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Eigenfunctions of One-homogeneous Functionals for

Segmentation and Clustering

Jean-Frano̧is Aujol ∗ Guy Gilboa † Nicolas Papadakis ‡

July 18, 2017

Abstract

Nonlinear eigenfunctions, induced by subgradients of one-homogeneous
functionals (such as the 1-Laplacian), have shown to be instrumental in
segmentation, clustering and image decomposition. We present a class
of flows for finding such eigenfunctions, generalizing a method recently
suggested by Nossek-Gilboa. We analyze the flows on grids and graphs
in the time-continuous and time-discrete settings. For a specific type of
flow within this class, we prove convergence of the numerical iterations
procedure and prove existence and uniqueness of the time-continuous
case. Several examples are provided showing how such flows can be
used on images and graphs.

1 Introduction

Eigenvalue analysis of linear operators is by now very well understood the-
oretically and has shown to be an essential framework for the analysis and
understanding of many scientific and engineering problems. Consequently, a
vast research was devoted to numerically solve eigenvalue problems [39, 24].
In recent years, there is a growing interest in nonlinear eigenvalue prob-
lems, which are based on nonlinear operators. Such problems appear in
image processing [9, 26, 34], computer vision [42], classification and learning
[13, 30, 28]. In these problems the nonlinear operators are derived from
norms, semi-norms or in general one-homogeneous functionals, where the
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operator is essentially a subgradient element. In this paper we present a
class of flows that converge to nonlinear eigenfunctions of one-homogeneous
functionals.

We are interested in solving the following nonlinear eigenvalue problem

λu ∈ ∂J(u), (1)

where J is a convex one-homogeneous functional, ∂J(u) is the subdifferential
and λ denotes the eigenvalue. We refer to u admitting (1) as an eigenfunction
of J . More details and precise definitions are given in the following section.

A thorough investigation of such eigenfunctions was conducted for the
case of the total-variation (TV) functional in the continuous setting. Meyer
already observed in [33] that for the ROF problem [38] (TV -L2 square) for
the case of a disk, the solution is the same disk with reduced contrast. In
a series of studies [1, 2, 7] shapes which preserve their shape under the TV
gradient flow were characterized (termed calibrable sets). It was shown that
convex characteristic sets in R2 with a certain bound on their curvature, are
all eigenfunctions of TV. It was realized in a more general manner (see e.g.
[19]) that eigenfunctions of one-homogeneous functional preserve their shape
under three convex regularization methods - gradient flow, minimization
with L2 square and inverse-scale-space [20] (the time continuous form of
Bregman iterations [37]). Thus one can view eigenfunctions essentially as
atoms of the regularizer, having spatial features which are well preserved in
the regularization procedure (up to some contrast change).

The above insights lead to attempts to decompose signals and images
into distinct components based on eigenvalue analysis [9, 19, 40]. For the
gradient flow with respect to one-homogeneous functionals, eigenfunctions
decay linearly with respect to the time (flow) parameter and disappear at
a finite time point. Thus taking the second time derivative of the solution
of the flow yields a single response in time. This characteristic behavior
was used to formulate a decomposition technique based on TV, referred to
as spectral-TV decomposition [26], where certain nonlinear TV filters were
defined in an analog manner to Fourier analysis. It was shown how one
can extract desired features (and in particular eigenfunctions) in a range of
scales (corresponding to eigenvalues) with high accuracy and with full con-
trast preservation. The method was later generalized to one-homogeneous
functionals in [19] where certain properties, like orthogonality of the decom-
posed components, were shown in specific settings. Applications related to
denoising [34], texture manipulation [29, 10] and segmentation of medical
data [42] were suggested.
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In [9] nonlinear eigenfunctions for inverse problems (termed ground states)
were investigated, the respective generalized Rayleigh quotient were ana-
lyzed and analytic examples of anisotropic TV were shown. Eigenfunctions
related to the total-generalized-variation (TGV) functional [11] and to infi-
mal convolution TV [23] were investigated in [35, 8] and properties of par-
ticular eigenfunctions of TGV were shown theoretically and numerically.
Examples of certain eigenfunctions for different extensions of TV to color
images were presented in [25].

In the field of machine learning it was shown [14, 18] that the Cheeger
cut problem can be solved by solutions of the 1-Laplacian eigenvalue prob-
lem and consequently by minimizations of the total-variation functional on
graphs. This was later developed in several studies for classification, cluster-
ing and segmentation in the binary- and multiple-class case [12, 13, 30, 28].
Solutions of the Cheeger problem by using projections was shown in [21].
Uniqueness and regularity of Cheeger sets in RN were analyzed in [22]. A
flow, based on the MBO scheme [32], to refine graph-Laplacian eigenvectors
for classification based on a diffuse interface model was proposed in [31]. An
algorithm to construct particular TV eigenfunctions on graphs with certain
regularity, referred to as nonlocal disks, was shown in [5].

In this work we present a family of new nonlinear flows, which consider-
ably generalize the initial work of [36]. Moreover for a specific type of flow
a comprehensive theoretical analysis is provided. Our proposed flows are
very general, and can be evolved on both graphs and grids to solve various
eigenvalue problems.

1.1 Main contributions

The main contributions of this paper are as follows:

1. We first analyze the flow of [36]. Then a generalized α-flow is pro-
posed for finding eigenfunctions. It is based on different normaliza-
tions between the function and its subgradient. A thorough analysis
is presented along with a time discrete formulation of iterative convex
optimizations to realize the flow.

2. For the specific case of α = 1 we are able to present a complete theory
of the flow, including proof of convergence of the discrete case and
existence and uniqueness of the time-continuous case.

The plan of the paper is the following. We first introduce some basic
material for one homgeneous functionals in Section 2. We then analyse

3



the flow of [36] in Section 3. We introduce a generalized α-flow for finding
eigenfunctions in Section 3.2. Section 4 is devoted to the particular case
when α = 1 in the previous flow. For this specific choice of α, we are able to
prove existence and uniqueness of a solution, as well as the convergence to
the solution of a numerical scheme. In Section 5, we illustrate our theoretical
analysis with some numerical examples.

2 One homogeneous functionals

In this section, we outline some basic properties for one homogeneous func-
tionals.

2.1 Introduction

We consider an absolutely one homogeneous functional J that takes as input
a function u : x ∈ Ω → R defined on a domain Ω ⊂ R2. Ω can either be
a discrete domain of size |Ω| = N or an open convex bounded set with
Lipschitz boundary. u are elements of some Hilbert space X (e.g. X can
be L2(Ω)) embeded with some inner product 〈. , 〉. J : X → R

⋃
{+∞} is

assumed to be proper, convex and lower semi-continuous (lsc). Absolutely
one-homogeneous functionals satisfy

J(cu) = |c|J(u), ∀c ∈ R, ∀u ∈ X. (2)

The functional J in finite dimensions can be, for instance, of the general
form:

J(u) =
N∑
i=1

 N∑
j=1

wij |ui − uj |q
1/q

, (3)

for q ≥ 1, with wij ≥ 0 (usually symmetric weights are assumed wij = wji).
This formulation can be understood as a typical one-homogeneous functional
on weighted graphs. In this case ui is the value of the function u at node i
on the graph and wij is the weight between node i and node j. As grids of
any dimension can be realized by specific graph structures, this formulation
applies to standard grids as well. Thus (3), with appropriate weights, can be
the spatial discrete version of anisotropic TV (q = 1), isotropic TV (q = 2)
and anisotropic or isotropic nonlocal TV.

We recall the subgradient definition for general convex functionals

p ∈ ∂J(u)⇔ J(v)− J(u) ≥ 〈p, v − u〉, ∀v.
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We also note the relation to the convex conjugate J∗

J(u) = sup
p
〈u, p〉 − J∗(p).

Below we state some properties of one-homogeneous functionals.

Property 1. A function J defined in (3) admits:

(a) If p ∈ ∂J(u), then J(u) = 〈p, u〉,

(b) If p ∈ ∂J(u), then J(v) ≥ 〈p, v〉, ∀v.

Notice in particular that from (b) we get that ∂J(u) ⊂ ∂J(0) ∀u ∈ X.

Property 2. The convex conjugate J∗ of a one-homogeneous functional is
the characteristic function of the convex set {∂J(0)}. Moreover, when Ω is
included in a finite dimensional space, we have [19]:

∃C > 0 s.t. ||p||2 ≤ C, ∀p ∈ ∂J(0). (4)

From the equivalence of norms, we have that if u is of zero mean, there
exists a constant κ > 0 for which

||u||2 ≤ κJ(u), ∀u such that 〈u,1〉 = 0. (5)

The nullspace of the functional is defined by

N (J) = {u ∈ X | J(u) = 0} . (6)

The properties below are shown in [19].

Property 3. An absolutely one-homogeneous functional J is a seminorm
and its nullspace is a linear subspace.

Property 4. If a unit constant function u = 1 is in N (J) then any subgra-
dient p admits

〈p,1〉 = 0.

We use `2 and `1 norms of u defined as ||u||2 =
√
〈u, u〉 and ||u||1 =

〈u, sign(u)〉.
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2.2 Eigenfunctions of J

In this work, we are interested in the eigenfunctions of functionals J that
are defined as follows.

Definition 1 (Eigenfunction of J). An eigenfunction of J is a function
that satisfies the eigenvalue problem (1), so that J(u) = 〈λu, u〉 = λ||u||22 and

λ = J(u)
||u||22
≥ 0.

An interesting insight on the eigenvalue λ can be gained by the following
proposition. We define K = {∂J(0)} to be the set of possible subgradients
for any u. Indeed if p ∈ ∂J(u) then p ∈ ∂J(0). We first note that an
eigenfunction that admits λu ∈ ∂J(u) has zero mean from Property 4 above.
Next, as illustrated in Figure 1 we have the following result.

Proposition 1. For any non constant eigenfunction u, we have ∀µ ≥ λ,

λu = ProjK(µu),

where ProjK is the orthogonal projection onto K = {∂J(0)}

Proof. If u is a non constant eigenfunction, λu is on the boundary of K. As
K is bounded (||p||2 ≤ C, ∀p ∈ K) then for all µ > λ, µu /∈ K. Let us denote
as v the orthogonal projection of µu onto K. For all w ∈ K and w 6= v, v
satisfies:

1

2
||v − µu||22 <

1

2
||w − µu||22

1

2
||v||22 − 2µ〈v, u〉 < 1

2
||w||22 − µ〈w, u〉

In particular, if we assume by contradiction that v 6= λu then:

1

2
||v||22 − µ〈v, u〉 <

1

2
||λu||22 − µ〈λu, u〉

1

2
||v||22 − µ〈v, u〉 <

1

2
||λu||22 − µJ(u)

1

2
||v||22 <

1

2
||λu||22

since J(u) ≥ 〈v, u〉. We thus have ||v||2 < ||λu||2 which yields ||v||2||u||2 < λ. We

denote ṽ = ||v||2
||u||2u and observe that

||µu− ṽ||22 = µ2||u||22 + ||v||22 − 2µ||u||2||v||2 ≤ µ2||u||22 + ||v||22 − 2µ〈u, v〉 = ||µu− v||22,
(7)
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and

||µu− ṽ||2 =

(
µ− ||v||2
||u||2

)
||u||2 > (µ− λ) ||u||2 = ||µu− λu||2 (8)

From (7) and (8) we get ||µu−λu||2 < ||µu−v||2 so v can not be the orthogonal
projection of µu onto K.

Figure 1: Illustration of an eigenfunction u where λu ∈ ∂J(u) ⊂ K. Observe
that λu is the orthogonal projection of u onto K.

3 A flow for finding eigenfunctions of J

In this section, following the method introduced in [36], we study flows for
estimating eigenfunctions of one-homogeneous functions J satifying Prop-
erty 4.

3.1 Introduction

In order to find eigenfunctions of J , Nossek and Gilboa have introduced the
flow [36]: {

u(0) = u0,
ut = u

||u||2 −
p
||p||2 , p ∈ ∂J(u).

(9)
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Proposition 2. Assume that there exists a solution u of the flow (9). Then
the following property holds:

d

dt

1

2
||u(t)||22 ≥ 0 (10)

Moreover, we have:
||u(t)||2 ≤ ||u0||2 + t (11)

Proof. Recalling that 〈p, u〉 ≤ ||p||2||u||2, this flow ensures that:

d

dt

1

2
||u(t)||22 = 〈u, ut〉 =

〈
u,

u

||u||2
− p

||p||2

〉
= ||u||2 −

〈u, p〉
||p||2

≥ 0

We can also remark that

d

dt

1

2
||u(t)||22 ≤ ||u(t)||2

so that
||u(t)||2 ≤ ||u0||2 + t.

Finally, if u0 is of zero mean, Property 4 ensures that u(t) is of zero
mean, for all t > 0.

Proposition 3. Assume that there exists a solution u of the flow (9). Then
the following property holds:

d

dt
J(u(t)) ≤ 0 for almost every t. (12)

Moreover, t 7→ J(u(t)) is non increasing for all t ≥ 0.

Proof. We make use of Lemma 3.3 page 73 in [16] which states that t 7→
J(u(t)) is an absolutely continuous function (see also Lemma 4.1 in [3]).
Moreover, recalling that 〈p, u〉 ≤ ||p||2||u||2, this flow ensures that we have for
almost every t (using again Lemma 3.3 of [16]):

d

dt
J(u(t)) = 〈p, ut〉 =

〈
p,

u

||u||2
− p

||p||2

〉
=
〈u, p〉
||u||2

− ||p||2 ≤ 0.

This inequality holds for almost every t, and since t 7→ J(u(t)) is an abso-
lutely continuous function, we deduce that it is a non increasing function.

The PDE (9) converges iff ut = 0 so that

p =
||p||2
||u||2

u ∈ ∂J(u)⇒ p =
J(u)

||u||22
u

and u is an eigenfunction of J with eigenvalue λ = J(u)
||u||22

.
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3.2 Generalized flow

Let us now see the previous flow (9) as a specific instance of a more general
framework. We define a flow for α ∈ [0; 1] as:{

u(0) = u0,

ut =
(
J(u)
||u||22

)α
u−

(
J(u)
||p||22

)1−α
p, p ∈ ∂J(u).

(13)

Notice that for α = 1/2, we retrieve the flow of Nossek and Gilboa (9), up
to a normalization with J1/2(u).

Proposition 4. For u0 of zero mean and ∀α ∈ [0; 1], the trajectory u(t) of
the PDE (13) satisfies the following properties:

(i) 〈u(t),1〉 = 0.

(ii) d
dtJ(u(t)) ≤ 0 for almost every t. Moreover, t 7→ J(u(t)) is non in-

creasing. If α = 0, we have for almost every t that d
dtJ(u(t)) = 0 and

t 7→ J(u(t)) is constant.

(iii) d
dt ||u(t)||2 ≥ 0 and d

dt ||u(t)||2 = 0 for α = 1.

(iv) If the flow converge to u∗, we have p∗ = J2α−1(u∗)
||p∗||2(1−α)2

||u∗||2α2
u∗ ∈

∂J(u∗) so that u∗ is an eigenfunction.

Proof. Property (iii) is obtained as follows:

d

dt

1

2
||u(t)||22 = 〈u, ut〉 =

〈
u,

(
J(u)

||u||22

)α
u−

(
J(u)

||p||22

)1−α
p

〉

= Jα(u)

(
||u||2−2α

2 − J2−2α(u)

||p||2−2α
2

)
≥ 0.

For property (ii), we use once again Lemma 3.3 of [16]. For almost every
t, it holds:

d

dt
J(u(t)) = 〈p, ut〉 =

〈
p,

(
J(u)

||u||22

)α
u−

(
J(u)

||p||22

)1−α
p

〉

= J1−α(u)

(
J2α(u)

||u||2α2
− ||p||2α2

)
≤ 0

Since t 7→ J(u(t)) is absolutely continuous (thanks to Lemma 3.3 of [16]),
we deduce that it is non increasing.

9



3.3 Properties of a semi-explicit scheme

We can look at the following semi implicit numerical scheme:

uk+1 − uk
δt

=

(
J(uk)

||uk||22

)α
uk+1 −

(
J(uk)

||pk||22

)1−α
pk+1 (14)

It is easier to analyse this scheme than the previous continuous equation.
Moreover, the properties that we prove on this scheme will be usefull in the
next section.

Proposition 5. For u0 of zero mean and δt such that 1
δt >

(
J(uk)
||uk||22

)α
, then

the sequence (uk) is defined for all k ≥ 0, and the trajectory uk given by the
numerical scheme (14) satisfies:

1 〈uk,1〉 = 0.

2
J(uk+1)
||uk+1||2 ≤

J(uk)
||uk||2 ,

3 ||uk+1||22 ≥ 〈uk+1, uk〉 ≥ ||uk||22
4 ∀pk ∈ ∂J(uk), ||pk+1||22 ≤ 〈pk+1, pk〉 ≤ ||pk||22 and 〈pk+1, uk〉 ≥ 0

Proof. Let us rewrite the scheme (14) as

uk+1 − uk
δt

= βkuk+1 − γkpk+1 (15)

where βk =
(
J(uk)
||uk||22

)α
and γk =

(
J(uk)
||pk||22

)1−α
for the sake of clarity. We define

F (u, uk) =
1

2γkδt
‖u− uk‖22 −

βk
2γk
‖u‖22 + J(u), (16)

uk+1 is the unique minimizer of F (., uk), as soon as 1
δt > βk, i.e. 1−δtβk > 0.

1 Let us underline that if u0 is of zero mean, since p is always of zeros
mean, then uk is also of zero mean, so that property (i) of Proposition
4 is satisfied numerically.

2 If ||uk||2 = 0, then uk+1 = uk = 0. Otherwise if ||uk||2 > 0, we have:

F (uk+1, uk) ≤ F (
||uk+1||2
||uk||2 uk, uk). Hence:

‖uk+1 − uk‖22
2γkδt

− βk
2γk
‖uk+1‖22 + J(uk+1) ≤

∣∣∣∣∣∣ ||uk+1||2
||uk||2 uk − uk

∣∣∣∣∣∣2
2γkδt

− βk
2γk
‖uk+1‖22 +

||uk+1||2
||uk||2

J(uk)

1

2γkδt
‖uk+1 − uk‖22 + J(uk+1) ≤ 1

2γkδt
(||uk+1||2 − ||uk||2)2 +

||uk+1||2
||uk||2

J(uk).
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As ‖uk+1 − uk‖22 = ||uk+1||22 + ||uk||22 − 2〈uk, uk+1〉 ≥ ||uk+1||22 + ||uk||22 −
2||uk+1||2.||uk||2 = (||uk+1||2 − ||uk||2)2 then we deduce that

J(uk+1) ≤ ||uk+1||2
||uk||2

J(uk). (17)

3 We assume that 1− δtβk > 0. First notice that from (15):

uk+1(1− δtβk) = uk − γkpk+1

uk+1 =
1

1− δtβk
(uk − γkδtpk+1)

(18)

Next, as uk+1 = uk + δt(βkuk+1 − γkδtpk+1), then:

||uk+1||22 = ||uk||22 + 2δt 〈uk, βkuk+1 − γkpk+1〉+ (δt)2||βkuk+1 − γkpk+1||22

≥ ||uk||22 + 2δt

〈
uk,

βk
1− δtβk

(uk − γkδtpk+1)− γkpk+1

〉
≥ ||uk||22 + 2δt

(
βk

1− δtβk
||uk||22 − γk

(
βkδt

1− δtβk
+ 1

)
〈uk, pk+1〉

)
≥ ||uk||22 +

2δt

1− δtβk
(
βk||uk||22 − γkJ(uk)

)
.

(19)

We now recall that βk =
(
J(uk)
||uk||22

)α
and γk =

(
J(uk)
||pk||22

)1−α
, hence:

βk||uk||22 − γkJ(uk) =

(
J(uk)

||uk||22

)α
||uk||22 −

(
J(uk)

||pk||22

)1−α
J(uk)

= (J(uk))
α

(
||uk||2−2α

2 − (J(uk))
2−2α

||p||2−2α
2

)
≥ 0,

(20)

since J(uk) ≤ ||uk||2.||pk||2. From (19) and (20), we get

||uk+1||2 ≥ ||uk||2. (21)

Notice that we can also deduce from relations (15), (19) and (20) that

||uk+1||22 ≥ ||uk||22 + (δt)2||βkuk+1 − γkpk+1||22
||uk+1||22 ≥ ||uk||22 + ||uk+1 − uk||22

2〈uk+1, uk〉 ≥ 2||uk||22

(22)

so that 〈uk+1, uk〉 ≤ ||uk+1||2||uk||2 ≤ ||uk+1||22.
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4 The optimality conditions of the minimizer of (16) state that there
exists pk+1 ∈ ∂J(uk+1) such that 1

γkδt
(uk+1−uk)− βk

γk
uk+1 +pk+1 = 0,

which gives

pk+1 =
1

γkδt
uk −

1

γk

(
1

δt
− βk

)
uk+1 := µuk − νuk+1, (23)

with µ ≥ ν ≥ 0. Taking the scalar product of (23) with pk+1, we have:

〈pk+1, pk+1〉 = µ〈uk, pk+1〉 − ν〈uk+1, pk+1〉
||pk+1||22 = µ〈uk, pk+1〉 − νJ(uk+1)

||pk+1||22 + νJ(uk+1) ≤ µJ(uk),

(24)

where we observe that 〈uk, pk+1〉 ≥ 0. Next, by taking the scalar prod-
uct of (23) with any pk ∈ ∂J(uk), we have

〈pk+1, pk〉 = µ〈uk, pk〉 − ν〈uk+1, pk〉
µJ(uk) ≤ 〈pk+1, pk〉+ ν〈J(uk+1).

(25)

By (24) and (25) we get ||pk+1||22 ≤ 〈pk+1, pk〉 so that ||pk+1||2 ≤ ||pk||2.

Corollary 1. If
1

δt
>

(
J(u0)

||u0||22

)α
,

then the assumption 1
δt >

(
J(uk)
||uk||22

)α
of Proposition 5 is valid ∀k ≥ 0.

Proof. Let us assume that 1
δt >

(
J(u0)
||u0||22

)α
. Make the induction hypothesis

that 1
δt >

(
J(uk)
||uk||22

)α
, for all k ≤ N . Then to prove that it still holds for

N + 1, one just need to notice that from relations (17) and (21), we have

J(uN+1)

||uN+1||2
≤ J(u0)

||u0||2
J(uN+1)

||uN+1||22
≤ J(u0)

||u0||22
,

(26)

so that (
J(uN+1)

||uN+1||22

)α
≤
(
J(u0)

||u0||22

)α
<

1

δt
.
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4 The case α = 1

From now, we will assume that ||u0||2 = 1 and we will restrict our attention
to the case when α = 1, where the flow (13) is:{

u(0) = u0,

ut = J(u)
||u||22

u− p, p ∈ ∂J(u).
(27)

This flow may be easier to analyze since we get rid of ||p||2, while keeping

constant ||u(t)||2. Observing that J(u) = 〈p, u〉 so that ut =
〈
p, u
||u||2

〉
u
||u||2−p,

the behaviour of this flow is illustrated in Figure 2. The PDE makes u evolve
on the boundary of an `2 ball of radius ||x0||2 (we assume that ||x0||2 > C
defined in (4)) until there exists a subgradient p ∈ ∂J(u) ⊂ K such that p
is the orthogonal projection of u onto K. As characterized in Proposition 1,
an eigenfunction is thus obtained as soon as p ∈ ∂J(u) and p = ProjK(u).

t = 0 t = 1 t = 2

Figure 2: Illustration of the evolution of u(t) with an explicit discretization
of the flow (27). The vector p ∈ ∂J(u) and its projection onto u gives the
direction ut of the flow.

4.1 Uniqueness of a solution of (27)

We start our analysis of the flow by stating a comparison result.

Proposition 6. Let u and v be two solutions of (27) with respective initial
condition u0 and v0 such that J(u0) < +∞ and J(v0) < +∞, with ‖u0‖2 =

13



‖v0‖2 = 1. Then we have:

d

dt

(
1

2
‖u− v‖22

)
≤ J(u) + J(v)

2
‖u− v‖22 (28)

Uniqueness of a solution for the flow is then a direct consequence, as
stated in the next corollary.

Corollary 2. Let u and v be two solutions of (27) with respective initial
condition u0 and v0, such that J(u0) < +∞ and J(v0) < +∞, with ‖u0‖2 =
‖v0‖2 = 1. Then we have:

d

dt

(
1

2
‖u− v‖22

)
≤ J(u0) + J(v0)

2
‖u− v‖22 (29)

Moreover, we have:

‖u− v‖22 ≤ ‖u0 − v0‖22 exp ((J(u0) + J(v0)(t− t0)) (30)

The corollary is a direct consequence of the previous proposition, the
fact that J(u) is decreasing, and Gronwall lemma. Let us now prove the
proposition.

Proof. From the properties of the flow, we have ‖u‖2 = ‖v‖2 = 1. Moreover,
we have J(u) ≤ J(u0) and J(v) ≤ J(v0) for all t. Let us compute:

d

dt

(
1

2
‖u− v‖22

)
= 〈u− v, ut − vt〉

= 〈J(u)u− p− J(v)v + q, u− v〉, p ∈ ∂J(u) q ∈ ∂J(v)

= 〈J(u)u− J(v)v, u− v〉+ 〈q − p, u− v〉, p ∈ ∂J(u) q ∈ ∂J(v)

But 〈q − p, u − v〉 ≤ 0 since p ∈ ∂J(u) and q ∈ ∂J(v) (as J is convex).
Hence:

d

dt

(
1

2
‖u− v‖2

)
≤ 〈J(u)u− J(v)v, u− v〉 (31)

But:

〈J(u)u− J(v)v, u− v〉 = −J(u)〈u, v〉+ J(u) + J(v)− J(v)〈u, v〉
= (J(u) + J(v))(1− 〈u, v〉)

=
J(u) + J(v)

2
‖u− v‖22

So that we get (28).

Notice of course that uniqueness of the solution of (27) comes at once
from (30).
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4.2 Properties of a semi-explicit scheme

For α = 1, the numerical scheme (14) becomes:

uk+1 − uk
δt

=
J(uk)uk+1

‖uk‖22
− pk+1 (32)

associated with the minimization of

F (u, uk) =
1

2δt
‖u− uk‖22 −

J(uk)

2‖uk‖22
‖u‖22 + J(u). (33)

uk+1 is a minimizer of F (., uk), as soon as 1
δt > J(u0)

‖u0‖22
≥ J(uk)
‖uk‖22

. From

Proposition 4, the continuous flow keeps ||u||2 constant for α = 1, but the
discrete properties studied in Proposition 5 just ensure that ||uk||2 is non
decreasing. As a consequence, instead of dealing with (33), we consider the
following renormalization to ensure that for ||u0||2 = 1, ||uk||2 = 1, ∀k > 0 :{

uk+1/2−uk
δt = J(uk)uk+1/2 − pk+1/2, pk+1/2 ∈ ∂J(uk+1/2)

uk+1 =
uk+1/2

||uk+1/2||2
.

(34)

This scheme is associated with the minimization of

F̃ (u, uk) =
1

2δt
‖u− uk‖22 −

J(uk)

2
‖u‖22 + J(u) + χ||.||2≤1(u). (35)

Proposition 7. uk+1 defined in (34) is the minimizer of F̃ .

Proof. We define uk+1 as the minimizer of (35).
Then:

0 ∈ uk+1 − uk
δt

− J(uk)uk+1 + pk+1 + ∂χ||.||2≤1(uk+1) (36)

So that:

uk − δt pk+1 ∈ uk+1 (1− δt J(uk)) + δt ∂χ||.||2≤1(uk+1) (37)

Hence

uk+1 =

(
Id+

δt

1− δt J(uk)
∂χ||.||2≤1

)−1( 1

1− δt J(uk)
(uk − δt pk+1)

)
(38)

We deduce that uk+1 is the L2 projection on the ball of radius 1 of

1

1− δt J(uk)
(uk − δt pk+1) (39)
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But from (32), since ‖uk‖2 = 1, we know that:

uk+1/2 =
uk − δt pk+1/2

1− δt J(uk)
(40)

So we see that uk+1 is the L2 projection on the ball of radius 1 of uk+1/2.
Moreover, since the scheme defined by (32) is such that ‖uk+1/2‖2 ≥ ‖uk‖2,
we deduce that ‖uk+1/2‖2 ≥ 1, and thus

uk+1 =
uk+1/2

‖uk+1/2‖2
(41)

Hence uk+1 is also solution of (34).

Thanks to Proposition (7), we are now in position to analyse the sequence
uk defined by (34).

Theorem 1. Let u0 in X, and the sequence uk defined by (34). Then the
sequences J(uk) and ‖pk‖2 are non increasing, ‖uk‖2 = ‖u0‖2 for all k, and
uk+1 − uk → 0.

Proof. ||uk||2 constant. Let us proceed by contradiction and assume that
||uk||2 = 1 and ||uk+1||2 < 1, where uk+1 is the minimizer of (35). As the
constraint χ||.||2≤1(uk+1) is not saturated then

uk+1 = argmin
u

1

2δt
‖u− uk‖22 −

J(uk)

2
‖u‖22 + J(u),

which means that 1 > ||uk+1||2 ≥ ||uk||2 = 1 from Proposition 5, which is
impossible.

J(uk) and ‖pk‖2 non increasing. Since ||uk||2 = ||u0||2 = 1, we can use
Proposition 5 with α = 1 and therefore conclude.

Convergence of uk+1−uk. Assume that J(u0) < 1
δt to have F̃ convex,

and ||uk||2 = 1, then:

F̃ (uk+1, uk) ≤ F̃ (uk, uk)

1

2δt
‖uk+1 − uk‖22 −

J(uk)

2
‖uk+1‖22 + J(uk+1) ≤ J(uk)

2
1

2δt
‖uk+1 − uk‖22 + J(uk+1) ≤ J(uk)

2
(1 + ||uk+1||22)

1

2δt
‖uk+1 − uk‖22 + J(uk+1) ≤ J(uk),

(42)
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since ||uk+1||2 ≤ 1.
Summing on k from 0 to N − 1 relation (42), we deduce that:

1

2δt

N−1∑
k=1

‖uk+1 − uk‖22 ≤ J(u0)− J(uN ) ≤ J(u0) (43)

In particular
∑

k ‖uk+1 − uk‖22 converges, and uk+1 − uk → 0.

4.3 Convergence of the semi-implicit scheme

We are now in position to state some convergence results. We first consider
the case when X is a finite dimensional space. We will then consider the
general case when X is an infinite dimensional case, for which we need to
add a technical hypothesis to get a convergence result.

4.3.1 Finite dimensional case

Theorem 2. Let u0 in X, with X of finite dimension, and the sequence
uk defined by (34). There exists some u and p in X such that up to a
subsequence, uk converges to u in X and pk converges to p in X, with p ∈
∂J(u), and J(uk) converges to J(u). Moreover, u satisfies the differential
inclusion:

J(u)u− u− p ∈ ∂χ||.||2≤1(u) (44)

Proof. From Theorem 1, there exists u in X such that up to a subsequence,
uk → u in X. There exists also p in X such that up to a subsequence,
pk → p in X.

Let v in X. We have:

J(v) ≥ J(uk) + 〈v − uk, pk〉 (45)

We can let k → +∞ and using the lower semi continuity of J we get:

J(v) ≥ J(u) + 〈v − u, p〉 (46)

Hence p ∈ ∂J(u).
Moreover, we have J(uk) = 〈uk, pk〉. Letting again k → +∞, we se that

J(uk)→ J(u) = 〈u, p〉.
Let again v in X. We have, for pk+1 in ∂J(uk+1):

−uk+1 − uk
δt

+ J(uk+1)uk+1 − pk+1+ ∈ ∂χ||.||2≤1(uk+1). (47)
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Hence:

χ||.||2≤1(v) ≥ χ||.||2≤1(uk+1) +

〈
v − uk+1,−

uk+1 − uk
δt

+ J(uk)uk+1 − pk+1

〉
(48)

We can let k → +∞ so that:

χ||.||2≤1(v) ≥ χ||.||2≤1(u) + 〈v − u, J(u)u− p〉 . (49)

We thus deduce that (44) holds.

4.3.2 Infinite dimensional case

In this case, we consider that J is defined on X := L2(Ω). We first state a
preliminary convergence result.

Proposition 8. Let u0 in L2(Ω), and the sequence uk defined by (34). There
exists some u and p in X such that up to a subsequence, uk converges to u
and pk converges to p in L2(Ω) weak.

Proof. Since ‖uk‖2 = 1 for all k, uk is a bounded sequence in L2(Ω). Hence
(see e.g. [17]) there exists u in L2(Ω) such that up to a subsequence, uk ⇀ u
in L2(Ω) weak. With the same reasoning, we can show that there exists p
in L2(Ω) such that up to a subsequence, pk ⇀ p in L2(Ω) weak.

To state a full convergence result, we need to add a technical hypothesis.

Theorem 3. Let u0 in L2(Ω), and the sequence uk defined by (34). As-
sume that the sequence uk lives in a compact subset of L2(Ω) for the strong
topology. There exists some u and p in L2(Ω) such that up to a subsequence,
uk converges to u in L2(Ω) strong and pk converges to p in L2(Ω) weak,
with p ∈ ∂J(u), and J(uk) converges to J(u). Moreover, u satisfies the
differential inclusion:

J(u)u− u− p ∈ ∂χ||.||2≤1(u) (50)

Proof. From the previous proposition, there exists u in L2(Ω) such that up
to a subsequence, uk ⇀ u in L2(Ω) weak. There exists also p in L2(Ω)
such that up to a subsequence, pk ⇀ p in L2(Ω) weak. Since uk lives in a
compact subset of L2(Ω) for the strong topology, we have that uk → u in
L2(Ω) strong.

The rest of the proof is identical to the one of Theorem 2, since X :=
L2(Ω).
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4.3.3 Eigenfunction

The following result shows that the limit u of the semi-implicit scheme is
indeed an eigenfunction.

Proposition 9. If u satisfies either Equation 44 or Equation 50, then u is
an eigenfunction.

Proof. From either Equation 44 or Equation 50 it follows that there exists
p ∈ ∂J(u) and q ∈ ∂χ||.||2≤1(u) such that: −J(u)u+p+q = 0. Since ||u||2 = 1,
we have ∂χ||.||2≤1(u) = {γu, γ ≥ 0}, and therefore:

−J(u)u+ p+ γu = 0

p = (J(u)− γ)u

and u is an eigenfunction. Moreover, as J(u) = 〈p, u〉, we get γ = 0.

Now that we have analyzed a semi-explicit scheme for computing an
eigenfunction, we turn our attention to the time continuous problem (evo-
lution equation) in the next section.

4.4 Existence of solution for (27)

In this section the time continuous flow is analyzed. Let us rewrite here
(27): {

u(0) = u0,

ut = J(u)
||u||22

u− p, p ∈ ∂J(u).
(51)

We have the following existence and uniqueness result. As in the case of
Theorem 3, we need to add a technical hypothesis.

Theorem 4. Let u0 in L2(Ω) with J(u0) < +∞. Assume that ǔδt lives
in some compact set KT for the strong topology of L2((0, T );L2(Ω)). Then
problem(51) admits exactly one solution in W 1,2((0, T );L2(Ω)).

The proof of this theorem is detailed in Appendix A

5 Numerical Results

Here we give a few examples of running the flow in several settings. We first
examine local TV regularizers. Fig. 3 shows the results using isotropic TV,
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where the gradient magnitude is based on `2, |∇u| =
√

(ux)2 + (uy)2. On
the top right and middle the results of u and p, respectively, are shown after
100 iterations. The initialization can be noise or some image to produce dif-
ferent eigenfunctions, here we chose the cameraman image. It can be seen
that p is very similar to u in its shape, which is expected for eigenfunctions.
In the ideal case, we should expect p = λu pointwise, therefore for every
pixel the ratio p/u = λ should yield spatially a constant image. In Fig. 3
top right this ratio is shown, where most of the image is of constant value,
but there are some deviations near the boundaries of the shape. There is still
no definitive theory of eigenfunctions of discrete isotropic TV. Our experi-
ments indicate that numerically one reaches in general only approximations
of eigenfunctions of the continuous case. Convergence to precise eigenfunc-
tions are reached in trivial cases, such as partitions by straight lines of the
space. Consequently, the process is very stable when p and u are very simi-
lar, but full convergence is not attained numerically, as can be seen in Fig.
3 bottom.

u p Pointwise ratio p/u

J(uk) ‖uk+1 − uk‖2

Figure 3: Results of the flow for isotropic TV. Top: u and p and the ratio
u/p after 100 iterations (the ratio should be close to a constant function).
Bottom, the values of J(uk) and ‖uk+1 − uk‖ are plotted as a function of
iterations k.
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Fig. 4 shows the case of local anisotropic TV, where the gradient mag-
nitude is based on `1, |∇u| = |ux|+ |uy|. In this case, u and p have exactly
the same shape, and the ratio p/u (top-right) is constant, up to numerical
precision. As we reach a precise eigenfunction the algorithm fully converges
to a steady state, as seen (bottom) on the values of J(uk) and ‖uk+1−uk‖2
as a function of the iteration k. These experiments are useful to examine
the algorithm and to compute local discrete TV eigenfunctions.

u p Pointwise ratio p/u

J(uk) ‖uk+1 − uk‖2

Figure 4: Results of the flow for anisotropic TV. Top: u and p and the
ratio u/p after 100 iterations. Bottom, the value of J and ‖uk+1 − uk‖ as
a function of iterations k. One can observe the process reached complete
convergence, where u is a precise eigenfunction.

For segmentation and clustering purposes, TV on graphs is used as the
regularizer of choice. One constructs a graph based on the input data and
computes the iterative flow. We use J as defined in (3) with q = 1 where wij
is the weight of the graph between node i and node j. We give examples of
graph based on an image, for segmentation, and one based on point cloud,
for clustering. In Fig. 5 the graph is constructed from the image based
on Euclidean patch-distances, as for instance in [27]. We use a 5× 5 search
window for similar patches, so the pixel proximity relation is essentially very
local. Our initialization of the flow is the input image f (left). We show the
result of u after 50 iterations. We see that the process naturally converges
to a segmentation of the data (see thresholded result on the right).
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f u Segmentation

Figure 5: Results of the flow for TV defined on graphs constructed from the
image, based on patch distances. Initializing with the input image, the flow
yields a segmentation of the image.

In Fig. 6 a graph is constructed from the 2D point cloud, where weights
are computed based on local Euclidean distance. The flow is initialized ran-
domly and converges to the natural clustering of the data.

Initialization. Converged state.

Figure 6: Results of the flow for TV defined on graphs based on point cloud
distances. The processes converges to natural clustering of the data.
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6 Conclusion

In this work we have presented a class of nonlinear flows for which their
steady-states are eigenfunctions with respect to the subgradient of a de-
sired one-homogeneous regularization functional, such as any flavor of total-
variation on grids or graphs.

The flows were analyzed in finite dimensions both in the continuous time
setting and in the discrete setting. The discrete setting is realized as a series
of convex optimization iterations. Its properties and stability characteristics
were shown. For a specific case of the proposed α-flow, a comprehensive
theory was derived. It was shown that the discrete iterations converge to a
steady state, which is an eigenfunction. Moreover, we have shown that the
time continuous flow exists and has a unique solution.

These algorithms can be used for several applications related to segmen-
tation and clustering, where graph total variation and eigenfunctions of the
1-Laplacian operator are used (see e.g. [14, 15, 18]). The flows are continu-
ously evolving towards an eigenfunction and are very convenient to use when
one has a rough initial estimate (for instance, using linear eigenfunctions as
approximations). Future research will include further examination of the
general continuous case. In addition, we will examine the simultaneous evo-
lution of several flows to compute several eigenfunctions, e.g. for multi-class
clustering applications.
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A Existence of a solution for (27)

To show that problem (27) has a solution, we start from the semi-discrete
problem (34). Thanks to Proposition (7), we therefore consider a sequence
(uk) satisfying (35). We know that (uk) satisfies:

−uk+1 − uk
δt

+ J(uk+1)uk+1 − pk+1 ∈ ∂χ||.||2≤1(uk+1) (52)

with pk+1 in ∂J(uk+1). From the result of Section (4),we know that the
sequence (uk) exists and is unique provided δt small enough.

A.1 Definitions of interpolate functions

For t0 = 0 and tk = kδt, we classically introduce two piecewise constant
functions defined on Ω× R+ (see e.g. [6, 4]):

ǔδt(t, x) = u[t/δt]+1(x) = uk+1(x) if tk < t ≤ tk+1 (53)

p̌δt(t, x) = p[t/δt]+1(x) = pk+1(x) if tk < t ≤ tk+1, (54)

where [t/δt] is the integer part of t/δt.
We also introduce:

ûδt(t, x) = (t− tn)
uk+1(x)− uk(x)

δt
+ uk(x) (55)

with k = [t/δt]. ûδt(., x) is piecewise affine, continuous, and we have:

∂ûδt
∂t

(t, x) =
uk+1(x)− uk(x)

δt
, tk < t < tk+1 (56)

With these notations, we can rewrite (52) as:

− ǔδt(t, x))− ǔδt(t− δt, x)

δt
+J(ǔδt(t, x))ǔδt(t, x))−p̌δt(t, x) ∈ ∂χ||.||2≤1(ǔδt(t, x)))

(57)
i.e.:

−∂ûδt
∂t

(t, x) + J(ǔδt(t, x))ǔδt(t, x))− p̌δt(t, x) ∈ ∂χ||.||2≤1(ǔδt(t, x))) (58)
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A.2 A priori estimates

We first need to show some a priori estimates.

Proposition 10. Let u0 in L2(Ω). Then t 7→ J(ǔδt(t, .)), and t 7→ ‖p̌δt(t, .)‖2
are non increasing, ‖ǔδt(t, .)‖2 = ‖u0‖2 for all t, and ûδt(t, .)‖2 ≤ 3‖u0‖2.

Proof. This is a direct consequence of the previous section and equation
(55).

Proposition 11. Let T > 0 be fixed. There exists a constant C > 0, which
does not depend on δt, such that:∫ T

0

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

≤ C (59)

Proof. We have:∫ tk+1

tk

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

= δt

∫
Ω

∣∣∣∣uk+1(x)− uk(x)

δt

∣∣∣∣2 dx. (60)

By using (42), we get:∫ tk+1

tk

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

≤ 2 (J(uk)− J(uk+1)) . (61)

Let us denote by K = [T/δt], then

K−1∑
n=0

∫ tk+1

tk

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

≤ 2 (J(u0)− J(uK))

≤ 2J(u0).

We thus deduce that:∫ T

0

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

dt ≤ 2TJ(u0) +

∫ T

tK

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

dt. (62)

But, by using (42), we have:∫ T

tK

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

dt ≤ 2
T − tK
δt

(J(uK)− J(uK+1))

≤ 2J(u0).
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We then get from Proposition 10 that there exists B > 0 which does not

depend on K and δt such that:
∫ T
tK

∥∥∥∂ûδt∂t

∥∥∥2

L2(Ω)
dt ≤ B. We then conclude

thanks to (62).

Corollary 3. Let T > 0 be fixed. Then:

lim
δt→0

∫ T

0
‖ûδt − ǔδt‖2L2(Ω) dt = 0 (63)

Proof. Let us denote by K = [t/δt]. We have:∫ T

0
‖ûδt − ǔδt‖2L2(Ω) dt =

K−1∑
k=0

∫ tk+1

tk

‖ûδt − ǔδt‖2L2(Ω) dt+

∫ T

tK

‖ûδt − ǔδt‖2L2(Ω) dt,

(64)
but:

K−1∑
k=0

∫ tk+1

tk

‖ûδt − ǔδt‖2L2(Ω) dt =

K−1∑
k=0

∫ tk+1

tk

‖(t− tk − δt)(uk+1 − uk)‖2L2(Ω) dt

(65)
We then deduce from (56) that:

K−1∑
k=0

∫ tk+1

tk

‖ûδt − ǔδt‖2L2(Ω) dt ≤
K−1∑
k=0

∫ tk+1

tk

∥∥∥∥δt∂ûδt∂t

∥∥∥∥2

L2(Ω)

dt ≤ (δt)2

∫ T

0

∥∥∥∥∂ûδt∂t

∥∥∥∥2

L2(Ω)

dt︸ ︷︷ ︸
→0 as δt→ 0

,

and: ∫ T

tK

‖ûδt − ǔδt‖2L2(Ω) dt ≤ (δt)3

∥∥∥∥uK+1 − uK
δt

∥∥∥∥2

L2(Ω)

dt︸ ︷︷ ︸
→0 as δt→ 0

. (66)

A.3 Convergence

Theorem 4. Uniqueness of Theorem4 comes from Corollary 2 (see also e.g.
[16]). Let us now prove existence of a solution. We first remark that, from
Propositon 10 and 11, ûδt is uniformly bounded in W 1,2((0, T );L2(Ω)), since

‖u‖2W 1,2((0,T );L2(Ω)) =
∫ T

0

∥∥∥∂ûδt∂t

∥∥∥2

L2(Ω)
+
∫ T

0 ‖ûδt‖
2
L2(Ω).
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Thus, up to a subsequence, there exists u inW 1,2((0, T );L2(Ω)) such that
ûδt ⇀ u in W 1,2((0, T );L2(Ω)) weak. Since W 1,2((0, T );L2(Ω)) is compactly
embedded in L2((0, T );L2(Ω)) (see [41], Theorem 2.1, chapter 3), ûδt → u
strongly in L2((0, T );L2(Ω)).

Since ‖ǔδt‖2 = 1 for all t ∈ (0, T ), we have ‖ǔδt‖2L2((0,T );L2(Ω)) =
∫ T

0 ‖ǔδt‖
2
L2(Ω) =

T (thanks to Proposition 10). Hence ǔδt is a bounded sequence in L2((0, T );L2(Ω)).
Thus there exists ǔ in L2((0, T );L2(Ω)) such that up to a subsequence,
ǔδt ⇀ ǔ in L2((0, T );L2(Ω)). Since we assume that ǔδt lives in some
compact set for the strong topology of L2((0, T );L2(Ω)), we deduce that
ǔδt → ǔ in L2((0, T );L2(Ω)) strong. We can also show that there exists p in
L2((0, T );L2(Ω)) such that up to a subsequence, p̌δt ⇀ p in L2((0, T );L2(Ω))
weak. From Proposition 3, we deduce that ǔδt → u strongly in L2((0, T );L2(Ω)),
so that ǔ = u.

Let v in L2(Ω). We have:

J(v) ≥ J(ǔδt) + 〈v − ǔδt, p̌δt〉. (67)

Let φ in C0
c (0, T ) a test function, φ ≥ 0. We multiply (67) by φ and integrate

on (0, T ):∫ T

0
J(v)φ(t) dt ≥

∫ T

0
J(ǔδt)φdt+

∫ T

0
〈v − ǔδt, p̌δt〉φ(t) dt, (68)

i.e.∫ T

0
J(v)φ(t) dt ≥

∫ T

0
J(ǔδt)φ(t) dt+

∫ T

0

∫
Ω

(v − ǔδt)p̌δtφ(t) dtdx. (69)

We want to let δt→ 0 in (69). By convexity, we have:

lim inf

∫ T

0
J(ǔδt)φ(t) dt ≥

∫ T

0
J(u)φ(t) dt. (70)

Now, since ǔδt → u strongly in L2((0, T );L2(Ω)) and p̌δt → p in L2((0, T );L2(Ω))
strong, the second term on the right hand-side of (69) tends to∫ T

0

∫
Ω

(v − u)pφ(t) dtdx.

We thus get:∫ T

0
J(v)φ(t) dt ≥

∫ T

0
J(u)φ(t) dt+

∫ T

0

∫
Ω

(v − u)pφ(t) dtdx. (71)
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This inequality holds for all φ ≥ 0, we deduce that for a.e. t in (0, T ):

J(v) ≥ J(u) +

∫
Ω

(v − u)p dx. (72)

Hence p ∈ ∂J(u).
Moreover, we have J(ǔδt) = 〈ǔδt, p̌δt〉. Letting again δt→ 0, we see that

J(uδt) → J(u) = 〈u, p〉. The semi-discrete implicit scheme writes for p̌δt in
∂J(uǔδt) and for a.e. t ∈ (0, T ):

−∂ûδt
∂t

(t, x) + J(ǔδt(t, x))ǔδt(t, x))− p̌δt(t, x) ∈ ∂χ||.||2≤1(ǔδt(t, x))), (73)

We thus have for all v in L2(Ω), and a.e. t ∈ (0, T ):

χ||.||2≤1(v) ≥ χ||.||2≤1(ǔδt) +

〈
v − ǔδt,−

∂ûδt
∂t

+ J(ǔδt)ǔδt − p̌δt
〉
. (74)

Let φ in C0
c (0, T ) a test function, φ ≥ 0. We multiply (74) by φ and integrate

on (0, T ):

∫ T

0
χ||.||2≤1(v)φ(t) dt ≥

∫ T

0
χ||.||2≤1(ǔδt)φ(t) dt+

∫ T

0

〈
v − ǔδt,−

∂ûδt
∂t

+ J(ǔδt)ǔδt − p̌δt
〉
φ(t) dt,

(75)
i.e.:∫ T

0
χ||.||2≤1(v)φ(t) dt ≥

∫ T

0
χ||.||2≤1(ǔδt)φ(t) dt+

∫ T

0

∫
Ω

(v−ǔδt)
(
−∂ûδt

∂t
+ J(ǔδt)ǔδt − p̌δt

)
φ(t) dtdx.

(76)
By convexity, we have:

lim inf

∫ T

0
χ||.||2≤1(ǔδt)φ(t) dt ≥

∫ T

0
χ||.||2≤1(u)φ(t) dt. (77)

Now, since ǔδt → u strongly in L2((0, T );L2(Ω)), ∂ûδt∂t ⇀ ∂u
∂t in L2((0, T );L2(Ω))

weak, J(ǔδt)ǔδt → J(u)u strongly in L2((0, T );L2(Ω)), and p̌δt → p strongly
in L2((0, T );L2(Ω)), the second term on the right hand-side of (76) tends to∫ T

0

∫
Ω

(v − u)

(
−∂u
∂t

+ J(u)u− p
)
φ(t) dtdx.

We thus get:
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∫ T

0
J(v)φ(t) dt ≥

∫ T

0
J(u)φ(t) dt+

∫ T

0

∫
Ω

(v−u)

(
−∂u
∂t

+ J(u)u− p
)
φ(t) dtdx.

(78)
This inequality holds for all φ ≥ 0, we deduce that for a.e. t in (0, T ):

χ||.||2≤1(v) ≥ χ||.||2≤1(u) +

∫
Ω

(v − u)

(
−∂u
∂t

+ J(u)u− p
)
dx, (79)

i.e.: −∂u
∂t + J(u)− p ∈ ∂χ||.||2≤1(u). Hence we deduce that u is a solution of

(51) in the distributional sense.
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