Cyclicity in $\ell^p$ spaces and zero sets of the Fourier transforms - Archive ouverte HAL Access content directly
Journal Articles Journal of Mathematical Analysis and Applications Year : 2018

Cyclicity in $\ell^p$ spaces and zero sets of the Fourier transforms

Abstract

We study the cyclicity of vectors $u$ in $\ell^p(\mathbb{Z})$. It is known that a vector $u$ is cyclic in $\ell^2(\mathbb{Z})$ if and only if the zero set, $\mathcal{Z}(\widehat{u})$, of its Fourier transform, $\widehat{u}$, has Lebesgue measure zero and $\log |\widehat{u}| \not \in L^1(\mathbb{T})$, where $\mathbb{T}$ is the unit circle. Here we show that, unlike $\ell^2(\mathbb{Z})$, there is no characterization of the cyclicity of $u$ in $\ell^p(\mathbb{Z})$, $1
Fichier principal
Vignette du fichier
lmf20171222.pdf (204.92 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01570349 , version 1 (29-07-2017)
hal-01570349 , version 2 (09-01-2018)

Identifiers

Cite

Florian Le Manach. Cyclicity in $\ell^p$ spaces and zero sets of the Fourier transforms. Journal of Mathematical Analysis and Applications, 2018, Journal of Mathematical Analysis and Applications, 462 (1), pp.967-981. ⟨10.1016/j.jmaa.2017.12.057⟩. ⟨hal-01570349v2⟩

Collections

CNRS IMB
62 View
97 Download

Altmetric

Share

Gmail Facebook X LinkedIn More