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COMBINATORICS FOR GENERAL KINETICALLY CONSTRAINED SPIN MODELS

LAURE MARÊCHÉ

Abstract. We study the set of possible configurations for a general kinetically constrained model
(KCM), a non monotone version of the U-bootstrap percolation cellular automata. We solve a
combinatorial question that is a generalization of a problem addressed by Chung, Diaconis and
Graham in 2001 for a specific one–dimensional KCM, the East model. Since the general models we
consider are in any dimension and lack the oriented character of the East dynamics, we have to follow
a completely different route than the one taken by Chung, Diaconis and Graham. Our combinatorial
result is used by Marêché, Martinelli and Toninelli to complete the proof of a conjecture put forward
by Morris.

2010 Mathematics subject classification: Primary 60K35, Secondary 05C75.
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1. Introduction

In this article, we study a generalization of a combinatorial problem addressed by Chung, Diaconis and Graham
in [8], that can be formulated as follows. Fix N ∈ N and consider that any element of {−N, . . . , N} (we call them
sites) can be in state 0 or 1. The configuration of states can change with respect to the following rules: there
cannot be two state changes at the same time, and the state of a site can change only if its left neighbor is in state
zero. We consider that the sites outside {−N, . . . , N} have state 0. One of the questions tackled in [8] is: if the
initial configuration contains only ones in {−N, . . . , N} and if there can only be n zeroes in {−N, . . . , N} at the
same time, is it possible to place a zero at the origin with these rules ? Chung, Diaconis and Graham proved that
it is possible if and only if N ≤ 2n− 2: the bigger N is, the bigger n has to be (a non rigorous version of this proof
was given previously by Sollich and Evans in [15]).

This problem was motivated by the study of the East model [9], a stochastic particle system defined as follows:
each site of Z can be in state 0 or 1, and is updated (independently) at rate one by setting it to 0 with probability
q and to 1 with probability 1− q, if and only if its left neighbor is at zero. Indeed, the above combinatorial result
is one of the key ingredients to determine the relevant time scales for the East dynamics [1, 6]. The East model
belongs to a more general class of interacting particle systems, called kinetically constrained models (KCM), that
were introduced by physicists to model the liquid/glass transition, an important open problem of condensed matter
physics (see for example [14, 3] for reviews). In order to construct a different KCM, we use the same dynamics
as for East, but with a different choice of the constraint that has to be satisfied to update a site. For example, if
one allows a site to change state when its left or its right neighbor is at 0 (this is the choice corresponding to the
so-called Fredrickson-Andersen one spin facilitated model (FA1f)), the behavior is entirely different: for any value
of N , two zeroes at the same time are always enough to reach the origin. Indeed, we can put the site −N at 0,
then put −N + 1 at 0, then put −N at 1, put −N + 2 at 0, put −N + 1 at 1, etc. and we end up reaching the
origin, using never more than two zeroes at the same time.

In this article, we study a generalization of the combinatorial problem of Chung, Diaconis and Graham in higher
dimension and with totally general rules. Though our motivation comes from the study of KCM, we stress that the
content of this paper is purely deterministic and requires no probabilistic tools. Let us give a precise definition of
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the class of rules that we address. We set d ∈ N∗, N ∈ N; any site of {−N, . . . , N}d can be in state 0 or 1. There
cannot be two state changes at the same time, and the state of a site s can change only if there exists X ∈ U such
that all the sites of s + X are in state 0, where U = {X1, . . . , Xm} with m ∈ N∗ and the Xi are finite nonempty
subsets of Zd \ {0} (U is called an update family and the Xi are called update rules). As before, the sites outside
{−N, . . . , N}d are considered to be in state 0. The rules of the East model correspond to d = 1 and U = {{−1}},
and those of the FA1f model to d = 1 and U = {{−1}, {1}}. If the initial configuration contains only ones in
{−N, . . . , N}d and if there can only be n zeroes in {−N, . . . , N}d at the same time, is it possible to place a zero
at the origin ?

This generalization has become interesting in recent years. Indeed, until a few years ago, only specific update
families had been studied in KCM. However, there recently was a breakthrough in the study of a monotone
deterministic counterpart of KCM called bootstrap percolation. For any update family U of Zd, the associated
bootstrap percolation process is defined as follows: we choose a set A ⊂ Zd of sites that we consider as intially
infected (the equivalent of being at zero), we set A0 = A, and for any t ∈ N∗ we define the set At of sites that are
infected at time t by

At = At−1 ∪ {s ∈ Zd | ∃X ∈ U , s+X ⊂ At−1},
which means that at each time t ∈ N∗, the sites that were infected at time t − 1 remain infected at time t and a
site s that was not infected at time t− 1 becomes infected at time t if and only if there exists X ∈ U such that all
the sites of s+X are infected at time t− 1.

The articles [5] by Bollobás, Smith and Uzzell and [2] by Balister, Bollobás, Przykucki, and Smith tackled
general update families for the first time and proved a beautiful universality result. They showed that in Z2, the
update families can be sorted into three classes (whose definitions are too technical to be given in this introduction):
subcritical, critical and supercritical, which have different behaviors that we are going to describe. The first natural
question for a bootstrap percolation model is: if we start the process with each site having probability q to be
infected, independently of the others, will the process infect the origin with probability 1 or is there a positive
probability that the origin is never infected even if we wait for an infinite time ? Moreover, what will be the
scale of the first time at which the origin is infected (often called infection time) ? Since bootstrap percolation is
monotonic (the more infection we have at the beginning, the more we will have at any stage), it can be seen that
there exists a critical probability qc ∈ [0, 1] such that if q < qc, the origin is never infected with positive probability
and if q > qc the origin is infected with probability 1. [5, 2] showed that when U is subcritical, qc > 0, and when
U is critical or supercritical, qc = 0. Moreover, they proved that when q tends to zero, the infection time scales
as 1/qΘ(1) when U is supercritical and as exp(1/qΘ(1)) when U is critical (the latter result was later refined by
Bollobás, Duminil-Copin, Morris, and Smith in [4]).

These results call for the study of KCM with general update families. As in bootstrap percolation, a key
quantity for the study of KCM is the first time at which the origin is at zero when the process starts with all sites
independently at zero with probability q; we denote its mean by τ(q). Understanding the divergence of τ(q) when
q tends to qc is particularly relevant, because the critical regime q ↓ qc is the most interesting for physicists. An
easy result proven by Martinelli and Toninelli in [12] shows that the infection time in the bootstrap percolation
process is a lower bound for τ(q). However, this lower bound does not always give the actual behavior. Indeed,
for the East model, the infection time in the bootstrap percolation scales as 1/qΘ(1) when q tends to 0, but the
results of Aldous and Diaconis [1] and Cancrini, Martinelli, Roberto and Toninelli [6] proved that τ(q) scales as
exp(Θ(log(1/q)2)) when q tends to 0. This lead Morris to formulate conjectures on the scaling of τ(q) when q tends
to zero for critical and supercritical update families. His conjecture for supercritical update families (conjecture
2.7 of [13]) is that they should be divided in two subclasses: supercritical unrooted update families for which τ(q)

has the same scaling as the bootstrap percolation infection time, that is 1/qΘ(1), and supercritical rooted update
families for which τ(q) has the same scaling as the East model, exp(Θ(log(1/q)2)). Part of this conjecture was
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proven: the lower bound for supercritical unrooted update families is given by the bootstrap percolation lower
bound of [12], and the upper bound for supercritical update families both unrooted and rooted was proven by
Martinelli, Morris and Toninelli in [11]. However, the lower bound for supercritical rooted update families was still
missing. Since a lower bound matching this behavior for the East model was proven in [7] using the combinatorial
result of [8], we seeked to generalize this combinatorial result to all supercritical rooted update families.

Indeed, we establish the following result (theorem 4): if U is a supercritical rooted update family, if we start
with all the sites of {−N, . . . , N}2 at state 1 and if we allow only n zeroes at the same time in {−N, . . . , N}2,
then to be able to put a zero at the origin, it is necessary to have N = O(n2n). This result is almost optimal,
since [8] proved that for the East model, which is supercritical rooted, N = 2n − 2 allows to put a zero at the
origin. Actually, our result is valid in an even larger class, namely for all update families that are not supercritical
unrooted. Furthermore, in proposition 6 we also explain why our hypothesis is not restrictive, namely why such
a result is not valid for supercritical unrooted update families. Our result allows us to complete the proof of the
conjecture of Morris (with respect to τ(q)), which we do in theorem 4.2 of [10] with Martinelli and Toninelli.
Our result proves even more, since it is valid in any dimension for a natural generalization of the definition of
supercritical unrooted update families.

Though we generalize the result of [8], our proof is completely different from theirs, as the proof of [8] relies
heavily on the orientation of the East model and the general update families completely lack orientation. Note
that even in dimension 1, it is a substantial generalization of the result of [8], because it applies to a whole class
of update families instead of just the East model.

We begin this article by giving the notations and stating the results, then we detail the proof of the result for
one-dimensional supercritical rooted update families, then we explain how this proof extends to general dimension,
and finally we examine the supercritical unrooted case.

2. Notations and result

We fix d ∈ N∗ and set an update family U = {X1, . . . , Xm} with the Xi finite nonempty subsets of Zd \ {0}.
Set Λ ⊂ Zd. We consider the configurations of states in Λ; they belong to the set {0, 1}Λ. We denote by 1Λ the
configuration which contains only ones in Λ, and by 0Λ (or just 0) the configuration which contains only zeroes in
Λ. Furthermore, for all η ∈ {0, 1}Λ, s ∈ Λ, we use the notation ηs for the configuration in {0, 1}Λ that is η apart
from the state of s that is flipped: (ηs)s′ = 1− ηs if s′ = s and ηs′ if s′ 6= s. Moreover, if Λ′ ⊂ Λ and η ∈ {0, 1}Λ,
we denote by ηΛ′ its restriction to Λ′. In addition, if Λ′ ⊂ Zd is disjoint from Λ, for all η ∈ {0, 1}Λ, η′ ∈ {0, 1}Λ′ ,
we denote by ηΛη

′
Λ′ the configuration on Λ ∪ Λ′ defined by (ηΛη

′
Λ′)s = ηs if s ∈ Λ and (ηΛη

′
Λ′)s = η′s if s ∈ Λ′.

We say that a move from η ∈ {0, 1}Λ to η′ ∈ {0, 1}Λ is legal if η′ = η, or if η′ = ηs with s ∈ Λ and there exists
an update rule X ∈ U such that (ηΛ0Λc)s+X = 0s+X (we may also write (ηΛ)s+X = 0 to simplify the notation);
that is, a move is legal if it respects the rules described in the introduction, assuming that all sites outside of Λ
are zeroes.

Definition 1. If η, η′ ∈ {0, 1}Λ, a legal path from η to η′ is a sequence of configurations (ηj)0≤j≤m such that
m ∈ N∗, η0 = η, ηm = η′, and for all j ∈ {0, . . . ,m− 1}, the move from ηj to ηj+1 is legal.
For any n ∈ N, we say that (ηj)0≤j≤m is an n-legal path if for all j ∈ {0, . . . ,m}, ηj does not contain more than n
zeroes in Λ.

In order to have lighter notation, we use the same notation ηj for the j-th step of a path and for the configuration
that is equal to η everywhere except at site j. In order to avoid confusion, η0, ηj , ηj+1 and ηm will always denote
a step of a path, and no other index will be used to describe a step of a path.

For all n ∈ N, we define

V (n,Λ) = {η ∈ {0, 1}Λ | there exists an n-legal path from 1Λ to η}.
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V (n,Λ) is the set of configurations of {0, 1}Λ that are attainable from the configuration containing only ones using
at most n zeroes. V (n,Λ) will be very different depending on the properties of U . In this article, we will distinguish
between two classes of update families. To define them, we recall the concept of stable direction introduced in [5]:

Definition 2. For any u ∈ Sd−1, let Hu = {x ∈ Rd | 〈x, u〉 < 0} the half-space with boundary orthogonal to u.
We say that u is a stable direction for the update family U when there does not exist X ∈ U such that X ⊂ Hu.

This implies in particular that if we apply the rules in Zd with the update family U , and if we start with
only ones in (Hu)c, then no zero can appear in (Hu)c. Intuitively, it means that the zeroes cannot move towards
direction u. The following definition is an extension to the dimension d of the definition proposed in [13]:

Definition 3. We say that U is supercritical unrooted if there exists a hyperplane of Rd that contains all stable
directions of U .

An example of supercritical unrooted update family is the one corresponding to the Fredrickson-Andersen
one spin facilitated model, whose one-dimensional version was presented in the introduction, for which U =
{{e1}, . . . , {ed}, {−e1}, . . . , {−ed}} where {e1, . . . , ed} is the canonical basis of Rd. This update family has no
stable directions at all.

We are now ready to state our main result, theorem 4, which is valid for all update families that are not
supercritical unrooted. This actually covers many different behaviors; in particular, in two dimensions, according
to the classification in [5] they include: supercritical update families which have two non opposite stable directions
(called supercritical rooted in [13]), critical and subcritical update families.

Theorem 4. Let U be any update family that is not supercritical unrooted. There exists a constant κ > 0 such
that for any n ∈ N, every η ∈ V (n, {−bκn2nc, . . . , bκn2nc}d) satisfies η0 = 1.

Remark 5. Our theorem is stated for paths that are n-legal when all sites outside of the box {−bκn2nc, . . . , bκn2nc}d
are considered to be zeroes; it actually remains valid if we consider the n-legal paths for any configuration of the
states outside of the box. Indeed, if we consider that the sites outside of the box are not all zeroes, the possible
moves are more restricted, hence a legal path for such a configuration is also a legal path if there are zeroes outside
of the box.

The assumption that U is not supercritical unrooted in theorem 4 is not restrictive. Indeed, if U is supercritical
unrooted, the behavior is different:

Proposition 6. If d = 1 or 2, and if U is supercritical unrooted, there exists n ∈ N∗ such that for any domain
Λ ⊂ Zd containing the origin, there exists η ∈ V (n,Λ) such that η0 = 0.

Proposition 6 means that there exists a finite n such that n zeroes are always enough to bring a zero to the
origin. We expect this result to hold also for d ≥ 3. A sketch of proof can be found in section 5.

3. The one-dimensional case

Let U be a one-dimensional, non supercritical unrooted update family. Then U has at least one stable direction,
which can be 1 or -1. Without loss of generality, we may suppose that -1 is a stable direction. We denote r
the range of the interactions: r = max{‖x − y‖∞ |x, y ∈ X ∪ {0}, X ∈ U}. Moreover, for all n ∈ N, we write
an = r(2n − 1), bn = rn2n−1 and Pn = {−an, . . . , bn}.

We will prove theorem 4 by induction. For all n ∈ N, we denote

Hn = “for any Λ ⊂ Z such that Pn ⊂ Λ, for any η ∈ V (n,Λ), η0 = 1”.

Proving Hn for all n ∈ N will prove the theorem in the one-dimensional case.
In order to do that, we will need the
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0
Λ

Pn−1

Pn

Figure 1. Proof of the theorem in the one-dimensional case: there must be a zero in Λ \ Pn−1,
hence there can be at most n− 1 zeroes in Pn−1. Thus Hn−1 implies that there is no zero at 0.

Lemma 7. Let n ≥ 1 and suppose Hn−1. Then, for all Λ ⊂ Z such that Pn ⊂ Λ, for all η ∈ V (n,Λ) \ {1Λ}, η has
at least one zero in Λ \ Pn−1.

This lemma means that if Hn−1 holds, in a large enough interval, any configuration attainable using no more
than n zeroes must have one of its zeroes outside of Pn−1 (except the configuration containing only ones, that has
no zero at all). This implies that there are at most n− 1 zeroes in Pn−1, which will allow us to use Hn−1 to prove
that the origin cannot be reached by zeroes (see figure 1).

We first prove the theorem supposing lemma 7 holds; we will prove the lemma afterwards. As we announced,
we will show by induction that Hn holds for any n ∈ N.

Case n=0. This is a simple case: if Λ ⊂ Z, P0 ⊂ Λ and η ∈ V (0,Λ), then η contains no zero.
Induction. Let n ≥ 1. We suppose Hn−1. Let us show Hn. Let Λ ⊂ Z such that Pn ⊂ Λ, and η ∈ V (n,Λ).
By definition, there exists an n-legal path (ηj)0≤j≤m from 1Λ to η. We will prove that (ηjPn−1

)0≤j≤m is an
(n− 1)-legal path from η0

Pn−1
= 1Pn−1 to ηmPn−1

= ηPn−1 .
Firstly, for all j ∈ {0, . . . ,m− 1}, the move from ηjPn−1

to ηj+1
Pn−1

is legal. Indeed, if ηj+1 = ηj or if ηj+1 = (ηj)z

with z ∈ Λ \ Pn−1, η
j+1
Pn−1

= ηjPn−1
and the move from ηj+1

Pn−1
to ηjPn−1

is legal. Furthermore, if ηj+1 = (ηj)z

with z ∈ Pn−1, η
j+1
Pn−1

= (ηjPn−1
)z, and since the move from ηj to ηj+1 is legal, there exists X ∈ U such that

(ηjΛ0Λc)z+X = 0, which implies (ηjPn−1
0(Pn−1)c)z+X = 0, hence the move from ηjPn−1

to ηj+1
Pn−1

is legal. Therefore
(ηjPn−1

)0≤j≤m is a legal path.
Moreover, for all j ∈ {0, . . . ,m}, ηjPn−1

contains at most n − 1 zeroes. Indeed, if ηj = 1Λ, then η
j
Pn−1

contains
no zero at all. In addition, if ηj 6= 1Λ, then ηj ∈ V (n,Λ) \ {1Λ}, and since we suppose Hn−1, we can apply lemma
7, which yields that ηj has at least one zero in Λ \ Pn−1, hence η

j
Pn−1

contains at most n− 1 zeroes.
It follows that (ηjPn−1

)0≤j≤m is an (n − 1)-legal path from 1Pn−1 to ηPn−1 . Thus ηPn−1 ∈ V (n − 1,Pn−1).
Consequently, by Hn−1, η0 = 1, which proves Hn.

This ends the proof of theorem 4 given lemma 7, so we are only left to prove lemma 7.

Proof of lemma 7. Let n ≥ 1 and Λ ⊂ Z be such that Pn ⊂ Λ.
We will consider a configuration η ∈ {0, 1}Λ, different from 1Λ, containing at most n zeroes, such that all of its

zeroes are in Pn−1, and we will show that η 6∈ V (n,Λ); this is enough to prove the lemma.
We begin by noticing that if there does not exist an n-legal path from η to 1Λ, then η 6∈ V (n,Λ). Indeed, if

η ∈ V (n,Λ), there exists an n-legal path (ηj)0≤j≤m from 1Λ to η, and one can check that (ηm−j)0≤j≤m is an n-legal
path from η to 1Λ. Therefore, to prove that η 6∈ V (n,Λ), it is enough to show that there is no n-legal path from η
to 1Λ. In order to do that, we let (ηj)0≤j≤m be an n-legal path with η0 = η. We are going to show that ηm cannot
be 1Λ.
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Λ
C B Pn−1 D1 B C

D′1D

Pn

an−1 r an−1 bn−1
an−1 r bn−10−an bn

Figure 2. The setting of lemma 7.

To this end, we will denote (see figure 2):

B ={−an + an−1, . . . ,−an + an−1 + r − 1} ∪ {bn − (bn−1 + r) + 1, . . . , bn − bn−1},
D ={−an + an−1 + r, . . . , bn − (bn−1 + r)},
D1 ={bn − (bn−1 + an−1 + r) + 1, . . . , bn − (bn−1 + r)},
D′1 ={bn − (bn−1 + an−1 + r) + 1, . . . , bn}

and C = Λ \ (B ∪D) (if n = 1, D1 will be empty).
We notice that

−an + an−1 + r = −r(2n − 1) + r(2n−1 − 1) + r = −r2n−1 + r = −r(2n−1 − 1) = −an−1

and

bn − (bn−1 + an−1 + r) = rn2n−1 − (r(n− 1)2n−2 + r(2n−1 − 1) + r) = rn2n−2 − r2n−2 = r(n− 1)2n−2 = bn−1

hence Pn−1 = {−an + an−1 + r, . . . , bn − (bn−1 + an−1 + r)} = D \D1.
B will be a “buffer zone”: we will prove that it remains full of ones and prevents the zeroes of C and D from

interacting.
There will always be a zero in Pn−1, because the leftmost zero z in Pn−1 would need an update rule full of zeroes
to disappear. However, there is no zero in B and the thickness of B is larger than the range of the interactions,
hence this update rule cannot use zeroes in B or at the left of B. Thus it can use only zeroes in Pn−1 or at the
right of Pn−1, but z is the leftmost zero in Pn−1. Therefore, the update rule would have to be completely contained
in the right of z, which is impossible since we assumed that -1 was a stable direction, hence there is no update
rule contained in N∗. Hence the leftmost zero in Pn−1 cannot disappear, thus there will always be a zero in Pn−1,
which implies ηm 6= 1Λ.

More rigorously, we are going to prove by induction on j ∈ {0, . . . ,m} that the property H′j holds, where H′j
consists in:

(P j
1 ) ηjPn−1

contains a zero.
(P j

2 ) ηjB = 1B.
(P j

3 ) ηjC1Λ\C ∈ V (n− 1,Λ).
(P j

4 ) ηjD1
1D′1\D1

∈ V (n− 1, D′1).
The last two properties will be used to show that B remains full of ones.

If we can show H′j for all j ∈ {0, . . . ,m}, in particular (Pm
1 ) will imply that there is a zero in ηmPn−1

, thus
ηm 6= 1Λ, which is enough to prove the lemma.

Let us prove H′j for all j ∈ {0, . . . ,m}.
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Case j = 0.
(P 0

1 ) is true, because η0 = η 6= 1Λ, so η contains at least a zero, and by assumption all zeroes of η are in Pn−1.
(P 0

2 ) is true because η0 = η has no zero in Λ \ Pn−1. (P 0
3 ) is true because C ⊂ Λ \ Pn−1, thus ηC = 1C , hence

η0
C1Λ\C = 1Λ ∈ V (n − 1,Λ). (P 0

4 ) is true, because D1 ⊂ Λ \ Pn−1, thus η0
D1

1D′1\D1
= 1D′1 ∈ V (n − 1, D′1).

Consequently, H′0 holds.
Induction.

Let j be in {0, . . . ,m− 1}. We suppose that H′j holds. Let us show H′j+1.
We know that the move from ηj to ηj+1 is legal. If ηj+1 = ηj , H′j+1 holds because H′j holds. In the following,

we deal with the case ηj+1 = (ηj)z where z ∈ Λ and there exists X ∈ U with (ηjΛ)z+X = 0. The arguments will
depend on the position of z.

Case z ∈ B.
We will show that z ∈ B is impossible: the buffer zone remains preserved at step j + 1.

By (P j
2 ) ηjB = 1B, hence z+X ⊂ C∪Λc∪D. Moreover, if there existed x ∈ (z+X)∩(C∪Λc) and y ∈ (z+X)∩D,

then we would get |x− y| > r, which is impossible by the definition of r. Therefore z+X ⊂ C ∪Λc or z+X ⊂ D.
We are going to deal with the two cases separately.

We begin with the case z +X ⊂ C ∪ Λc.
We are going to prove that in this case, (ηjC1Λ\C)z would be in V (n− 1,Λ), which is impossible because it has a
zero at z and z + Pn−1 ⊂ Λ, therefore Hn−1 and the invariance by translation of Z yield a contradiction. Indeed,
the move from ηjC1Λ\C to (ηjC1Λ\C)z would be legal. In addition, (ηjC1Λ\C)z would coincide with ηj+1 on C ∪B by
(P j

2 ). Moreover, ηj+1 contains at most n zeroes, and ηj+1
Pn−1

= ηjPn−1
would contain at least a zero by (P j

1 ), hence
ηj+1 contains at most n− 1 zeroes in C ∪B, thus (ηjC1Λ\C)z would contain at most n− 1 zeroes. Furthermore by
(P j

3 ), ηjC1Λ\C ∈ V (n − 1,Λ). Therefore we could extend an (n − 1)-legal path from 1Λ to ηjC1Λ\C by adding the
move from ηjC1Λ\C to (ηjC1Λ\C)z and still have an (n− 1)-legal path, which would imply (ηjC1Λ\C)z ∈ V (n− 1,Λ),
which is impossible.

We now deal with the case z +X ⊂ D.
We argue differently depending on the position of z.

• If z is in the left part of B, we can use the fact that -1 is a stable direction. Indeed, z+X would be at the
right of z, hence X would be contained in N∗, which yields a contradiction.
• If z is in the right part of B, we can use an argument similar to the one we used to deal with the case
z + X ⊂ C ∪ Λc: (ηjD1

1D′1\D1
)z would be in V (n − 1, D′1), which is impossible because it has a zero at z

and z + Pn−1 ⊂ D′1, so by Hn−1 there is a contradiction. Indeed, z + X would be contained in D which
is disjoint from D′1 \ D1, hence the move from ηjD1

1D′1\D1
to (ηjD1

1D′1\D1
)z would be legal. Furthermore,

(ηjD1
1D′1\D1

)z would coincide with ηj+1 on D1 ∪ B, hence would contain at most n − 1 zeroes, and by
(P j

4 ) ηjD1
1D′1\D1

∈ V (n − 1, D′1). This would allow us to deduce (ηjD1
1D′1\D1

)z ∈ V (n − 1, D′1), which is
impossible.

We deduce that z +X ⊂ D is impossible.
Consequently, z ∈ B is impossible.
Case z ∈ C.

If z ∈ C, (P j+1
1 ) is true because ηj+1

Pn−1
= ηjPn−1

, (P j+1
2 ) is true because ηj+1

B = ηjB, and (P j+1
4 ) is true because

ηj+1
D1

= ηjD1
. The argument to prove (P j+1

3 ) is almost the same as the one that yielded (ηjC1Λ\C)z ∈ V (n − 1,Λ)
in the case z ∈ B and z + X ⊂ C ∪ Λc. We observe that as z ∈ C, we have z + X ⊂ Λc ∪ C ∪ B, and since
(P j

2 ) implies ηjB = 1B, we get z + X ⊂ Λc ∪ C, so the move from ηjC1Λ\C to ηj+1
C 1Λ\C is legal. Furthermore,
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ηj+1
C 1Λ\C contains at most n − 1 zeroes, and by (P j

3 ) we have ηjC1Λ\C ∈ V (n − 1,Λ). This allows us to conclude
that ηj+1

C 1Λ\C ∈ V (n− 1,Λ), which is (P j+1
3 ). Consequently, H′j+1 holds.

Case z ∈ D.
If z ∈ D, (P j+1

2 ) is true because ηj+1
B = ηjB, and (P j+1

3 ) is true because ηj+1
C = ηjC .

Let us prove (P j+1
1 ).

If z ∈ D1, then ηj+1
Pn−1

= ηjPn−1
, hence (P j+1

1 ) is true. We now suppose z ∈ Pn−1. We prove (P j+1
1 ) using the

fact that -1 is a stable direction. Indeed, it implies that X is not contained in N∗, hence since X cannot contain
0, it contains an element of −N∗, thus there exists z′ ∈ z + X with z′ < z. In addition, as z ∈ Pn−1 we have
X ⊂ D ∪ B, and since by (P j

2 ) ηjB = 1B, we get z + X ⊂ D, therefore z′ ∈ D. Since z′ < z, z′ ∈ Pn−1, and we
have ηj+1

z′ = ηjz′ = 0. Consequently ηj+1
Pn−1

contains a zero, hence (P j+1
1 ) is true.

Now let us prove (P j+1
4 ).

If z ∈ Pn−1, then η
j+1
D1

= ηjD1
, hence (P j+1

4 ) is true. In the case z ∈ D1, we will prove (P j+1
4 ) with the arguments

that gave (ηjD1
1D′1\D1

)z ∈ V (n− 1, D′1) in the case z ∈ B and z +X ⊂ D. Since z ∈ D1, z +X ⊂ D ∪ B, and as
(P j

2 ) implies ηjB = 1B we get z + X ⊂ D, thus the move from ηjD1
1D′1\D1

to ηj+1
D1

1D′1\D1
is legal, which allows to

prove ηj+1
D1

1D′1\D1
∈ V (n− 1, D′1). Therefore (P j+1

4 ) is true.
This yields that H′j+1 holds.
To conclude, H′j+1 holds in all cases, which ends the proof of the lemma. �

4. The general case

The reasoning to prove theorem 4 in general dimension is the same as in dimension 1. However, the geometry
is significantly more complicated, which will force us to introduce new notation.

Let U be a non supercritical unrooted update family. We will need the

Lemma 8. There exists u1, . . . , ud ∈ Sd−1 stable directions for U and a normalized basis {v1, . . . , vd} of Rd such
that for any i ∈ {1, . . . , d}, Hui = {(x1, . . . , xd) ∈ Rd |xi > 0} in this basis.

To construct this basis, one takes vi orthogonal to all uj with j 6= i. A rigorous proof of the construction may
be found in the appendix. From now on, we will use the coordinates of the basis {v1, . . . , vd}, but when we say a
site is in Zd, we will mean that its coordinates in the canonical basis are integers. For any i ∈ {1, . . . , d}, since
ui is a stable direction, there is no update rule contained in Hui , hence no update rule such that all sites have a
positive i-th coordinate.

We denote again by r the range of the interactions: r = max{‖x − y‖∞ |x, y ∈ X ∪ {0}, X ∈ U} (beware: the
range is now defined in our new basis), and for all n ∈ N, we set again an = r(2n − 1) and bn = rn2n−1. We now
have to define Pn as follows (see figure 3):

Pn = {s ∈ Zd | s = (s1, . . . , sd), ∀i ∈ {1, . . . , d},−an ≤ si ≤ bn}.
We will again prove the theorem by induction: for all n ∈ N, we denote

Hn = “for any Λ ⊂ Zd such that Pn ⊂ Λ, for any η ∈ V (n,Λ), η0 = 1”.

Proving Hn for all n ∈ N proves theorem 4. In order to do that, we need the following equivalent of lemma 7:

Lemma 9. Let n ≥ 1 and suppose Hn−1. Then, for all Λ ⊂ Zd such that Pn ⊂ Λ, for all η ∈ V (n,Λ) \ {1Λ}, η
has at least one zero in Λ \ Pn−1.

The proof of theorem 4 given lemma 9 is exactly the same as in the one-dimensional case, therefore it is enough
to prove lemma 9.
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Figure 3. Pn.

Proof of lemma 9. Let n ≥ 1 and Λ ⊂ Zd such that Pn ⊂ Λ.
As in the one-dimensional case, we consider a configuration η ∈ {0, 1}Λ, different from 1Λ, containing at most

n zeroes, such that all of its zeroes are in Pn−1, and we prove that η 6∈ V (n,Λ). As previously, it is enough to let
(ηj)0≤j≤m be an n-legal path with η0 = η, and to show that ηm cannot be 1Λ.

To this end, we denote for all i ∈ {1, . . . , d} (see figure 4):

D = {s ∈ Zd | s = (s1, . . . , sd),∀j ∈ {1, . . . , d},−an + an−1 + r ≤ sj ≤ bn − (bn−1 + r)},

B = {s ∈ Zd | s = (s1, . . . , sd),∀j ∈ {1, . . . , d},−an + an−1 ≤ sj ≤ bn − bn−1} \D,
Di = {s ∈ D | s = (s1, . . . , sd), si > bn − (bn−1 + an−1 + r)},
D′i = {s ∈ Pn | s = (s1, . . . , sd), si > bn − (bn−1 + an−1 + r)}

and C = Λ\(B∪D). We also notice that as in dimension 1, −an+an−1+r = −an−1 and bn−(bn−1+an−1+r) = bn−1,
hence

Pn−1 = {s ∈ Zd | s = (s1, . . . , sd),∀j ∈ {1, . . . , d},−an + an−1 + r ≤ sj ≤ bn − (bn−1 + an−1 + r)}

thus Pn−1 = D \ (
⋃d

i=1Di).
As in the one-dimensional case, B will be a buffer zone preventing the zeroes of C and D from interacting. In

that case, the main reason for which no zero could appear in B was that a zero remained trapped in Pn−1, hence
there were at most n− 1 zeroes elsewhere, and Hn−1 limited their possible positions.
Here we cannot keep a zero in Pn−1, but we can keep a zero in all the D \Di. Indeed, initially there is at least
a zero in Pn−1 ⊂ D \Di, and at any time, a zero of D \Di with the lowest i-th coordinate among the zeroes of
D \Di will need an update rule full of zeroes in order to disappear, hence a zero with a i-th coordinate as low as
its own because there is no update rule whose sites all have positive i-th coordinate (this is the reason for which
we work in the basis {v1, . . . , vd}). This zero cannot be in B since B remains full of ones, hence it is in D \Di and
so remains in D \Di at the next step of the path.
This will have the same practical consequences as the zero trapped in Pn−1 had in the one-dimensional case: the
presence of a zero in each of the D \Di prevents ηm from being 1Λ; the n− 1 zeroes that any of the Di, or C, may
contain will not escape the Di or C. Moreover, for any i ∈ {1, . . . , d}, the argument that in dimension 1 prevented
the zeroes of Pn−1 from escaping to the left part of B because there were no update rule contained in N∗ will here
prevent zeroes from escaping D via the face with the lowest i-th coordinate to enter B, since there is no update
rule whose sites all have positive i-th coordinates. Therefore the buffer zone B will be preserved.
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Λ

C

B

×0

Pn−1

D

D1

D2

D′1

D′2

Pn

an−1 r an−1 bn−1
an−1 r bn−1

Figure 4. The setting of lemma 9. C is in light gray, D1 and D2 are in darker gray, D is the
region with the thick outline.

The details of the proof are very similar to those of the proof of lemma 7, therefore we only detail the changes.
We have to change the induction hypothesis H′j , which becomes:

(P j
1 ) For all i ∈ {1, . . . , d}, ηjD\Di

contains a zero.

(P j
2 ) ηjB = 1B.

(P j
3 ) ηjC1Λ\C ∈ V (n− 1,Λ).

(P j
4 ) For all i ∈ {1, . . . , d}, ηjDi

1D′i\Di
∈ V (n− 1, D′i).

When proving the induction, the more complicated geometry forces us to refine the proof of the fact that the
case z ∈ B and z + X ⊂ D is impossible. Since z ∈ B, if we denote by (z1, . . . , zd) the coordinates of z, there
would exist i ∈ {1, . . . , d} such that zi < −an + an−1 + r (z is “at the left of B for the i-th coordinate”) or
zi > bn − (bn−1 + r) (z is “at the right of B for the i-th coordinate”).

• If zi < −an + an−1 + r, we notice that z + X ⊂ D would imply that X ⊂ {(x1, . . . , xd) ∈ Rd |xi > 0},
which is impossible because there is no update rule whose sites all have a positive i-th coordinate.
• If zi > bn− (bn−1 + r), we can use the same argument as in dimension 1 with Di replacing D1, which yields
a contradiction.

We deduce a contradiction in both cases, therefore z +X ⊂ D is indeed impossible.
Finally, the proof of (P j+1

1 ) when z ∈ D also deserves a refinement. We set i ∈ {1, . . . , d}, let us prove that
ηj+1
D\Di

contains a zero. If z ∈ Di, then η
j+1
D\Di

= ηjD\Di
, hence by (P j

1 ) ηj+1
D\Di

contains a zero. If z ∈ D \Di, we use
the fact that X cannot be contained in {(x1, . . . , xd) ∈ Rd |xi > 0}, hence there exists a site z′ ∈ z +X such that
the i-th coordinate of z′ is less than or equal to the i-th coordinate of z. Moreover, we observe that z+X ⊂ D∪B,
and by (P j

2 ) ηjB = 1B, thus z +X ⊂ D, so z′ ∈ D. Since the i-th coordinate of z′ is less than or equal to the i-th
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••◦ • ◦
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◦

••
s′
◦ • •

s
◦
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s′
◦ • • ◦

I

I

Figure 5. A move towards the right of an interval I of zeroes for a one-dimensional supercritical
unrooted update family. Zeroes are represented by • and ones by ◦.

coordinate of z and z ∈ D \Di, z′ ∈ D \Di. Furthermore, we have ηj+1
z′ = ηjz′ = 0. Consequently, ηj+1

D\Di
contains

a zero. Therefore ηj+1
D\Di

contains a zero for all i ∈ {1, . . . , d}, hence (P j+1
1 ) is true. �

5. Sketch of the proof of proposition 6

For d = 1, if U is a supercritical unrooted family, it has no stable direction, therefore there must be an update
rule contained in N∗ and another contained in −N∗. Consequently, as illustrated by figure 5, if we have an interval
I ⊂ Z of zeroes that is sufficiently large, the site s at the right of I can be put at zero with a legal move. Then
the site s′ at the left of the interval can be put at one by a legal move, and I has moved to the right by one unit.
By having I starting from outside the domain (where there are only zeroes) and moving towards the origin in that
way, one can put the origin at zero using a bounded number of zeroes, whatever the size of the domain.

For d = 2 the mechanism is similar, but requires a more complex construction. In section 5 of [5] (see in
particular figure 5 and lemma 5.5 therein), it is proven that if U is an update family with a semicircle of unstable
directions centered on direction u, it is possible to construct a “droplet”: a finite set of zeroes that even if all other
sites are at 1, allows us to put more sites at zero in direction u with legal moves, creating a bigger droplet of the
same shape, as illustrated on part (a) of figure 6. It is the shape of the part of the droplet towards direction u
that enables its growth towards this direction. If U is supercritical unrooted, its stable directions are contained
in a hyperplane of R2, which means a straight line, hence there are at most two stable directions, and they must
then be opposite. Therefore, there exists two opposite semicircles containing no stable direction, with middles u
and −u. We can use the construction of [5] to build two droplets, corresponding to the two semicircles, that can
grow respectively in the directions u and −u (see part (b) of figure 6). Using these two droplets, we can get a
combined droplet that can grow in both directions u and −u (part (c) of figure 6). Moreover, since our rules allow
any change of site state to be reversed, the droplet will also be able to shrink in these directions. Therefore, by
having the droplet grow in direction u and shrink in direction −u, we can make it move towards direction u (see
part (d) of figure 6). This allows us to bring it to the origin using a bounded number of zeroes as we did with the
interval we had for d = 1.

For d ≥ 3, we expect a similar phenomenon to occur, but we cannot prove it because an equivalent of the
construction of [5] is not available yet.

Appendix: proof of lemma 8

By assumption, the update family U is not supercritical unrooted, hence its stable directions are not contained
in any hyperplane of Rd. Therefore, there exists stable directions u1, . . . , ud of U that form a basis of Rd. For any
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u

(a)

u −u

(b)

u−u

(c)

↓

↓

(d)

Figure 6. The construction of a droplet of zeroes for a two-dimensional supercritical unrooted
update family that can move towards u and −u. (a) The shape delimited by the solid line is
the droplet of [5], that can grow to the shape delimited by the dashed line. (b) The droplets
corresponding to the semicircles centered at u and −u. (c) The combined droplet. (d) A move of
the combined droplet to the right.

u ∈ Sd−1, we denote Hu the hyperplane orthogonal to u: Hu = {x ∈ Rd | 〈x, u〉 = 0}. Then, for any i ∈ {1, . . . , d},⋂
j 6=iHuj is a straight line.1 For any i ∈ {1, . . . , d}, we define vi as a unitary vector in

⋂
j 6=iHuj .

We are going to show that {v1, . . . , vd} is a basis of Rd. For any set of vectors {w1, . . . , wm} ⊂ Rd, we denote
Vect{w1, . . . , wm} the vector space generated by {w1, . . . , wm}. It is enough to prove that Vect{v1, . . . , vd} = Rd.
In order to do that, we take v ∈ Rd a vector orthogonal to Vect{v1, . . . , vd}. We are going to show that v must
be the null vector. For all i ∈ {1, . . . , d}, v is orthogonal to vi. Moreover, the vector space orthogonal to vi has
dimension d − 1. Furthermore, vi ∈

⋂
j 6=iHuj , hence the uj , j 6= i are orthogonal to vi. Hence, as the uj , j 6= i

are d − 1 linearly independent vectors, the vector space orthogonal to vi is Vect{u1, . . . , ui−1, ui+1, . . . , ud}. This
implies that v belongs to Vect{u1, . . . , ui−1, ui+1, . . . , ud}, for any i ∈ {1, . . . , d}. As {u1, . . . , ud} is a basis of Rd,
this yields v = 0. Consequently, the vector space orthogonal to Vect{v1, . . . , vd} is reduced to {0}. We deduce
Vect{v1, . . . , vd} = Rd, thus {v1, . . . , vd} is a basis of Rd.

We want a basis such that for any i ∈ {1, . . . , d}, Hui = {(x1, . . . , xd) ∈ Rd |xi > 0}. In {v1, . . . , vd},
{(x1, . . . , xd) ∈ Rd |xi = 0} is generated by the vectors v1, . . . , vi−1, vi+1, . . . , vd, which are d− 1 linearly indepen-
dent vectors belonging to the hyperplane Hui of Rd, hence they generate Hui . This implies Hui = {(x1, . . . , xd) ∈
Rd |xi = 0}. Therefore, Hui is either {(x1, . . . , xd) ∈ Rd |xi > 0} or {(x1, . . . , xd) ∈ Rd |xi < 0}. If Hui =
{(x1, . . . , xd) ∈ Rd |xi < 0}, we replace vi with −vi. Thus we get Hui = {(x1, . . . , xd) ∈ Rd |xi > 0}.

This method allows us to obtain a basis {v1, . . . , vd} satisfying that for any i ∈ {1, . . . , d}, ‖vi‖2 = 1 and
Hui = {(x1, . . . , xd) ∈ Rd |xi > 0}.
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1Indeed,
⋂

j 6=iHuj is the intersection of d − 1 hyperplanes in Rd, hence it contains a straight line. Furthermore,
⋂

j 6=iHuj is
orthogonal to the uj , j 6= i, and since {u1, . . . , ud} is a basis of Rd, {uj : j 6= i} generate a vector space of dimension d− 1. Therefore⋂

j 6=iHuj is orthogonal to a vector space of dimension d− 1. Consequently, it is at most a straight line.
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