Combinatorics for general kinetically constrained spin models - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2020

Combinatorics for general kinetically constrained spin models

Résumé

We study the set of possible configurations for a general kinetically constrained model (KCM), a non monotone version of the U-bootstrap percolation cellular automata. We solve a combinatorial question that is a generalization of a problem addressed by Chung, Diaconis and Graham in 2001 for a specific one–dimensional KCM, the East model. Since the general models we consider are in any dimension and lack the oriented character of the East dynamics, we have to follow a completely different route than the one taken by Chung, Diaconis and Graham. Our combinatorial result is used by Marêché, Martinelli and Toninelli to complete the proof of a conjecture put forward by Morris.
Fichier principal
Vignette du fichier
combrooted.pdf (471.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01567129 , version 1 (21-07-2017)
hal-01567129 , version 2 (15-07-2019)

Identifiants

Citer

Laure Marêché. Combinatorics for general kinetically constrained spin models. SIAM Journal on Discrete Mathematics, 2020, 34 (1), pp.370-384. ⟨10.1137/18M1231134⟩. ⟨hal-01567129v2⟩
249 Consultations
123 Téléchargements

Altmetric

Partager

More