (in short ssccss), which cannot be split further. A classification of all the ssccss S has been proposed by Cartan which shows that S is either of Group type (see above) or one of the following objects non-Group type In this case, S falls into one of the following infinite families:

• Real Grassmannians SO(p + q)/(SO(p) × SO(q)),

• Complex Grassmannians SU(p + q)/(SU(p) × SU(q)),

• Quaternionic Grassmannians USp(p + q)/(USp(p) × USp(q)),

• Space of real structures on a complex space SU(n)/SO(n),

• Space of quaternionic structures on an even complex space SU(2n)/USp(n),

• Space of complex structures on a quaternionic space USp(n)/U(n),

• Space of complex structures on an even real space SO(2n)/SU(n),

or, it is one of the twelve exceptional sscc symmetric spaces.

Remark that, for all the ssccss examples, the eigenfunctions of the spectral decomposition of T W do not depend on T W and they are irreducible characters in the group case and zonal spherical functions in the non-group case. Weyl's Highest Weight theorem and Cartan-Helgason's Extension Given a ssccss, we can make explicit the set S in the group case, and the set G K in the non-group case thanks to the Weyl's highest weight theorem and Cartan-Helgason's extension, see [START_REF] Méliot | Techniques d'analyse harmonique et résultats asymptotiques en théorie des probabilités[END_REF] Chapter 3) for a short and well written introduction. The highest weight theorem is completed by a formula for the irreducible character ch r of the module V r with highest weight r, see for instance (Bump, 2013, Chapter 22) and Weyl's integration formula (Bump, 2013, Chapter 17).

The same analysis can be lead in the non-group case. The only additional difficulty is the manipulation of zonal spherical functions. This issue will be handled by considering compact symmetric spaces of rank 1 in the following. Now, we are ready to extend the previous results on the sphere to other latent spaces S, namely the compact symmetric spaces of rank 1.

Compact Symmetric Spaces of Rank One

We focus here on the interesting case of compact symmetric spaces of rank one for which the zonal spherical functions can be explicitly computed. Indeed, one has the following classification of the compact symmetric spaces of rank one and of the corresponding spherical representations, see [START_REF] Méliot | Techniques d'analyse harmonique et résultats asymptotiques en théorie des probabilités[END_REF], Chapter 3) and [START_REF] Volchkov | Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group[END_REF] for instance. We recall that "intuitively, a symmetric space is a Riemannian manifold where geodesics are "nicely" arranged in a symmetric way around any point". More formally, a compact symmetric space of rank one is ssccss that is 2-point homogeneous, namely

• [Compact Symmetric Spaces of Rank One] Given two pairs of points (x 1 , x 2 ) and (y 1 , y 2 ) such that γ(x 1 , x 2 ) = γ(y 1 , y 2 ), there is an isometry of S that maps x 1 (resp. x 2 ) onto y 1 (resp. y 2 ).

The compact symmetric spaces of rank one are

• the real spheres S d-1 = SO(d)/SO(d -1),
• the real projective spaces RP d-1 = SO(d)/O(d -1),

• the complex projective spaces CP d-1 = SU(d)/U(d -1),

• the quaternionic projective spaces

HP d-1 = USp(d)/(USp(d -1) × USp(1)),
• or the octonionic projective plane OP 2 = F 4 /Spin(9).

In the case of compact symmetric spaces of rank 1, one can explicitly described the spherical representations G K . The dimension d := dim C (V ω0 ) of the -th spherical representation V ω0 are given in Table 1 in the Appendix. One can even describe the zonal spherical functions of these spaces, and thus compute the eigenvalues p (recall that their multiplicities d are given by Table 1 in the Appendix).

For compact symmetric spaces of rank one, on can define

• a probability density function w(t) on [-1, 1] defined as the density of the pushforward measure of the Haar measure by the map x → t = cos(γ(x, e)), • the pushforwards Z on [-1, 1] of the zonal spherical functions, normalized so that they are an orthonormal basis of L 2 ([-1, 1], w), the space of square-integrable functions with respect to the weight function w on [-1, 1].

In Table 1, one hase the following standard parameterizations of latent space S:

• the real sphere S d-1 is endowed with the coordinates x = (x 1 , . . . , x d ) such that ||x|| 2 = 1 and the "north pole" is given by e = (0, . . . , 0, 1). We denote the "weight function" by w(x), it is the density of the push forward measure of the Haar measure by the map x → cos(γ(x, e))

where we recall that γ(x, e) = arccos x d . • the projective space FP d-1 (where

F = R, C, H or O) is endowed with projective coordinates [x 1 : x 2 : • • • : x d ]
with the x i 's in F, and the "north pole" is given by e = [0 : • • • : 0 : 1]. We denote the "weight function" by w(x), it is the density of the push forward measure of the Haar measure by the map x → cos(γ(x, e)) where we recall that γ(x, e) = 2 arccos(|x d |/||x|| 2 ).

One can show that the Jacobi polynomials (resp. beta distributions on [-1, 1]) are the pushforward zonal spherical functions Z (resp. the Haar measure) with shape parameters (α, β) depending on the base field and the dimension, see Table 1 in the Appendix. In the case of real spheres, these Jacobi polynomials are the Legendre/Gegenbauer polynomials seen in Section 3. We recall that for shape parameters (α, β) the beta density distribution w is given by

w(t) = Γ(α + β) 2 α+β-1 Γ(α)Γ(β) (1 -t) α-1 (1 + t) β-1 1 [-1,1] (t) , ( 21 
)
where Γ is the Gamma function. In particular, recall that one has

p = d p Z and p = 1 √ d p, Z L 2 ([-1,1],w) ,
in L 2 ([-1, 1], w). We further assume that there exists s > 0, a (Sobolev) regularity parameter, such that

∀R ≥ 1 , >R d (p ) 2 ≤ C(p, s, S) R -2s .
for some constant C(p, s, S) > 0 and for dimensions (d ) ≥0 that depends only on S.

Now, recall the definition of the set of models M R in (15) (the dimensions (d ) ≥0 are given by Table 1), of the estimator λ R in ( 16), of the adaptation R in (18), of p R in ( 19), and of T n in (3). Our estimation procedure is the same as in the sphere example the only difference is that the dimensions (d ) ≥0 , R and the zonal spherical function Z depend on the latent space under consideration, see Table 1 in the Appendix.

Theorem 11. Let S be a compact symmetric space of rank one with Riemanian dimension d -1. There exist constants C 0 , C 1 , C 2 , κ 0 , κ 1 > 0 such that the following holds. Let α ∈ (0, 1/3) and n, R ≥ 0 such that n ≥ 2 R and n 3 ≥ R log(2 R/α) where R is given in Table 1 in the Appendix. Then it holds,

• [Convergence of the matrix of probabilities]

δ 2 (λ(T n ), λ ) ≤ 2 >R d (p ) 2 1 2 + C 0 R(1 + log( R/α))/n
with probability at least 1 -3α and

E[δ 2 2 (λ(T n ), λ )] = O n log n - 2s 2s+(d-1)
.

• [Convergence of the matrix of finite rank approximation]

δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ R , λ ) + κ 0 R 1 + log R/α /n.
with probability at least 1 -3α and

E[δ 2 2 ( λ R , λ R )] ≤ κ 1 δ 2 2 (λ R , λ ) + R log n n .
• [Convergence of the adaptation] For κ ≥ κ 0 √ 11, it holds that

δ 2 ( λ R , λ ) ≤ C 1 min R∈R δ 2 (λ R , λ ) + κ R log n n ,
with probability 1 -3n -8 . Furthermore, for κ ≥ κ 0 √ 5, it holds that

E[δ 2 2 ( λ R , λ )] ≤ C 2 min R∈R δ 2 2 (λ R , λ ) + κ 2 R log n n .
A proof can be found in Appendix A.13. Note that the same results as in Proposition 9 and Corollary 10 hold when S is a compact symmetric space of rank one. Namely, adaptive estimation of the envelope function p is possible when p is a polynomial.

Numerical Experiments

Simulations

In this section we shall assess the performances of our estimation procedure by estimating numerous envelope functions p. We consider the example of S = S 2 , the unit sphere in dimension d = 3. The functions G β turn to be the Legendre polynomials and the dimension of the space of spherical harmonics of degree is d = 2 + 1.

First, we shall explain how our algorithm works in practice to compute the adaptive estimator p R of p, see ( 16) and ( 19). For sake of clarity, we deal with a simple example. Suppose we are given an adjacency matrix A of size 20 × 20 and we set R max = 1. Thus n = 20, d 0 = 1 and d 1 = 3.

Step 1 Compute the 20 eigenvalues of A and sort them in decreasing order λ

(1) ≥ • • • ≥ λ (20) , see Figure 1.
Step 2 Take 0 ≤ R ≤ R max . Generate S R+2 , the set of all permutation of {0, d 0 , . . . , d R }, the set with R + 2 elements. The factor +1 in R + 2 = (R + 1) + 1 is due to the "zeros" (represented by the symbol 0) to be placed, see Step 3 for a proper definition. For instance, for R = 1, we have

S R+2 =                σ 1 = [d 1 , d 0 , 0] σ 2 = [d 1 , 0, d 0 ] σ 3 = [d 0 , d 1 , 0] σ 4 = [d 0 , 0, d 1 ] σ 5 = [0, d 0 , d 1 ] σ 6 = [0, d 1 , d 0 ]
Step 3 For each permutation σ i , i ∈ {1, . . . , 6} of S R+2 , compute the following ( p σi, ) ∈{0,1,2} which are the "stage means" of the λ (i) 's, i ∈ {1, . . . , 20} according to the order of appearance of the d 's in the permutation σ i . For instance, for σ 1 = [d 1 , d 0 , 0] (see Figure 1), we get

p σ1,2 = 1 3 3 =1 λ ( ) , p σ1,1 = λ (4) , p σ1,0 = 0,
and for σ 4 = [d 0 , 0, d 1 ] one gets p σ2,1 = λ (1) , p σ2,0 = 0, p σ2,2 = 1 3 20 i=18 λ ( ) .
In

Step 2, we have called "zeros" the fact that we always set p σi,0 = 0.

Step 4 For each permutation σ i , compute the corresponding vector λ σi of size 20, containing the p σi, with multiplicity d . Then compute the risk Score(σ i ) for each σ i . For example for σ 1 = [d 1 , d 0 , 0] (see Figure 1), one gets

λ σ1 = ( p σ1,2 , p σ1,2 , p σ1,2 d1=3 , p σ1,1 d0=1 , 0, . . . , 0 n-d0-d1=16
)

and its risk is Score(σ 1 ) = 20 =1 (λ ( ) -p σ1, ) 2 .
Step 5 Select the permutation σ min such that σ min = arg min σi Score(σ i ).

Step 6 Get the estimate λ R defined by

λ R = ( p σmin,1 d0=1 , p σmin,2 , p σmin,2 , p σmin,2 d1=3 ) = ( p R 0 , p R 1 , p R 1 , p R 1 ) , see (16) 
.

Step 7 Iterate Steps 2 to 6 for R = 0 to R max . Compute the level R according to (18) and the adaptive estimator p R (t) according to (19).

Step 8 Troncate p R (t) so as to it belongs to [0, 1].

Of course, the choice of level R is crucial and the estimation is sensitive to R. That is why we use our selection method, as described in Section 3.5 (see Step 7 in the description of the algorithm above). As almost all estimators selection methods, this Goldenshluger-Lepski method uses an hyper-parameter κ. Our theoretical result ensures a good performance as soon as κ is large enough, but it is well known that a more precise choice is better in practice. Heuristics exist to calibrate κ, but they are all based on the behavior of the estimator for very large R (see for instance Baudry, Maugis and Michel ( 2012)). Hence these techniques are not possible here, due 22 to the computational cost of the estimation when R is large (we can hardly consider larger than R max = 7 because of the complexity in (R max + 2)!). Fortunately, the stability of the estimation allows us to choose here a fixed κ, namely κ = 0.25, and this choice ensures good selection of R for a wide range of functions p. Now, let us deal with the estimation of the six following envelope functions p

p 1 (t) = 1 + t 2 4 , p 2 (t) = 1 t>0.7 , p 3 (t) = e -(t-1) 2 ,
p 4 (t) = 0.5 + 0.5 sin πt/2 ,

p 5 (t) = 1 3 + 1 12 35t 4 -30t 2 + 3 , p 6 (t) = t 10 1 t>0 .
We consider graphs of size n = 5000. We set R max = 4 and κ = 0.25 for the adaptive selection rule of R, see (18). Figure 2 presents our simulation results. For each envelope function p, we represent on the top side, the estimated coefficients p R and the true coefficients p with their multiplicity 2 + 1. On the bottom side, we represent the estimated envelope function p and the true p. Note that our procedure is not constrained by dealing with envelope functions p defining positive kernels W . Such an example is given by the step function p 2 as its Fourier coefficients p 2, 's can be negative, see Figure 2.

The estimation of all functions are good except for the step function p 2 which is more demanding due to its discontinuity. Despite that function p 6 is not easy to be estimated because of its flatness, our estimation is satisfying. Furthermore, it is interesting to remark that except for p 2 , the estimated coefficients are very close to the true ones.

How to speed the algorithm

The aforementioned algorithm is a spectral algorithm with complexity O(n 3 ), which is standard. Costly steps might be Steps 2-5 which rely on evaluating the empirical risk function for all possible permutations of the ordering of the eigen-spaces. These steps are of complexity O(R d ), which is exponential on the number R of estimated eigen-spaces. Yet, these steps are just meant to cluster empirical eigenvalues (on the real line) into groups of prescribed sizes d 0 , d 1 , . . . , d R and one might be willing to use standard clustering approaches to perform this task.

For instance a Hierarchical Agglomerative Clustering (HAC) with Single Linkage function should be able to identify well separated clusters of eigenvalues. Looking at the dimensions matching the d 's along the HAC tree, one might recover the right labeling of the eigenvalues. The success of these clustering approaches will rely on the event that eigenvalues are well separated. This notion has been investigated in [START_REF] Araya Valdivia | Latent distance estimation for random geometric graphs[END_REF] where the authors showed that, for n sufficiently large and under mild assumptions (essentially spectral gaps between distinct eigenvalues), the empirical eigenvalues gather in clusters of size d . As a conclusion, for n sufficiently large, one might use standard clustering approaches such as HAC, in place of the costly Steps 2-5, to identify right clusters of empirical eigenvalues.

S d R = 0≤ ≤R d t = cos(γ(x, e)) Density w S d-1 +d-1 -+d-3 -2 2R+d-1 R+d-1 R+d-1 d-1 x d Beta( d-1 2 , d-1 2 ) RP d-1 (6+d 2 +8 (2 -3)+d(8 -5))Γ(d+2 -3) Γ(d-1)Γ(1+2 ) 4R+d-1 2R+d-1 2R+d-1 d-1 x 2 d -x 2 1 -•••-x 2 d-1 x 2 1 +•••+x 2 d Beta( d-1 2 , 1 2 ) CP d-1 2 +d d +d-1 d-1 2 -2 +d-2 d +d-2 d-1 2 2R+d d R+d-1 d-1 2 |x d | 2 -|x 1 | 2 -•••-|x d-1 | 2 |x 1 | 2 +•••+|x d | 2
Beta(d -1, 1)

HP d-1 2( +1)(d(4d 2 -1)+2d(4d-1) +(4d-1) 2 )Γ(2d+ -1)Γ(2d+ ) Γ(2d)Γ(2+2d)Γ(2+ ) 2 2R+2d+1 (2d+1)(R+1) R+2d 2d 
R+2d-1 2d-1

|x d | 2 -|x 1 | 2 -•••-|x d-1 | 2 |x 1 | 2 +•••+|x d | 2 Beta(2d -2, 2) OP 2 (4+ )(5+ ) 2 (6+ ) 924 2R+11 385 R+7 4 R+10 10 |x 3 | 2 -|x 1 | 2 -|x 2 | 2 |x 1 | 2 +|x 2 | 2 +|x 3 | 2
Beta(8, 4)

Table 1 Review of the dimensions d of the spherical representations, the distance cos(γ(x, e)) to the identity e, the weight function w(t) of the compact symmetric spaces S of rank 1. These latter are respectively the density w and the orthonormal polynomials of the beta law on [-1, 1] with shape parameters (α, β), see (21).

and

δ 2 (λ( T R,n ), λ(T n )) ≤ T R,n -T n F = 1 n 2 i =j (W -W R ) 2 (X i , X j ) 1 2 . ( 25 
)
Invoke Lemma 12 to bound (23), Lemma 13 to bound (24) and Lemma 14 to bound (25).

Lemma 12. Let R ≥ 1 and denote by ρ(R)

:= max(1, R r=1 φ 2 r ∞ -1) then it holds ∀t > 0, P { E R,n ≥ t} ≤ 2R exp - n 2ρ(R) t 2 1 + t/(3n) .
In particular, for all α ∈ (0, 1) and for n 3 ≥ ρ(R) log(2R/α), it holds

P E R,n ≥ ρ(R) log(2R/α) n ≤ α .
Lemma 13. Let R ≥ 1 and α ∈ (0, 1) then, with probability at least 1 -α, it holds

1 n 2 n i=1 W 2 R (X i , X i ) ≤ 1 + max 1≤r≤R ||φ 2 r || ∞ log(R/α) 2n 2ρ(R)||W R || 2 n .
Lemma 14. It holds, for all α ∈ (0, 1),

P    1 n(n -1) i =j (W -W R ) 2 (X i , X j ) ≥ r>R λ 2 r (T W ) + W -W R 2 ∞ log(2/α) n -1    ≤ α .
These lemmas are proven in Appendix A.3, Appendix A.4 and Appendix A.5. Collecting ( 22), ( 23), ( 24) and ( 25), the triangular inequality gives the result.

A.3. Proof of Lemma 12

Observe that nE R,n

= n i=1 (Z R (X i )Z R (X i ) -Id R
) is a sum of independent centered symmetric matrices where we denote by Z R (x) := (φ 1 (x), . . . , φ R (x)). In particular, Z R (X i )Z R (X i ) are rank one matrices so that it holds

Z R (X i )Z R (X i ) -Id R = 1 ∨ Z R (X i ) 2 2 -1 = 1 ∨ ( R r=1 φ 2 r (X i )) -1 ≤ 1 ∨ R r=1 φ 2 r ∞ -1 =: ρ(R) .
Moreover, one has

σ 2 R,n : = n E (Z R (X 1 )Z R (X 1 ) -Id R ) 2 = n E Z R (X 1 ) 2 2 Z R (X 1 )Z R (X 1 ) -2Z R (X 1 )Z R (X 1 ) -Id R = n E Z R (X 1 ) 2 2 Z R (X 1 )Z R (X 1 ) -Id R ≤ n R r=1 φ 2 r ∞ E Z R (X 1 )Z R (X 1 ) -Id R = n R r=1 φ 2 r ∞ Id R -Id R = n R r=1 φ 2 r ∞ -1 ≤ nρ(R)
where we invoke that a.s.

Z R (X 1 ) 2 2 Z R (X 1 )Z R (X 1 ) ( R r=1 φ 2 r ∞ )Z R (X 1 )Z R (X 1
). It follows from the matrix Bernstein inequality given in (Tropp, 2012, Theorem 6.1.1) 

∀t > 0, P { E R,n ≥ t} ≤ 2R exp - n 2ρ(R) t 2 1 + t/(3n)
.

Indeed, we have used (Tropp, 2012, Theorem 6.1.1) with

X k ← Z R (X i )Z R (X i ) -Id R , R ← ρ(R), Y ← nE R,n , σ 2 ≤ n||E X 2 1 || ← σ 2 R,n , t ← nt,
according to the notation of [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] on the left hand side and our notation on the right hand side. It proves the lemma.

A.4. Proof of Lemma 13

Observe that

1 n 2 n i=1 W 2 R (X i , X i ) = 1 n 2 n i=1 R r=1 λ r (T W )φ 2 r (X i ) 2 = 1 n 2 r,s∈[R] λ r (T W )λ s (T W ) n i=1 φ 2 r (X i )φ 2 s (X i ) = x Ax ≤ ||A||||x|| 2 2 with x = (λ 1 (T W )/ √ n, . . . , λ R (T W )/ √ n) and A = ((1/n) n i=1 φ 2 r (X i )φ 2 s (X i )) r,s
. Note that A is an irreducible and aperiodic matrix since its coefficients are positive. It follows by Perron-Frobenius theorem that

||A|| ≤ 1 n max 1≤r≤R ( R s=1 n i=1 φ 2 r (X i )φ 2 s (X i ))
Now, this last quantity can be upper bounded as follows

1 n R s=1 n i=1 φ 2 r (X i )φ 2 s (X i ) = 1 n n i=1 φ 2 r (X i )( R s=1 φ 2 s (X i )), ≤ ( 1 n n i=1 φ 2 r (X i ))(1 + ρ(R)).
Using the bound

φ 2 r (X 1 ) ≤ max 1≤r≤R ||φ 2 r || ∞ =: a R ,
and Hoeffding inequality (Boucheron, Lugosi and Massart, 2013, page 34), we deduce that

∀t > 0, P 1 n n i=1 φ 2 r (X i ) > E φ 2 r (X 1 ) + t ≤ exp - 2nt 2 a 2 R .
Observe that E φ2 r (X 1 ) = 1. Let α ∈ (0, 1), choosing t 2 = a 2 R log(R/α)/(2n) and taking an union bound, it holds that

P ∀r ∈ [R], 1 n n i=1 φ 2 r (X i ) ≤ 1 + a R log 1 It results in P ||A|| ≤ 1 + (1 + ρ(R)) log 1 2 (R/α) √ 2n (1 + ρ(R)) ≥ 1 -α
On this event, we deduce that

1 n 2 n i=1 W 2 R (X i , X i ) ≤ ||A||||x|| 2 2 , ≤ 1 + a R log 1 2 (R/α) √ 2n (1 + ρ(R))||W R || 2 n ,
which gives the result.

A.5. Proof of Lemma 14

By a standard inequality of Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], for a bounded kernel h, for all α ∈ (0, 1),

P    1 n(n -1) i =j h(X i , X j ) -E (h(X 1 , X 2 )) > h ∞ log(2/α) n -1    ≤ α
Applying this result for h = (W -W R ) 2 and noticing that

• E (h(X 1 , X 2 )) = W -W R 2 2 = r>R λ 2 r (T W ), • h ∞ = W -W R 2
∞ , the result follows.

A.6. Proof of Corollary 3

The symmetric kernel h := (W -W R ) 2 -E (W -W R ) 2 is σ-canonical, see (De la Pena and Giné, 2012, Definition 3.5.1) for a definition. The following important improvement of Hoeffding's inequalities for canonical kernels was proved by [START_REF] Arcones | Limit theorems for U-processes[END_REF], it holds that there exists two universal constants C 1 > 0 and C 2 > 0 such that for all α ∈ (0, 1),

P    1 n(n -1) i =j h(X i , X j ) > C 1 h ∞ log(C 2 /α) n    ≤ α .
We deduce that it holds, for all α ∈ (0, 1),

P    1 n(n -1) i =j (W -W R ) 2 (X i , X j ) ≥ W -W R 2 2 + C 1 W -W R 2 ∞ log(C 2 /α) n    ≤ α ,
which proves the corollary substituting Lemma 14 by the aforementioned inequality.

A.7. Proof of Proposition 4

Define

∀t ∈ [-1, 1], p R (t) := R =0 p c G β (t) .
We apply Corollary 3 to the kernel as follows.

∀x, y ∈ S d-1 , W R (x, y) := R =0 p c G β ( x, y ) = p R ( x, y ) , First, note that W -W R 2 = p -p R 2 = >R d (p ) 2 1 2 . ( 26 
)
Next, invoke (Dai and Xu, 2013, Corollary 1.2.7) to get that

∀ ≥ 0, d j=1 Y 2 j = d .
It follows that the quantity ρ( R) of Theorem 2 simplifies to ρ( R) ≤ R. Furthermore, it holds

∀x ∈ S d-1 , W R (x, x) = R =0 p c G β (1) = R =0 d p , (27) 
since G λ (1) = d /c . Then by Hoffman-Wielandt inequality, we have

δ 2 (λ(T R,n ), λ( T R,n )) ≤ T R,n -T R,n F = 1 n 2 n i=1 W 2 R (X i , X i ) 1 2 = 1 √ n R =0 d p ,
almost surely. And we use this bound instead of the one of Lemma 13. The following result follows:

δ 2 (λ(T W R ), λ(T n )) ≤ R =0 d (p ) 2 1 2 R log(2 R/α) n 1 2 + 1 √ n R =0 d p + p -p R 2 + p -p R ∞ C 1 log(C 2 /α) n 1 2 (28) 
with probability at least 1 -3α.

Let us study the various terms appearing in (28). First, by orthonormality

R =0 d |p | 2 = p R 2 2 ≤ p 2 2 ≤ 2
since p R is the orthogonal projection of p, and |p| ≤ 1. Next, using Cauchy-Schwarz inequality

R =0 d p ≤ R =0 d 1/2 R =0 d |p | 2 1/2 ≤ 2 R. Now p -p R ∞ ≤ 1 + p R ∞ , with p R ∞ ≤ R =0 |p c | G β ∞ . But G β ∞ = G β ( 
1) by Formula (4.7.1) and Theorems 7.32.1 and 7.33.1 of [START_REF] Szegő | Orthogonal polynomials[END_REF] 

so p R ∞ ≤ R =0 |p c |G λ (1) = R =0 |p |d ≤ 2 R .
Finally, (28) becomes

δ 2 (λ(T W R ), λ(T n )) ≤ √ 2 R log(2 R/α) n 1 2 + 2 R √ n + >R d (p ) 2 1 2 + 1 + 2 R C 1 log(C 2 /α) n 1 2
Hence, since R ≥ 1 and log n ≤ n, there exists a numerical constant C > 0 such that, with probability at least 1 -3α

δ 2 (λ(T W R ), λ(T n )) ≤ >R d (p ) 2 1 2 + C R(1 + log( R/α)) n . (29) 
Adding ( 26) gives the first statement of Proposition 4. Now let us denote by Ω the set with probability larger than 1 -3α such that the previous inequality is true. One has

δ 2 (λ(T n ), λ ) = δ 2 (λ(T n ), λ )1 Ω + δ 2 (λ(T n ), λ )1 Ω c . Observe that each |λ k (T n )| is bounded by ρ(T n ) the spectral radius of T n . Since T n := (1/n)Θ 0 , it holds that ρ(T n ) ≤ Θ 0 /n F ≤ 1. Then δ 2 (λ(T n ), λ ) ≤ δ 2 (λ(T n ), 0) + δ 2 (0, λ ) ≤ √ n + p 2 (30) which entails δ 2 2 (λ(T n ), λ ) ≤ (1 + √ 
2) 2 n. Hence, using this bound and previous inequality,

E δ 2 2 (λ(T n ), λ ) = E δ 2 2 (λ(T n ), λ )1 Ω + (1 + √ 2) 2 n P(Ω c ) ≤ 8 >R d (p ) 2 + 2C 2 R(1 + log( R/α)) n + 3α(1 + √ 2) 2 n as soon as n 3 ≥ R log(2 R/α). We choose α = n -2 , and assume n ≥ 2 R. Then R log(2 R/α) = R log(2 Rn 2 ) ≤ n 2 log(n 3 ) ≤ n 3 , and 
E δ 2 2 (λ(T n ), λ ) ≤ 8 >R d (p ) 2 + 2C 2 R(1 + log( Rn 2 )) n + 3(1 + √ 2) 2 n -1 ≤ 8 >R d (p ) 2 + C R d-1 log n n since R = O(R d-1
). Now we assume that p belongs to the Weighted Sobolev Z s w β ((-1, 1)). Then, using ( 14), for all R such that n ≥ 2 R, it holds

E δ 2 2 (λ(T n ), λ ) ≤ 8C(p, s, d)R -2s + C R d-1 log n n To conclude it is sufficient to choose R = (n/log n) 1 2s+d-1 .
A.8. Proof of Theorem 6

We use the notation of the previous proofs and, in particular, the notation of Appendix A.7. The heart of the proof lies in the following proposition, proved in Appendix A.9.

Proposition 15. Let R ≥ 0 such that 2 R ≤ n. It holds δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ(T W R ), λ(T n )) + 2 R T n -T n . if n 3 ≥ (2 R) 3 ∨ R log(2 R/α
), that gives the first statement of Theorem 6. The remark (Remark 8) following Theorem 6 can be deduced from the previous remarks of this proof. Now let us denote by Ω the set with probability larger than 1 -3α such that the previous inequality is true. One has

δ 2 ( λ R , λ R ) = δ 2 ( λ R , λ R )1 Ω + δ 2 ( λ R , λ R )1 Ω c
As for (30), we can prove the coarse bound

δ 2 ( λ R , λ R ) ≤ R + p 2 ≤ (1 + √ 2) R.
Hence, using this bound and previous inequality,

E δ 2 2 ( λ R , λ R ) = E δ 2 2 ( λ R , λ R )1 Ω + (1 + √ 2) 2 R P(Ω c ) ≤ 32 >R d (p ) 2 + 2κ 2 0 R 1 + log( R/α) n + 3α(1 + √ 2) 2 R , as soon as n 3 ≥ (2 R) 3 ∨ R log(2 R/α). We choose α = n -1 , and assume n ≥ 2 R. Then R log(2 R/α) ≤ n 3 and E δ 2 2 ( λ R , λ R ) ≤ 32 >R d (p ) 2 + 2κ 2 0 R 1 + log( Rn) n + 3(1 + √ 2) 2 R n ≤ 32 >R d (p ) 2 + (6κ 2 0 + 18) R log n n .
A.9. Proof of Proposition 15

• Define ∆ R as follows ∀x, y ∈ R 2 R , ∆ 2 R (x, y) := min σ∈S 2 R 2 R k=1 (x k -y σ(k) ) 2 ,
where S 2 R denotes the set of permutations on [2 R].

Once again, using Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368)

, it holds that ∀x, y ∈ R 2 R s.t. x 1 ≥ . . . ≥ x 2 R and y 1 ≥ . . . ≥ y 2 R , ∆ 2 R (x, y) := 2 R k=1 (x k -y k ) 2 .
Completing with R zeros, we denote also

Λ R := ( p 0 d0 , p 1 , . . . , p 1 d1 , . . . , p R , . . . , p R d R , 0, . . . , 0 R ) ∈ R 2 R , and Λ R := (p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R , 0, . . . , 0) ∈ R 2 R .
Since R does not vary in this proof, we have denoted p

:= p R . Observe that δ 2 ( λ R , λ R ) = ∆ R ( Λ R , Λ R
) using the property described in (9) and Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368) again.

• Recall that it holds λ(T W R ) = {0, p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R } where zero is the only eigenvalue with infinite multiplicity. In particular, remark that the vector (p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R ) belongs to M R . We begin by defining

(p 0 , . . . , p R , . . . , p R ) ∈ arg min u∈M R min σ∈Sn R k=1 (u k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2 , ( 31 
)
where S n denotes the set of permutation on

[n]. Also, define ∀x, y ∈ S d-1 , W R (x, y) = R =0 p c G β ( x, y ) ,
and observe that λ(T W R ) = {0, p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R } where zero is the only eigenvalue with infinite multiplicity. Denote σ ∈ S n the permutation that achieves the minimum in (31). We have the following intermediate result.

Lemma 16. It holds

δ 2 2 (λ(T W R ), λ(T n )) = R k=1 (p k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2 ≤ δ 2 2 (λ(T W R ), λ(T n )) ,
where (p ) is defined by (31).

Proof. Observe that λ(T W R ) has at most R nonzero eigenvalues. Using again Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368) and ( 9), one may

deduce that δ 2 2 (λ(T W R ), λ(T n )) reads R k=1 (p k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2
for some permutation σ ∈ S n . Taking the infimum leads to the left hand side equality.

Then, observe that λ(T W R ) has at most R nonzero eigenvalues. Using again Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368) and ( 9), one may deduce again that δ

2 2 (λ(T W R ), λ(T n )) reads R k=1 (p k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2
for some permutation σ ∈ S n . Furthermore, recall that (p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R ) belongs to M R and, hence, it is admissible to Program (31). In particular, the value of the objective at this point is always greater than the minimal value. This gives the right hand side inequality.

• Similarly, denote (( p ), σ) a point that achieves the minimum in ( 16). Now, consider Using (5) and Weyl's inequality (Bhatia, 2013, page 63) and by abuse of notation, note that

S := σ([ R]) ∪ σ([ R]) ,
∆R ((λ k (T n )) k∈S , (λ k ) k∈S ) ≤ k∈S (λ k -λ k (T n )) 2 1 2 ≤ √ s T n -T n .
Moreover, using (32) and by abuse of notation, remark that where ( p ) = ( p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R , 0, . . . , 0) ∈ R s completing with s -R zeros.

• Using (31), Lemma 16 and by abuse of notation, observe that

∆2 R ((p ), (λ k (T n )) k∈S ) = min σ∈S S R k=1 (p k -λ σ(k) (T n )) 2 + s k= R+1 λ σ(k) (T n ) 2 . ≤ min σ∈S S R k=1 (p k -λ σ(k) (T n )) 2 + s k= R+1 λ σ(k) (T n ) 2 + t∈S c λ t (T n ) 2 . = min σ∈Sn R k=1 (p k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2 , = R k=1 (p k -λ σ(k) (T n )) 2 + n k= R+1 λ σ(k) (T n ) 2 = δ 2 2 (λ(T W R ), λ(T n )) ≤ δ 2 2 (λ(T W R ), λ(T n ))
where we denote by (p ) = (p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R , 0, . . . , 0) ∈ R s completing with s -R zeros.

• Using that ∆R is a semi-distance-in particular the triangular inequality holds, one deduces • It remains to bound ∆ R (Λ R , Λ R ). Note that ∆ R (Λ R , Λ R ) = δ 2 (λ(T W R ), λ(T W R )). Then, invoke Lemma 16 to get that

∆ R (Λ R , Λ R ) ≤ δ 2 (λ(T W R ), λ(T n )) + δ 2 (λ(T n ), λ(T W R )) ≤ 2δ 2 (λ(T W R ), λ(T n )) .
Finally we obtain the following bound:

δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ(T W R ), λ(T n )) + 2 R T n -T n (33) 
for all sample size n ≥ 2 R.

A.10. Proof of Theorem 7

In this proof we denote D(R) = R log n/n, so that B(R) = max R ∈R δ 2 ( λ R , λ R ∧R ) -κD(R ) .

Fix some R ∈ R. First decompose

δ 2 ( λ R , λ ) ≤ δ 2 ( λ R , λ R∧R ) + δ 2 ( λ R∧R , λ R ) + δ 2 ( λ R , λ ).
Using the definition of B(R) and B( R) it holds that δ 2 ( λ R , λ ) ≤ B(R) + κD( R) + B( R) + κD(R) + δ 2 ( λ R , λ ).

We now use the definition of R to write δ 2 ( λ R , λ ) ≤ 2B(R) + 2κD(R) + δ 2 ( λ R , λ ). The last term can be split in δ 2 ( λ R , λ ) ≤ δ 2 ( λ R , λ R ) + δ 2 (λ R , λ ). Thus,

δ 2 ( λ R , λ ) ≤ 2B(R) + 2κD(R) + δ 2 ( λ R , λ R ) + δ 2 (λ R , λ ). ( 34 
)
We shall now control the term B(R). Denote a + = max(a, 0) the positive part of any real a. Let us write

B(R) = max R ∈R {δ 2 ( λ R , λ R ∧R ) -κD(R )} ≤ max R ∈R,R ≥R {δ 2 ( λ R , λ R ) -κD(R )} + ≤ max R ∈R,R ≥R {δ 2 ( λ R , λ R ) + δ 2 (λ R , λ R ) + δ 2 (λ R , λ R ) -κD(R )} + Now δ 2 2 (λ R , λ R ) = R k= R+1 |λ k | 2 ≤ δ 2 2 (λ R , λ ). Then B(R) ≤ max R ∈R,R ≥R {δ 2 ( λ R , λ R ) -κD(R )} + + δ 2 (λ R , λ ) + δ 2 (λ R , λ R ) .
Finally, combining this with (34),

δ 2 ( λ R , λ ) ≤ 2 max R ∈R,R ≥R {δ 2 ( λ R , λ R ) -κD(R )} + + 2κD(R) + 3δ 2 ( λ R , λ R ) + 3δ 2 (λ R , λ ) , ≤ 5 max R ∈R,R ≥R {δ 2 ( λ R , λ R ) -κD(R )} + + 3δ 2 (λ R , λ ) + 5κD(R) .
Now, we invoke Theorem 6 and a union bound to insure that, if n 3 ≥ (2 R max ) 3 ∨ R max log(2 R max /α) then, with probability greater that 1 -3|R|α, it holds

∀R ∈ R , δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ R , λ ) + κ 0 R n 1 + log R α
We choose α = n -1-q , then R max log(2 R max /α) = R max log(2 R max n q+1 ) ≤ n log(n q+2 )/2 < 0.1(q + 2)n 3 since x -2 log x ≤ 0.09 and also note that 1 + log R/α ≤ (q + 3) log n. If q + 2 ≤ 10 then it holds that n 3 > R max log(2 R max /α) and with probability 1 -3n -q ∀R ∈ R , δ 2 ( λ R , λ R ) ≤ 4δ 2 (λ R , λ ) + κ 0 q + 3D(R )

Then, with probability 1 -3n -q , provided that κ ≥ κ 0 √ q + 3 δ 2 ( λ R , λ ) ≤ 5 max R ∈R,R ≥R {4δ 2 (λ R , λ )} + + 3δ 2 (λ R , λ ) + 5κD(R)

≤ 23δ 2 (λ R , λ ) + 5κD(R) noticing that p R -p R 2 2 = R =0 d ( p R -p ) 2 . It follows that if n 3 ≥ (2 R) 3 ∨ R log(2 R/α) and 2κ 0 R 1 + log R/α /n < min 0≤i =j≤D; p i =0 |p i -p j | ∧ |p i |
then || p R -p|| 2 ≤ κ 0 R 1 + log R/α /n with probability at least 1 -3α. Again, we choose α = n -1-q , then R log(2 R/α) = R log(2 Rn q+1 ) ≤ n log(n q+2 )/2 < 0.1(q + 2)n 3 since x -2 log x ≤ 0.09 and also note that 1 + log( R/α) ≤ (q + 3) log n. With q = 8, it holds that n 3 > R log(2 R/α).

Now, if

n ≥ 2 R and 2κ 0 11 R log(n)/n < min

0≤i =j≤D; p i =0 |p i -p j | ∧ |p i |
then || p R -p|| 2 ≤ κ 0 11 R log(n)/n with probability 1 -3n -8 , as claimed.

For the second statement, let us denote by Ω the set with probability larger than 1 -3n -q such that the previous inequality is true, and let us find a coarse bound on || p R -p|| 2 2 , for instance || p R -p|| 2 ≤ (1 + √ 2) R. Hence, using this bound and previous inequality, it holds

E || p R -p|| 2 2 ≤ E || p R -p|| 2 2 1 Ω + (1 + √ 2) 2 R P(Ω c ) ≤ κ 2 0 (q + 3) R log n n + 3(1 + √ 2) 2 Rn -q
recalling that 1 + log( R/α) ≤ (q + 3) log n. The conclusion follows, choosing q = 1.

A.12. Proof of Corollary 10

From Theorem 7, with probability 1 -3n -8 || p R -p|| 2 2 ≤ C 2 κ 2 D log n n .

Finally we can write

E || p R -p|| 2 2 ≤ E || p R -p|| 2 2 1 Ω + (1 + √ 2) 2 R max P(Ω c ) ≤ C 2 κ 2 D log n n + 3(1 + √ 2) 2 R max n -8 ≤ (C 2 κ 2 + 9) D log n n .
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 1 Figure 1. Plot of the 20 sorted eigenvalues λ (i) of adjacency matrix A and the values of vector λ σ(1) .

Figure 2 .

 2 Figure 2. Estimation of envelope functions p 1 , . . . , p 6 .

  and S c := [n] \ S, and define s := #S ≤ 2 R ≤ n. with the convention -1 = 1. • Denote by S S,n the set of permutation σ ∈ S n such that σ([s]) = S, S S the set of bijections from [s] onto S and S s the set of permutations of [s]. It is clear that S S S s . Observe that ( the permutation σ ∈ S n that achieves the minimum in the first row satisfies σ ∈ S S,n and it follows that ( p ) is the arg minimum of the second program. Now, separating the terms λ 2 σ(k)for k > R, we obtain( p ) = arg min u∈M R min σ∈S S,n R k=1 (u k -λ σ(k) ) 2 + -λ σ(k) (T n )) 2 + s k= R+1 λ σ(k) (T n ) 2 .• Consider the restriction ∆R of ∆ R to R s defined as follows ∀x, y ∈ R s , ∆2 R (x, y) := min σ∈Ss s k=1 (x k -y σ(k) ) 2 .

  p ), (λ k ) k∈S )

  ∆R (( p ), (p )) ≤ ∆R (( p ), (λk ) k∈S ) + ∆R ((λ k ) k∈S , (λ k (T n )) k∈S ) + ∆R ((λ k (T n )) k∈S , (p )) ≤ 2δ 2 (λ(T W R ), λ(T n )) + √ s T n -T n ,combining the aforementioned inequalities. Define Λ R := (p 0 , p 1 , . . . , p 1 , . . . , p R , . . . , p R , 0, . . . , 0) ∈ R 2 R completing with R zeros, andremark that ∆ R ( Λ R , Λ R ) ≤ ∆R (( p ), (p )) ≤ 2δ 2 (λ(T W R ), λ(T n )) + 2 R T n -T n .

  R , λ ) = || p R -p|| 2 2 = d ( p Rp ) 2 , If (by contradiction) R < D, then δ 2 (λ R , λ ) ≥ d D |p D | 2 > 0 and then δ 2 ( λ R , λ ) cannot tend to 0. Thus necessarily R ≥ D. Moreover, since δ 2 2 ( λ R, λ ) = || p R -p|| 2 2 , with probability 1 -3n -8

(R/α) √ 2n ≥ 1 -α

This completes the proof. The same reasoning gives the second statement of Remark 8.
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Appendix A: Proofs

A.1. Proof of Proposition 1

This result is a consequence of (Bandeira et al., 2016, Corollary 3.12) and (Bandeira et al., 2016, Remark 3.13) with X ij = A ij -(Θ 0 ) ij a centered but not symmetric random variable, ε = 1/2 say, σ 2 = D 0 by definition, and observing that σ 2 * = max ij ((Θ 0

for some universal constant C > 0.

A.2. Proof of Theorem 2

Let R ≥ 1 and define

where the last identity holds point-wise. Observe that

Note the equalities between spectra λ(T

) where the last one follows by using a SVD of X R,n . Hence, we deduce that

by Hoffman-Wielandt inequality, see (Koltchinskii and Giné, 2000, page 118) for instance. Equation (4.8) at (Koltchinskii and Giné, 2000, page 127) gives that

Actually, one can remove the constant √ 2 using Ostrowski's theorem, see (Braun, 2006, Theorem A.2) for instance. Also, by Hoffman-Wielandt inequality, we have

Now, using inequality (4), we know that

with probability at least 1 -α.

Remark 12. In the relatively sparse model (7), using (8), recall that

Moreover, by ( 29) in proof of Proposition 4, for all

Remark 13. In the relatively sparse model (7), it reads

with probability at least 1 -α. We recall that p are the eigenvalues of T W .

Thus there exists a numerical constant κ 0 > 0 such that, with probability at least 1 -3α

Since it holds for any R, the first inequality of Theorem 7 is proved by choosing q = 8.

The second statement will follow by the same roadmap as in the end of proof A.8. Let us denote by Ω the set with probability larger than 1 -3n -q such that the previous inequality is true, and let us find a coarse bound on

Hence, using this bound and previous inequality, for all R ∈ R,

provided that κ ≥ κ 0 √ q + 3. The conclusion follows, choosing for instance q = 2.

A.11. Proof of Proposition 9

and this quantity vanishes when R ≥ D. From Theorem 6 and assuming that

with probability at least 1 -3α. Remark also that p R = p as soon as R ≥ D, where p R (t) := R =0 p c G β (t). We now work on the set with probability 1 -3α given by Theorem 6. We denote δ := min

and note that, for n large enough, it holds δ 2 ( λ R , λ R ) < δ/2. Then there exists a permutation σ ∈ S n such that for all k ∈

We deduce that if δ 2 ( λ R , λ R ) < δ/2 then for all h, i, j, k, such that p h = 0 it holds

Indeed, one p R cannot be at the same time at a distance less than δ/2 to some p i = 0 and at a distance less that δ/2 to some p j since these latter are both at a distance of δ. Necessarily the permutation σ is such that the group of eigenvalues p i = 0 of multiplicity d i matches with the group of eigenvalues p R i with the same multiplicity-recall that the multiplicities d are pairwise different since the sequence d is increasing. Thanks to (35) it holds

A.13. Proof of Theorem 11

The proof follows the same guidelines as in the sphere example. The only difference is that we do not have Gegenbauer polynomials but normalized Jacobi polynomials Z now. In particular, we have previously used the fact that Gegenbauer polynomials are bounded. Here, the same result holds in virtue of (20). To be specific, when S is a compact symmetric space, note that

Lemma 12 or Theorem 2;

and we get that

. This identity can be used in place of ( 27).

Using these inequalities and following the same guidelines as in the sphere example, one can prove the result.

Appendix B: Computational Considerations

B.1. Proof of Theorem 5

Without loss of generality, assume that λ 1 ≥ λ 2 ≥ . . . ≥ λ n . Similarly, let u ∈ M R and remember that we can group the coordinates of u in groups of sizes d for = 0, . . . , R. Reordering by decreasing order, there exists τ ∈ S R+1 such that u τ (1)-1+1 = . . . = u τ (1)

, for some q ∈ N. We may consider that q = 0 and respectively q = R + 1 in degenerate cases when all the coefficients are negative and respectively non negative. Remember that u ∈ R R and set u k = 0 for k > R such that, completing with zeros, consider that u ∈ R n . One has

.

Note that

taking σ = σ -1 . Using Hardy-Littlewood rearrangement inequality (Hardy, Littlewood and Pólya, 1952, Theorem 368), it is standard to observe that