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CYCLICITY IN ℓp SPACES AND ZERO SETS OF THE FOURIER

TRANSFORMS

FLORIAN LE MANACH

Abstract. We study the cyclicity of vectors u in ℓp(Z). It is known that a vector u is
cyclic in ℓ2(Z) if and only if the zero set, Z(û), of its Fourier transform, û, has Lebesgue
measure zero and log |û| 6∈ L1(T), where T is the unit circle. Here we show that, unlike
ℓ2(Z), there is no characterization of the cyclicity of u in ℓp(Z), 1 < p < 2, in terms
of Z(û) and the divergence of the integral

∫
T

log |û|. Moreover we give both necessary
conditions and sufficient conditions for u to be cyclic in ℓp(Z), 1 < p < 2.

1. Introduction and main results

In this paper we will study cyclic vectors in ℓp spaces for 1 < p < 2. A vector u =
(un)n∈Z ∈ ℓp(Z) is called cyclic in ℓp(Z) if the linear span of {(un−k)n∈Z, k = 0, 1, 2, . . .}
is dense in ℓp(Z) and u is called bicyclic in ℓp(Z) if the linear span of {(un−k)n∈Z, k ∈ Z}
is dense in ℓp(Z). Note that the bicyclicity in this paper is defined as cyclicity in [13] and
[14].

We denote by T the unit circle of C. The Fourier transform of u = (un)n∈Z ∈ ℓp(Z) is
given by

û : ζ ∈ T 7→
∑

n∈Z

unζn

and we denote by Z(û) the zero set of û on T:

Z(û) = {ζ ∈ T, û(ζ) = 0}.

Note that if u ∈ ℓ1(Z) then û is continuous and Z(û) is well defined, while if u ∈ ℓ2(Z)
then û ∈ L2(T) and Z(û) is defined modulo null sets.

Wiener showed in [18] that the bicyclicity of a sequence u in ℓ1(Z) and ℓ2(Z) is char-
acterized only in terms of Z(û): u is bicyclic in ℓ1(Z) if and only if Z(û) = ∅ and u is
bicyclic in ℓ2(Z) if and only if Z(û) has Lebesgue measure zero. Wiener asked if the same
phenomenon holds for u ∈ ℓp(Z), 1 < p < 2.

Lev and Olevskii, in [14], answered this question negatively. We cannot characterize
the bicyclicity of u ∈ ℓ1(Z) only in terms of the zero set of û: for 1 < p < 2 there exist
u, v ∈ ℓ1(Z) such that Z(û) = Z(v̂) and one is bicyclic in ℓp(Z) and the other is not. Here
we consider a similar problem for cyclicity in ℓp(Z), 1 < p < 2.
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2 F. LE MANACH

It follows from Wiener characterization of bicyclic vectors and Szegö infimum that a
vector u is cyclic in ℓ2(Z) if and only if Z(û) has Lebesgue measure zero and log |û| 6∈ L1(T)
(see [16, Corollary 4.1.2, Theorem 4.1.4]). Furthermore when u is cyclic in ℓp(Z) then u is
cyclic in ℓq(Z) for q ≥ p. A direct consequence of this fact is that, for u ∈ ℓ1(Z), if u is
cyclic in ℓp(Z), 1 ≤ p ≤ 2, then Z(û) has Lebesgue measure zero and log |û| 6∈ L1(T). It
follows from this and Wiener characterization of bicyclic vectors in ℓ1(Z) that there is no
cyclic vectors in ℓ1(Z) (see also [1] for a different proof).

The existence of cyclic vectors on ℓp(Z), for p > 1, was established by Abakumov,
Atzmon and Grivaux in [1, Corollary 1] in 2007. Note that this result was first proved by
Olevskii in an unpublished manuscript in 1998 (see [1, Remark 1]).

We show that for sequences u ∈ ℓ1(Z) such that log |û| 6∈ L1(T), there is no characteri-
zation of the cyclic vectors u in ℓp(Z) only in terms of Z(û).

Theorem 1.1. Let 1 < p < 2. There exist u and v in ℓ1(Z) such that Z(û) = Z(v̂),
log |û| 6∈ L1(T), log |v̂| 6∈ L1(T), with u non-cyclic in ℓp(Z) and v cyclic in ℓp(Z).

Until now we did not know more than the existence of cyclic vectors in ℓp(Z). Here
we give, when û is smooth, both necessary conditions and sufficient conditions for u to be
cyclic in ℓp(Z), 1 < p < 2, and in a more general case: the weighted ℓp spaces. In particular
this allows to construct explicit examples of cyclic vectors in weighted ℓp spaces. Here are
some results that we get: for u ∈ ℓ1(Z) and 1 < p < 2,

• if û ∈ C∞(T), dim(Z(û)) < 2(p − 1)/p and log |û| 6∈ L1(T) then u is cyclic in ℓp(Z),
• if û ∈ Lipδ(T) for δ > 1/p−1/2, dim(Z(û)) < 2(p−1)/p and log(d(·, Z(û))) 6∈ L1(T)

then u is cyclic in ℓp(Z),

where dim is the Hausdorff dimension (see [10, Chap II]), d(·, Z(û)) is the Euclidean
distance to Z(û) and f ∈ Lipδ(T) means that there exists C > 0 such that

|f(ζ) − f(ζ ′)| ≤ C|ζ − ζ ′|δ, ζ, ζ ′ ∈ T. (1.1)

Let E be a closed subset of T. The set E is called a Carleson set if log d(·, E) ∈ L1(T)
(see [4]). This condition is equivalent to the fact that E has a Lebesgue measure zero
and

∑
n |In| log |In| > −∞, where (In) are the complementary intervals of E. Note that if

û ∈ Lipδ(T) such that Z(û) is not a Carleson set then log |û| /∈ L1(T).

The paper is organized as follows: in section 2 we give preliminary results, in section 3
we prove Theorem 1.1 and section 4 is devoted to establishing both necessary conditions
and sufficient conditions for cyclicity in weighted ℓp(Z).

We use the following notations:

• A . B means that there is an absolute constant C such that A ≤ CB.
• A ≍ B if both A . B and B . A.
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2. Preliminaries

We denote by N0 the set of all non-negative integers and by N the set of all positive
integers. Let X be a metric linear space of complex functions on T such that the shift
operator S, given by

S(f)(ζ) = ζf(ζ)

is a topological isomorphism of X onto itself. Let f ∈ X and Λ ⊂ Z, we denote by [f ]XΛ
the closed linear span of {znf, n ∈ Λ}. We say that f ∈ X is cyclic in X if [f ]XN0

= X and
f is bicyclic in X if [f ]XZ = X. Note that f is cyclic in X if and only if f is bicyclic in X
and [f ]XN0

= [f ]XZ . Moreover

[f ]XN0
= [f ]XZ ⇐⇒ f ∈ [f ]XN (2.1)

Indeed, if [f ]XN0
= [f ]XZ then we have zf ∈ [f ]XN0

and we obtain that f ∈ [f ]XN , since the
multiplication by z is continuous in X. Conversely, we assume that f ∈ [f ]XN . Then we
see easily that zf ∈ [f ]XN0

. Moreover if znf ∈ [f ]XN0
for some n ≥ 1 then zn+1f = lim zPkf

with Pk ∈ P+(T). Since Pkzf ∈ [f ]XN0
and [f ]XN0

is closed in X, we obtain zn+1f ∈ [f ]XN0
.

Thus by induction, for all n ≥ 1, znf ∈ [f ]XN0
and then [f ]XN0

= [f ]XZ .

We denote by P(T) the set of trigonometric polynomials on T and by P+(T) the set of
analytic polynomials on T. Now we suppose, in addition, that X is a Banach space such
that P(T) is dense in X. Then f ∈ X is bicyclic in X if and only if there exists a sequence
(Pn) of trigonometric polynomials such that

lim
n→∞

‖1 − Pnf‖X = 0. (2.2)

So we obtain, from this and (2.1), the following proposition:

Proposition 2.1. Let f ∈ X. The function f is cyclic in X if and only if there exist
Pn ∈ P(T) and Qn ∈ P+(T) satisfying

‖1 − Pnf‖X −→
n→∞

0 and ‖f − zQnf‖X −→
n→∞

0.

Now we study the weighted ℓp spaces. We denote by D′(T) the set of distributions on

T and M(T) the set of measures on T. For S ∈ D′(T) and n ∈ Z, we denote by Ŝ(n) the

nth Fourier coefficient of S defined by Ŝ(n) = 〈S, z−n〉 and we write S =
∑

n∈Z Ŝ(n)zn. If
f ∈ L1(T) we have

f̂(n) =
∫

T

f(ζ)ζ−n |dζ |

2π
.

For p ≥ 1 and β ∈ R, we define the Banach spaces

ℓp
β(Z) =

{
(un)n∈Z ∈ C

Z, ‖(un)‖p
ℓp

β

=
∑

n∈Z

|un|p(1 + |n|)pβ < ∞
}

and

Ap
β(T) =

{
S ∈ D′(T), ‖S‖p

Ap

β

=
∑

n∈Z

|Ŝ(n)|p(1 + |n|)pβ < ∞
}

.
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We will write Ap(T) for the space Ap
0(T) and A(T) for the space A1(T) which is the Wiener

algebra. The Fourier transformation is an isometric isomorphism between ℓp
β(Z) and Ap

β(T)
since for S ∈ Ap

β(T) we have

‖S‖Ap

β
= ‖(Ŝ(n))n∈Z‖ℓp

β
.

Moreover, for a sequence (un)n∈Z and k ∈ Z, we have (̂un−k) = zk (̂un), so u is cyclic in
ℓp

β(Z) if and only if û is cyclic in Ap
β(T). From now we will state and prove our results in

Ap
β(T). Note that if 1 ≤ p ≤ 2 and β ≥ 0, Ap

β(T) is a subset L2(T).

For 1 ≤ p < ∞ and β ≥ 0 we define the product of f ∈ A1
β(T) and S ∈ Ap

β(T) by

fS =
∑

n∈Z

(∑

k∈Z

f̂(k)Ŝ(n − k)
)

zn,

and we see that ‖fS‖Ap

β
≤ ‖f‖A1

β
‖S‖Ap

β
.

The following lemma gives us different inclusions between the Ap
β(T) spaces.

Lemma 2.2 ([13]). Let 1 ≤ r, s < ∞ and β, γ ∈ R.

(1) If r ≤ s then Ar
β(T) ⊂ As

γ(T) ⇐⇒ γ ≤ β.

(2) If r > s then Ar
β(T) ⊂ As

γ(T) ⇐⇒ β − γ > 1
s

− 1
r
.

For p 6= 1, the dual space of Ap
β(T) can be identified with Aq

−β(T) (q = p
p−1

) by the

following formula

〈S, T 〉 =
∑

n∈Z

Ŝ(n)T̂ (−n), S ∈ Ap
β(T), T ∈ Aq

−β(T).

A distribution S on T is said to vanish on an open set V , if 〈S, ϕ〉 = 0 for all functions
ϕ ∈ C∞(T) with support in V . The support of the distribution S, denoted by supp(S), is
the complement of the maximal open set on which the distribution S vanishes. When f
is continuous, we denote by Z(f) the zero set of the function f . For δ ≥ 0 we recall that
Lipδ(T) denotes the set of functions f defined on T which satisfies (1.1).

We need the following proposition which gives a necessary condition for a function f ∈
Lipδ(T) to be bicyclic in Ap(T).

Proposition 2.3 ([9]). Let 1 < p < ∞, q = p/(p − 1) and f ∈ A(T). If there exists δ > 0
such that f ∈ Lipδ(T) and if there exists S ∈ Aq(T) \ {0} such that supp(S) ⊂ Z(f) then
f is not bicyclic in Ap(T).

3. No characterization of cyclicity in terms of zero set

The following Theorem is a reformulation of Theorem 1.1 in Ap(T).

Theorem 3.1. Let 1 < p < 2. There exist f and g in A(T) such that Z(f) = Z(g),
log |f | 6∈ L1(T), log |g| 6∈ L1(T) with f non-cyclic in Ap(T) and g cyclic in Ap(T).
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For the proof we need some notations and definitions. Let E be a closed subset of T.
We set

I(E) = {f ∈ A(T), f |E = 0}

and we denote by J (E) the closure in A(T) of the set of functions in A(T) which vanish
on a neighborhood of E. Clearly J (E) ⊂ I(E). We say that E is a set of synthesis if
J (E) = I(E). Since {1} is a set of synthesis (see [10, Theorem IV] p. 123 or [8, Appendix
3] pp. 416-418), we have I({1}) = J ({1}). Unlike the space A(T), I({1}) contains cyclic
vectors. Moreover, by [1, Proposition 2], the set of cyclic vectors in I({1}) is a dense Gδ

subset of I({1}).

Lemma 3.2. Let f ∈ I({1}). If f is cyclic in I({1}) then f is cyclic in Ap(T) for all
p > 1.

Proof. Let f ∈ I({1}) cyclic in I({1}) and ε > 0. We denote by hk, for k ∈ N, the function
defined on T by

hk(z) =
z − 1

z − 1 − 1/k
.

Clearly hk ∈ I({1}). Moreover for z ∈ T,

hk(z) = 1 −
1

k + 1

∞∑

n=0

zn

(1 + 1/k)n
.

Thus for p > 1, we have

‖1 − hk‖p
Ap =

1

(k + 1)p

∞∑

n=0

1

(1 + 1/k)pn

=
1

(k + 1)p

1

1 − 1
(1+1/k)p

=
1

(k + 1)p − kp
∼

k→∞

1

pkp−1
.

So for fixed p > 1, we choose k ∈ N such that ‖1 − hk‖Ap < ε. Since f is cyclic in I({1}),
there exist P and Q in P+(T) such that

‖hk − P f‖A1 < ε and ‖f − zQf‖A1 < ε.

We obtain that ‖f − zQf‖Ap < ε and

‖1 − P f‖Ap ≤ ‖1 − hk‖Ap + ‖hk − P f‖A1 < 2ε.

This proves, by Proposition 2.1, that f is cyclic in Ap(T) for all p > 1. �

To prove our main theorem of this section, we need to introduce the notion of Helson
sets.

Definition 3.3 ([10], Chap. XI). A compact set K ⊂ T is called a Helson set if it satisfies
any one of the following equivalent conditions:

(i) if f ∈ C(K) then there exists g ∈ A(T) such that g|K = f ,
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(ii) there exists δ1 > 0 such that for all µ ∈ M(T) satisfying supp(µ) ⊂ K we have

sup
n∈Z

|µ̂(n)| ≥ δ1

∫

T

|dµ|,

(iii) there exists δ2 > 0 such that for all µ ∈ M(T) satisfying supp(µ) ⊂ K we have

lim sup
|n|→∞

|µ̂(n)| ≥ δ2

∫

T

|dµ|.

By (iii), a Helson set does not support any non zero measure µ such that µ̂(n) → 0 as
|n| → ∞. On the other hand Körner shows, in [12], that there exists a Helson set which

support a non zero distribution S such that Ŝ(n) → 0 as |n| → ∞ (see also Kaufman in
[11] for a simple proof). Lev and Olevskii extend significantly this result by showing the
following theorem which is the key of their result about bicyclicity in ℓp(Z).

Theorem 3.4 ([14], Theorem 3). For q > 2, there exists a Helson set K which supports a
non-zero distribution S ∈ Aq(T).

We need also the following lemma obtained by Lev and Olevskii.

Lemma 3.5 ([14], Lemma 10). Let K be a Helson set. For ε > 0, p > 1 and f ∈ C(K),
there exists g ∈ A(T) such that





g|K = f,

||g||A1 ≤
1

δ2
||f ||∞,

||g||Ap < ε

where δ2 is a constant which satisfies (iii) in the definition 3.3.

The main result, Theorem 3.1, is a consequence of the following theorem which is an
analogue of Lev and Olevskii result.

Theorem 3.6. Let K be a Helson set on T. There exists g ∈ A(T) such that g vanishes
on K and such that g is cyclic in Ap(T) for all p > 1.

Proof. Let K be a Helson set on T. We recall that

I(K) = {g ∈ A(T), g|K = 0}

which, endowed with the norm ‖ · ‖A1, is a Banach space. We define

G(K) = {g ∈ I(K), g is cyclic in Ap(T), ∀p > 1}.

We will show that G(K) is a dense Gδ subset of I(K). For ε > 0 and p > 1, we consider
the set

G(ε, p) = {g ∈ I(K), ∃P ∈ P(T), ∃Q ∈ P+(T), ‖1 − P g‖Ap < ε and ‖g − zQg‖Ap < ε}.

Let εn = 1
n

and pn = 1 + 1
n
. To use a Baire Category argument, we will show that

(i)
∞⋂

n=1
G(εn, pn) = G(K),

(ii) for ε > 0 and p > 1, G(ε, p) is an open subset of I(K),
(iii) for ε > 0 and p > 1, G(ε, p) is a dense subset of I(K).
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(i): Let g ∈ I(K) such that for all n ∈ N, there exist Pn ∈ P(T) and Qn ∈ P+(T) satisfying
‖1 − Png‖Apn < εn and ‖g − zQng‖Apn < εn. Since for all p > 1, there exists N such that
for all n ≥ N we have p > pn,

‖1 − Png‖Ap ≤ ‖1 − Png‖Apn < εn → 0, n → ∞

and
‖g − zQng‖Ap ≤ ‖g − zQng‖Apn < εn → 0, n → ∞.

By Proposition 2.1, g is cyclic in Ap(T) for all p > 1 and thus we have g ∈ G(K). The
other inclusion is clear.

(ii) follows from the fact that, for f ∈ A(T) and g ∈ Ap(T),

‖fg‖Ap ≤ ‖f‖A1‖g‖Ap.

(iii): Let g0 ∈ I(K). We will show that for all η > 0, there exists g ∈ G(ε, p) such
that ‖g − g0‖A1 < η. Without loss of generality, we suppose that 1 ∈ K. So we have
g0 ∈ I({1}). Since K is a Helson set, we consider δ2 the constant satisfying the condition
(iii) of Definition 3.3. Since the set of cyclic vectors in I({1}) is dense in I({1}) (see [1]),
there exists a function h cyclic in I({1}) such that

‖h − g0‖A1 <
δ2

1 + δ2
η.

Hence for all t ∈ K,

|h(t)| = |h(t) − g0(t)| ≤ ‖h − g0‖∞ ≤ ‖h − g0‖A1 <
δ2

1 + δ2
η.

Since h is cyclic in I({1}), by Lemma 3.2, h is also cyclic in Ap(T). By Proposition 2.1,
there exist P ∈ P(T) and Q ∈ P+(T) satisfying ‖1 − P h‖Ap < ε

2
and ‖h − zQh‖Ap < ε

2
.

By Lemma 3.5, there exists f ∈ A(T) satisfying




f |K = h|K ,

‖f‖A1 ≤
‖h|K‖∞

δ2

<
η

1 + δ2

,

‖f‖Ap < min
(

ε

2‖P ‖A1

,
ε

2‖1 − zQ‖A1

)
.

Let g = h − f . We have g ∈ I(K) since f |K = h|K . Moreover g ∈ G(ε, p) since

‖1 − P g‖Ap ≤ ‖1 − P h‖Ap + ‖P ‖A1‖f‖Ap < ε

and
‖g − zQg‖Ap ≤ ‖h − zQh‖Ap + ‖1 − zQ‖A1‖f‖Ap < ε.

Finally we have

‖g − g0‖A1 ≤ ‖h − g0‖A1 + ‖f‖A1 <
δ2

1 + δ2
η +

η

1 + δ2
< η.

Hence G(ε, p) is a dense subset of I(K).
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By the Baire Category Theorem,
∞⋂

n=1
G(εn, pn) is a dense Gδ subset of I(K). In particular

G(K) is not empty. �

Proof. (of Theorem 3.1) We recall that 1 < p < 2. Let K be a Helson set given by Theorem
3.4. By Theorem 3.6, there exists g ∈ A(T) such that g vanishes on K and such that g
is cyclic in Ap(T). This implies in particular that log |g| 6∈ L1(T). Moreover there exists
f ∈ C1(T) such that Z(f) = Z(g) and log |f | 6∈ L1(T) (take f(ζ) = e−1/d(ζ,Z(g)) if ζ 6∈ Z(g)
and 0 otherwise). By Proposition 2.3 and Theorem 3.4, f is not bicyclic in Ap(T) so it is
not cyclic in Ap(T). �

Remark 3.7. In the construction of f and g in Theorem 3.1, one is bicyclic and the other
one is not. A natural question arises: Is it possible to construct two bicyclic functions with
the same properties as in Theorem 3.1?

4. Cyclicity in weighted ℓp spaces

In the following, we denote q = p/(p − 1). In this section, we give both necessary
conditions and sufficient conditions for f to be cyclic in Ap

β(T), when f is smooth, for
1 < p < 2 and 0 ≤ βq ≤ 1. When βq > 1, there is no cyclic vector in Ap

β(T). Indeed,
for 1 ≤ p < ∞ and β ≥ 0, Ap

β(T) is a Banach algebra of continuous functions if and
only if βq > 1 (see [7]). So, if f is cyclic in Ap

β(T), when βq > 1, then Z(f) = ∅ and

log |f | 6∈ L1(T) which is impossible since f is continuous. In particular the conditions
obtained in this section allow us to construct explicit examples of cyclic vectors. We also
study the density of the set of cyclic vectors in weighted ℓp(Z).

4.1. Conditions for the cyclicity. We denote by H∞ the space of functions f ∈ L∞(T)

satisfying f̂(n) = 0 for all n < 0. It is well known that H∞ can be identified with the
space of bounded holomorphic functions on the disk D = {z ∈ C, |z| < 1}. Recall that
outer functions are given by

f(z) = exp
∫

T

ζ + z

ζ − z
log ϕ(ζ)

|dζ |

2π
, z ∈ D,

where ϕ is a positive function such that log ϕ ∈ L1(T). We denote by f(ζ) the radial limit
of f at ζ ∈ T if it exists. We have |f | = ϕ a.e. on T. Moreover if ϕ ∈ L∞(T) then f ∈ H∞.

Proposition 4.1. Let 1 < p < 2, β ≥ 0 and f ∈ A2
α(T) with α > 1/p − 1/2 + β. The

following are equivalent.

(1) [f ]
Ap

β
(T)

N0
= [f ]

Ap

β
(T)

Z ,

(2) inf
{

‖P f‖Ap

β
, P ∈ H∞, P f ∈ A2

α(T), P (0) = 1
}

= 0.

Note that, by Lemma 2.2, α > 1/p − 1/2 + β implies that A2
α(T) ⊂ Ap

β(T).
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Proof. We suppose first [f ]
Ap

β
(T)

N0
= [f ]

Ap

β
(T)

Z . By Proposition 2.1, there exists Pn ∈ P+(T)
such that lim ‖f − zPnf‖Ap

β
= 0 as n → ∞. Since 1 − zPn ∈ H∞, we have

inf
{
‖P f‖Ap

β
, P ∈ H∞, P f ∈ A2

α(T), P (0) = 1
}

= 0.

Now suppose that (2) holds. Let Pn ∈ H∞, for n ∈ N, such that Pn(0) = 1, Pnf ∈ A2
α(T)

and lim ‖Pnf‖Ap

β
= 0 as n → ∞. We write Pn = 1 − zQn with Qn ∈ H∞. So we have,

lim ‖zQnf − f‖Ap

β
= 0. Recall that [f ]

Ap

β
(T)

N0
= [f ]

Ap

β
(T)

Z holds if and only if f ∈ [f ]
Ap

β
(T)

N .

Thus it suffices to show that zQnf ∈ [f ]
Ap

β
(T)

N since [f ]
Ap

β
(T)

N is a closed subset of Ap
β(T).

Note that zQnf ∈ A2
α(T) since Pnf and f are in A2

α(T). So we will show the following

claim: if Q ∈ H∞ verifies zQf ∈ A2
α(T) then zQf ∈ [f ]

Ap

β
(T)

N .

We note, for 0 < r < 1, Qr(z) = Q(rz). We have zQrf ∈ [f ]
Ap

β
(T)

N since for all ε > 0,
there exists Q̃r ∈ P+(T) such that ‖Qr − Q̃r‖A1

β
< ε and ‖zQrf − zQ̃rf‖Ap

β
≤ ‖Qr −

Q̃r‖A1

β
‖zf‖Ap

β
< ε‖zf‖Ap

β
. Moreover, by the Hahn-Banach theorem, [f ]

Ap

β
(T)

N is weakly

closed in Ap
β(T). So it suffices to show that zQrf → zQf weakly in Ap

β(T) as r → 1.
Let g ∈ Aq

−β(T) with 1/p + 1/q = 1. There exists a sequence (gn) in P(T) such that
lim ‖g − gn‖Aq

−β
= 0, as n → ∞. So we have

|〈zQrf − zQf, g〉| ≤ |〈zQrf − zQf, g − gn〉| + |〈zQrf − zQf, gn〉|

≤ ‖zQrf − zQf‖Ap

β
‖g − gn‖Aq

−β
+

∣∣∣∣
∫

T

(zQrf − zQf)(ζ)gn(ζ)|dζ |

∣∣∣∣ .

Since ‖zQrf −zQf‖Ap

β
≤ ‖zQrf −zQf‖A2

α
, we can show, with the same calculus that in [17,

proposition 3.4] and [5], that ‖zQrf − zQf‖Ap

β
remains bounded as r → 1. Moreover ‖g −

gn‖Aq

−β
→ 0 and, by the dominated convergence theorem,

∫
T |(zQrf −zQf)(ζ)gn(ζ)||dζ | →

0 as r → 1 since f ∈ L1(T). So zQrf → zQf weakly in Ap
β(T) as r → 1 and zQf ∈ [f ]

Ap

β
(T)

N .
This completes the proof. �

We also need the following lemma, see the proof of Theorem 1.3 in [2].

Lemma 4.2. Let E be a closed subset of T with Lebesgue measure zero and such that
log(d(·, E)) 6∈ L1(T). Let δ′ > 1/2 and γ > 0 such that 2δ′ − γ − 1 ≥ 0. Let Fε be the outer
function Fε satisfying

|Fε(ζ)| = (d(ζ, E)γ + ε)1/2 a.e. on T

and

Mε =
1

2

∫

T

log

(
1

d(ζ, E)γ + ε

)
dζ.
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For all ε > 0 we have
∫∫

T2

d(ζ ′, E)2(δ′−γ) |Fε(ζ) − Fε(ζ
′)|2

|ζ − ζ ′|2
|dζ ||dζ ′| . Mε.

The following result was obtained in [2] for p = 2 and β = 1/2.

Theorem 4.3. Let 1 < p < 2 and β > 0 such that βq < 1. Let f ∈ Lipδ(T), where
δ > β + 1/p − 1/2. We suppose that Z(f) has Lebesgue measure zero. If

∫

T

log d(ζ, Z(f))|dζ | = −∞

then

[f ]
Ap

β
(T)

Z = [f ]
Ap

β
(T)

N0
.

Furthermore, if f ∈ A1
β(T) and dim(Z(f)) < 2

q
(1 − βq) then f is cyclic in Ap

β(T).

Proof. Let α > 0 such that β + 1/p − 1/2 < α < min(δ, 1/2). First we have f ∈ Lipδ(T) ⊂
A2

α(T) ⊂ Ap
β(T). Indeed by Douglas’ formula (see [17, section 5]), f ∈ A2

α(T) if and only if

f ∈ L2(T) and

Dα(f) =
∫∫

T2

|f(ζ) − f(ζ ′)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′| < ∞.

Moreover we have
‖f‖2

A2
α

≍ ‖f‖2
L2(T) + Dα(f). (4.1)

Thus if f ∈ Lipδ(T) then

Dα(f) .
∫∫

T2

1

|ζ − ζ ′|1+2α−2δ
|dζ ||dζ ′| < ∞

and we get f ∈ A2
α(T). On the other hand, by Proposition 2.2, we have A2

α(T) ⊂ Ap
β(T).

By Proposition 4.1, it suffices to show that

inf
{

‖P f‖Ap

β
, P ∈ H∞, P f ∈ A2

α(T), P (0) = 1
}

= 0

to complete the proof. Let ε > 0 and γ > 0 such that γ < δ − α. We define pε to be the
outer function satisfying

|pε(ζ)| =
e−Mε

(d(ζ, E)γ + ε)1/2
a.e.

where E = Z(f) and

Mε =
1

2

∫

T

log

(
1

d(ζ, E)γ + ε

)
|dζ |

so that pε(0) = 1. Since log d(·, E) /∈ L1(T), Mε → ∞ as ε → 0.

We will show that
‖pεf‖Ap

β
≤ ‖pεf‖A2

α
−→ 0 as ε → 0.

By (4.1), we have
‖pεf‖2

A2
α

≍ ‖pεf‖2
L2(T) + Dα(pεf).
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First, since γ < 2δ,

‖pεf‖2
L2(T) . e−2Mε

∫

T

d(ζ, E)2δ

d(ζ, E)γ
|dζ | . e−2Mε → 0.

Then we have

Dα(pεf) =
∫∫

T2

|pεf(ζ) − pεf(ζ ′)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′|.

Note that for all (ζ, ζ ′) ∈ T2 we have

|pεf(ζ) − pεf(ζ ′)|2 ≤ 2|pε(ζ)|2|f(ζ) − f(ζ ′)|2 + 2|f(ζ ′)|2|pε(ζ) − pε(ζ
′)|2.

So if we denote Γ = {(ζ, ζ ′) ∈ T2, |d(ζ ′, E)| ≤ |d(ζ, E)|}, we obtain

Dα(pεf) .
∫∫

Γ
|pε(ζ)|2

|f(ζ) − f(ζ ′)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′| +

∫∫

Γ
|f(ζ ′)|2

|pε(ζ) − pε(ζ
′)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′|

= Aε + Bε.

Let η such that γ
2δ

≤ η < 2δ−2α
2δ

. Then, using the fact that for (ζ, ζ ′) ∈ Γ, |f(ζ ′)| ≤ d(ζ, E)δ,
we get

Aε = e−2Mε

∫∫

Γ

(
|f(ζ) − f(ζ ′)|2η

d(ζ, E)γ + ε

)(
|f(ζ) − f(ζ ′)|2−2η

|ζ − ζ ′|1+2α

)
|dζ ||dζ ′|

. e−2Mε

∫∫

T2

d(ζ, E)2ηδ

d(ζ, E)γ

(
|f(ζ) − f(ζ ′)|2−2η

|ζ − ζ ′|1+2α

)
|dζ ||dζ ′|

. e−2Mε

∫∫

T2

|ζ − ζ ′|(2−2η)δ

|ζ − ζ ′|1+2α
|dζ ||dζ ′|

. e−2Mε → 0.

To estimate Bε, we consider the outer function Fε given in Lemma 4.2. Let

Γ1 = {(ζ, ζ ′) ∈ Γ, d(ζ ′, E) ≤ |ζ − ζ ′|},

Γ2 = {(ζ, ζ ′) ∈ Γ, d(ζ ′, E) > |ζ − ζ ′|}.

We have

Bε =
∫∫

Γ
2|f(ζ ′)|2|pε(ζ)pε(ζ

′)|2
|1/pε(ζ

′) − 1/pε(ζ)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′|

. e−2Mε

∫∫

Γ

d(ζ ′, E)2δ

(d(ζ, E)γ + ε)(d(ζ ′, E)γ + ε)

|Fε(ζ) − Fε(ζ
′)|2

|ζ − ζ ′|1+2α
|dζ ||dζ ′|

. e−2Mε

∫∫

Γ1

|ζ − ζ ′|2δ−2γ−2α−1|Fε(ζ) − Fε(ζ
′)|2|dζ ||dζ ′|

+e−2Mε

∫∫

Γ2

d(ζ ′, E)2δ−2γ−2α+1 |Fε(ζ) − Fε(ζ
′)|2

|ζ − ζ ′|2
|dζ ||dζ ′|

= B1
ε + B2

ε .
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Since γ < δ−α and |Fε| is bounded on T, we have B1
ε . e−2Mε → 0 as ε → 0. On the other

hand, applying Lemma 4.2 with δ′ = δ − α + 1/2, we obtain B2
ε . Mεe

−2Mε. Thus B2
ε → 0

as ε → 0. Therefore we have lim ‖pεf‖Ap

β
= 0 and, by Proposition 4.1, [f ]

Ap

β
(T)

Z = [f ]
Ap

β
(T)

N0
.

Furthermore, by [13, Theorem A], if dim(Z(f)) < 2
q
(1 − βq) then f is bicyclic in Ap

β(T),

so f is cyclic in Ap
β(T). �

Remark. Let 1 < p < 2 and β > 0 such that βq < 1. Using the fact that A2
1/2(T) ⊂ Ap

β(T)

and [2, Theorem 1.2] we obtain, for f ∈ Ap
β(T) such that |f | ∈ C1(T) and |f |′ ∈ Lipδ(T)

for δ > 0, the following result: if dim(Z(f)) < 2
q
(1 − βq) and log |f | 6∈ L1(T) then f 2 is

cyclic in Ap
β(T).

4.2. Cyclicity for smooth functions. When f ∈ C∞(T), Makarov proves in [15], that

[f ]
C∞(T)
N0

= [f ]
C∞(T)
Z if and only if log |f | 6∈ L1(T). As a consequence of Makarov’s Theorem

and some results obtained in [13], we get the following result:

Theorem 4.4. Let 1 < p < 2, β ≥ 0 such that βq ≤ 1. We have the following assertions:

(1) If f ∈ C∞(T), dim(Z(f)) < 2
q
(1 − βq) and log |f | 6∈ L1(T) then f is cyclic in

Ap
β(T).

(2) If f ∈ A1
β(T), dim(Z(f)) > 1 − βq then f is not cyclic in Ap

β(T).

(3) For 2
q
(1 − βq) ≤ α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α

and every f ∈ A1
β(T) satisfying Z(f) ⊂ E is not cyclic in Ap

β(T).

(4) If p = 2k
2k−1

for some k ∈ N then there exists a closed set E ⊂ T such that dim(E) =

1 − βq and every f ∈ C∞(T) satisfying Z(f) ⊂ E and log |f | 6∈ L1(T) is cyclic in
Ap

β(T).

Note that, for 1 < p < 2 and β ≥ 0 such that βq ≤ 1, if f is cyclic in Ap
β(T) then

log |f | 6∈ L1(T).

Proof. For (2) and (3), we use [13, Theorem 3.4 and Theorem 4.3] since if f is not bicyclic
then f is not cyclic in Ap

β(T).

For (1) and (4), suppose log |f | 6∈ L1(T). By [15], we have [f ]
C∞(T)
N0

= [f ]
C∞(T)
Z . Since

the embedding C∞(T) ⊂ Ap
β(T) is continuous, we obtain [f ]

Ap

β
(T)

N0
= [f ]

Ap

β
(T)

Z . Moreover, by
[13, Theorem 3.4], f is bicyclic in Ap

β(T). Therefore f is cyclic in Ap
β(T). �

In the following, we denote, for E ⊂ T, |E| the Lebesgue measure of E.

Examples. Let E be a closed subset of T and Λ be a continuous, positive, decreasing
function defined on (0, ∞) such that lim Λ(t) = ∞ and lim tΛ(t) = 0 as t → 0. We
consider the function f defined on T by

f(ζ) = exp (−Λ(d(ζ, E))) (4.2)

if ζ 6∈ E and f(ζ) = 0 otherwise. So, by [6, Proposition A.1], we have
∫

T

log |f(ζ)||dζ | = −
∫

T

Λ(d(ζ, E))|dζ | = −∞ ⇔
∫

T

|Et|dΛ(t) = −∞,
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where Et = {ζ ∈ T, d(ζ, E) ≤ t}. Let NE(t) be the smallest number of closed arcs of
length 2t that cover E. We have, by [6, Lemma A.3], that tNE(t) ≤ |Et| ≤ 4tNE(t). Thus,
by [3, Theorem 2, p. 30], we have for 0 < α < 1,

∫

T

1

tα+1NE(t)
dt = ∞ ⇔

∫

T

1

tα|Et|
dt = ∞ ⇒ dim(E) < α.

Now we suppose that Λ(t) = 1/tγ for γ > 0. The function f defined by (4.2) is infinitely
differentiable on T. Let 1 < p < 2, β ≥ 0 such that βq ≤ 1. We can construct a Cantor
set E such that

∫

T

|Et|

tγ+1
dt = ∞ and

∫

T

1

tα|Et|
dt = ∞

for α < 2
q
(1 − βq). Then, by Theorem 4.4, the function f is cyclic in Ap

β(T). Moreover if

γ ≥ 1 we have log |f | 6∈ L1(T). So, by Theorem 4.4,

(1) if dim(E) < 2
q
(1 − βq) then f is cyclic in Ap

β(T);

(2) if dim(E) > 1 − βq then f is not cyclic in Ap
β(T);

(3) for 2
q
(1 − βq) ≤ α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α

and f is not cyclic in Ap
β(T);

(4) if p = 2k
2k−1

for some k ∈ N then there exists a closed set E ⊂ T such that dim(E) =

1 − βq and f is cyclic in Ap
β(T).

4.3. Density of cyclic vectors set. When βq ≤ 1, we have seen, in subsection 4.2, that
there exist cyclic vectors in Ap

β(T). Here we show that the set of cyclic vectors in Ap
β(T) is

a dense Gδ subset of Ap
β(T).

Proposition 4.5. Let f ∈ A(T). If Z(f) is finite then f is bicyclic in Ap
β(T) for p > 1

and β ≥ 0 such that βq ≤ 1.

Proof. Let S ∈ Aq
−β(T) such that 〈S, znf〉 = 0 for all n ∈ Z. It suffices to prove that S = 0.

First we have supp(S) ⊂ Z(f) (see [13, Lemma 2.4]) and since Z(f) is finite, we obtain
that

S =
N∑

k=1

M∑

n=0

λk,n δ(n)
zk

where Z(f) = {zk, k ∈ J1, NK} ⊂ T, λk,n ∈ C and where δ(n)
zk

is the nth derivative of the
Dirac delta measure concentrated at the point zk.

Suppose that S 6= 0. There exist k0 and n0 such that λk0,n0
6= 0. We define

T =
N∏

k=1
k 6=k0

(z − zk)M+1 S.
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So T ∈ Aq
−β(T) and T 6= 0. Hence there exists (cn) ∈ CM+1 such that for every test

function ϕ ∈ D(T),

〈T, ϕ〉 = 〈S,
N∏

k=1
k 6=k0

(z − zk)M+1ϕ〉 =
M∑

n=0

λk0,n cn ϕ(n)(zk0
).

If we denote n1 = max{n, cnλk0,n 6= 0}, then we have for all l ∈ Z

|〈T, zl〉| =

∣∣∣∣∣
N∑

n=0

λk0,n cn (il)nzl
k0

∣∣∣∣∣ ∼
l→∞

|λk0,n1
| |cn1

||l|n1

(here zl = eilθ). This is not possible since T ∈ Aq
−β(T) and βq ≤ 1. �

Lemma 4.6. Let 1 < p ≤ 2 and β ≥ 0 such that βq ≤ 1 where 1/p+1/q = 1. If f ∈ Ap
β(T)

is cyclic in Ap
β(T) and if P ∈ P(T) is not zero then P f is cyclic in Ap

β(T).

Proof. Let ε > 0. By Lemma 4.5, P is bicyclic in Ap
β(T) since Z(P ) is finite. So there

exists P1 ∈ P(T) such that ‖1 − P1P ‖Ap

β
< ε. Moreover since f is bicyclic, there exists

P2 ∈ P(T) such that

‖1 − P2f‖Ap

β
<

ε

‖P1P ‖A1

β

.

Therefore we have

‖1 − P1P2P f‖Ap

β
≤ ‖1 − P1P ‖Ap

β
+ ‖P1P ‖A1

β
‖1 − P2f‖Ap

β
< 2ε.

So P f is bicyclic in Ap
β(T).

Moreover, since f is cyclic in Ap
β(T), there exists Q ∈ P+(T) such that ‖f − zQf‖Ap

β
<

ε
‖P ‖

A1

β

. So we have

‖P f − zQP f‖Ap

β
≤ ‖P ‖A1

β
‖f − zQf‖Ap

β
< ε.

Hence, by Proposition 2.1, P f is cyclic in Ap
β(T). �

Theorem 4.7. Let 1 < p ≤ 2 and β ≥ 0 such that βq ≤ 1 where 1/p + 1/q = 1. The set
of cyclic vectors in Ap

β(T) is a dense Gδ subset of Ap
β(T).

Proof. Let ε > 0. We consider the set

Gε = {g ∈ Ap
β(T), ∃P ∈ P(T), ∃Q ∈ P+(T), ‖1 − P g‖Ap

β
< ε and ‖g − zQg‖Ap

β
< ε}.

To use a Baire Category argument, we will show that

(i)
∞⋂

n=1
G1/n = {f ∈ Ap

β(T) cyclic in Ap
β(T)},

(ii) for ε > 0, Gε is an open subset of Ap
β(T),

(iii) for ε > 0, Gε is a dense subset of Ap
β(T).
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(i): Let g ∈ Ap
β(T) such that for all n ∈ N, there exist Pn ∈ P(T) and Qn ∈ P+(T)

satisfying ‖1 − Png‖Ap

β
< 1/n and ‖g − zQng‖Ap

β
< 1/n. By Proposition 2.1, g is cyclic in

Ap
β(T). The other inclusion is clear.

(ii) follows from the fact that, for f ∈ A1
β(T) and g ∈ Ap

β(T),

‖fg‖Ap

β
≤ ‖f‖A1

β
‖g‖Ap

β
.

(iii): Since for ε > 0, {f ∈ Ap
β(T) cyclic in Ap

β(T)} ⊂ Gε, we will show that {f ∈
Ap

β(T) cyclic in Ap
β(T)} is dense in Ap

β(T). Let h ∈ Ap
β(T) and η > 0 such that η < ‖h‖Ap

β
.

Consider f ∈ Ap
β(T) which is cyclic in Ap

β(T). So there exists a non-zero polynomial
P ∈ P+(T) such that ‖h−P f‖Ap

β
< η and by Lemma 4.6, P f is cyclic in Ap

β(T). Therefore

this shows that Gε is dense in Ap
β(T). �
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[12] T.W. Körner, A pseudofunction on a Helson set, I and II, Astérisque 5, Soc. Math. France (1973)
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