Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2018

Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals

Résumé

Nonlinear eigenfunctions, induced by subgradients of one-homogeneous functionals (such as the 1-Laplacian), have shown to be instrumental in segmentation, clustering and image decomposition. We present a class of flows for finding such eigenfunctions, generalizing a method recently suggested by Nossek and Gilboa. We analyze the flows on grids and graphs in the time-continuous and time-discrete settings. For a specific type of flow within this class, we prove convergence of the numerical iterations procedure and prove existence and uniqueness of the time-continuous case. Several toy examples are provided for illustrating the theoretical results, showing how such flows can be used on images and graphs.
Fichier principal
Vignette du fichier
estimation-eigenfunctions_hal.pdf (608.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01563922 , version 1 (18-07-2017)

Identifiants

  • HAL Id : hal-01563922 , version 1

Citer

Jean-François Aujol, Guy Gilboa, Nicolas Papadakis. Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals . SIAM Journal on Imaging Sciences, 2018, 11 (2), pp.1416-1440. ⟨hal-01563922⟩

Collections

CNRS IMB INSMI
250 Consultations
397 Téléchargements

Partager

More