Multifractal analysis of the birkhoff sums of saint-petersburg potential - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Multifractal analysis of the birkhoff sums of saint-petersburg potential

Résumé

Let $((0,1], T)$ be the doubling map in the unit interval and $\varphi$ be the Saint-Petersburg potential, defined by $\varphi(x)=2^n$ if $x\in (2^{-n-1}, 2^{-n}]$ for all $n\geq 0$. We consider the asymptotic properties of the Birkhoff sum $S_n(x)=\varphi(x)+\cdots+\varphi(T^{n-1}(x))$. With respect to the Lebesgue measure, the Saint-Petersburg potential is not integrable and it is known that $\frac{1}{n\log n}S_n(x)$ converges to $\frac{1}{\log 2}$ in probability. We determine the Hausdorff dimension of the level set $\{x: \lim_{n\to\infty}S_n(x)/n=\alpha\} \ (\alpha>0)$, as well as that of the set $\{x: \lim_{n\to\infty}S_n(x)/\Psi(n)=\alpha\} \ (\alpha>0)$, when $\Psi(n)=n\log n, n^a $ or $2^{n^\gamma}$ for $a>1$, $\gamma>0$. The fast increasing Birkhoff sum of the potential function $x\mapsto 1/x$ is also studied.
Fichier principal
Vignette du fichier
KLRW- v13.pdf (186.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01563656 , version 1 (18-07-2017)
hal-01563656 , version 2 (23-01-2018)

Identifiants

Citer

Dong Han Kim, Lingmin Liao, Michal Rams, Baowei Wang. Multifractal analysis of the birkhoff sums of saint-petersburg potential. 2017. ⟨hal-01563656v1⟩
293 Consultations
173 Téléchargements

Altmetric

Partager

More