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MULTIFRACTAL ANALYSIS OF THE BIRKHOFF SUMS OF

SAINT-PETERSBURG POTENTIAL

DONG HAN KIM, LINGMIN LIAO, MICHA L RAMS, AND BAO-WEI WANG

Abstract. Let ((0, 1], T ) be the doubling map in the unit interval and ϕ be
the Saint-Petersburg potential, defined by ϕ(x) = 2n if x ∈ (2−n−1, 2−n]
for all n ≥ 0. We consider the asymptotic properties of the Birkhoff sum
Sn(x) = ϕ(x) + · · ·+ϕ(Tn−1(x)). With respect to the Lebesgue measure, the

Saint-Petersburg potential is not integrable and it is known that 1
n log n

Sn(x)

converges to 1
log 2

in probability. We determine the Hausdorff dimension of

the level set {x : limn→∞ Sn(x)/n = α} (α > 0), as well as that of the set

{x : limn→∞ Sn(x)/Ψ(n) = α} (α > 0), when Ψ(n) = n logn, na or 2n
γ

for

a > 1, γ > 0. The fast increasing Birkhoff sum of the potential function
x 7→ 1/x is also studied.

1. Introduction

Let T be the doubling map on the unit interval (0, 1] defined by

Tx = 2x− ⌈2x⌉+ 1,

where ⌈x⌉ is the smallest integer larger than or equal to x. Let ǫ1 be the function
defined by ǫ1(x) = ⌈2x⌉ − 1 and ǫn(x) := ǫ1(T

n−1x) for n ≥ 2. Then each real
number x ∈ (0, 1] can be expanded into an infinite series as

x =
ǫ1(x)

2
+ · · ·+

ǫn(x)

2n
+ · · · . (1.1)

We call (1.1) the binary expansion of x and also write it as

x = [ǫ1(x)ǫ2(x) . . . ].

The Saint-Petersburg potential is a function ϕ : (0, 1]→ R defined as

ϕ(x) = 2n if x ∈ (2−n−1, 2−n], ∀n ≥ 0.

We remark that the definition of ϕ is equivalent to

ϕ(x) = 2n where n ≥ 0 is the smallest integer such that ǫn+1(x) = 1.

and is also equivalent to

ϕ(x) = 2n if the binary expansion of x begins with 0n1,

where 0n(n ≥ 0) means a block with n consecutive zeros.
The name of Saint-Petersburg potential is motivated by the famous Saint-Petersburg

game in probability theory. The Saint-Petersburg potential is of infinite expecta-
tion with respect to the Lebesgue measure. Furthermore, it increases exponentially
fast near to the point 0.
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In this paper, we are concerned with the following Birkhoff sums of the Saint-
Petersburg potential:

∀n ≥ 1, Sn(x) := ϕ(x) + ϕ(T (x)) + · · ·+ ϕ(T n−1(x)), x ∈ (0, 1].

Let
I = {x ∈ (0, 1] : ǫ1(x) = 1}.

Define the hitting time of x ∈ (0, 1] to I as

n(x) := inf{n ≥ 0 : T nx ∈ I}.

Then

n(x) = n if x ∈

(
1

2n+1
,
1

2n

]
, for all n ≥ 0.

Using n(x), we define a new dynamical system T̂ : (0, 1]→ (0, 1] by

T̂ (x) = T n(x)+1(x) = 2n+1
(
x−

1

2n+1

)
if x ∈

(
1

2n+1
,
1

2n

]
, for all n ≥ 0,

called the acceleration of T , in order that ϕ and ϕ ◦ T̂ are independent. Let

Ŝn(x) := ϕ(x) + ϕ(T̂ (x)) + · · ·+ ϕ(T̂ n−1(x)), x ∈ (0, 1].

The convergence in probability of Ŝn(x) is well known (e.g. [6, p.253]) which states
that for any ǫ > 0, the Lebesgue measure λ of

{
x ∈ (0, 1] :

∣∣∣ Ŝn(x)
n logn

−
1

log 2

∣∣∣ ≥ ǫ
}

tends to 0 as n→∞.
Let {Ψn}n≥1 be an increasing sequence such that Ψn → ∞ as n→∞. Then it

was shown in [5] that almost surely either

lim
n→∞

Ŝn(x)

Ψn
= 0 or lim sup

n→∞

Ŝn(x)

Ψn
=∞,

according as
∑

n≥1

λ({x ∈ (0, 1] : ϕ(x) ≥ Ψn}) <∞ or =∞.

Let n1 = n1(x) = n(x) + 1 and nk = nk(x) = n1(T̂
k−1x) = n(T̂ k−1x) for k ≥ 2.

It is direct to see that

∀ℓ ≥ 1, Sn1+···nℓ
(x) = 2Ŝℓ(x)− ℓ.

Moreover, the ergodicity of T (of T̂ ) implies

lim
ℓ→∞

n1 + · · ·nℓ
ℓ

=

∫ 1

0

(n(x) + 1)dλ(x) = 2.

Combining these two facts together, we obtain the same convergence results as

above if we replace Ŝn by Sn.

In this article, we want to give a complete multifractal analysis of the Birkhoff
sum Sn.

First, for any α ≥ 1, we consider the level set

E(α) =

{
x ∈ (0, 1] : lim

n→∞

1

n
Sn(x) = α

}
.

For t ∈ R and q > 0, define

P (t, q) := log
∞∑

j=1

2−tj−q(2
j−1).
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Then P is a real-analytic function. Furthermore, for each q > 0, there is a unique
t(q) > 0 such that P (t(q), q) = 0. This function q 7→ t(q) is real-analytic, strictly
decreasing and convex.

Denote by dimH the Hausdorff dimension. The function α 7→ dimH E(α), called
the Birkhoff spectrum of the Saint-Petersburg potential ϕ, is proved to be the
Legendre transformation of the function q 7→ t(q).

Theorem 1.1. For any α ≥ 1 we have

dimH E(α) = inf
q>0
{t(q) + qα}.

Consequently, dimH E(1) = 0 and the function α 7→ dimH E(α) is real-analytic,

strictly increasing, concave, and has limit 1 as α→∞.

The Birkhoff spectrum of a continuous potential was obtained for full shifts ([13]),
for topologically mixing subshifts of finite type ([4]), and for repellers of a topo-
logically mixing C1+ǫ expanding map ([2]). A continuous potential in a compact
space is bounded, hence these classical results are all for bounded potentials. Our
Theorem 1.1 gives a Birkhoff spectrum for an unbounded function with a singular
point. To prove Theorem 1.1, we will transfer our question to a Birkhoff spectrum
problem of an interval map with infinitely many branches and we will apply the
techniques developed in [9] for continued fraction dynamical system and in [8] for
general expanding interval maps with infinitely many branches.

We also study the Birkhoff sums Sn(x) of fast increasing rates. Let Ψ : N → N

be an increasing function. For β > 0, consider the level set

EΨ(β) :=

{
x ∈ (0, 1] : lim

n→∞

1

Ψ(n)
Sn(x) = β

}
.

Theorem 1.2. If Ψ(n) is one of the following

Ψ(n) = n logn, Ψ(n) = na (a > 1), Ψ(n) = 2n
γ

(0 < γ < 1/2),

then for any β > 0, dimH EΨ(β) = 1.
If Ψ(n) = 2n

γ

with γ ≥ 1/2, then for any β > 0, the set EΨ(β) is empty.

Our method for studying the fast increasing Birkhoff sum of Saint-Petersburg
potential also works for the fast increasing Birkhoff sum of the potential g : x 7→ 1/x
which is continuous with singular point 0.

Denote by Sng(x) the Birkhoff sum

Sng(x) := g(x) + g(T (x)) + · · ·+ g(T n−1(x)), x ∈ (0, 1].

For β > 0, let

FΨ(β) :=

{
x ∈ (0, 1] : lim

n→∞

1

Ψ(n)
Sng(x) = β

}
.

Theorem 1.3. If Ψ(n) is one of the following

Ψ(n) = n logn, Ψ(n) = na (a > 1), Ψ(n) = 2n
γ

(0 < γ < 1/2),

then for any β > 0, dimH FΨ(β) = 1.
If Ψ(n) = 2n

γ

with γ ≥ 1/2, then for any β > 0, the set FΨ(β) is empty.

We remark that these multifractal analysis on the Birkhoff sums of fast increasing
rates have been done for some special potentials in continued fraction dynamical
system ([9, 11, 12]).
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2. Birkhoff spectrum of the Saint-Petersburg potential

In this section, we will obtain the Birkhoff spectrum of the Saint-Petersburg
potential, i.e. the Hausdorff dimension of the following level set:

E(α) :=



x ∈ (0, 1] : lim

n→∞

1

n

n−1∑

j=0

ϕ(T jx) = α



 (α ≥ 1).

We will transfer our question to a Birkhoff spectrum problem for an interval map
with infinitely many branches.

2.1. Transference lemma. Recall that the Saint-Petersburg potential ϕ is given
by

ϕ(x) = 2n, if x = [0n1, · · · ]

where x = [ǫ1ǫ2, · · · ] denotes the digit sequence in the binary expansion of x. Recall

also the definition of hitting time n(x) and the acceleration T̂ of the doubling map
T in Section 1. Define a new potential function

φ(x) := 2n(x)+1 − 1, x ∈ (0, 1].

In fact, φ is nothing but the function satisfying

φ(x) =

n(x)∑

j=0

ϕ(T jx).

With the notation n1 = n(x) + 1 ≥ 1, and nk = n(T̂ k−1x) + 1 for k ≥ 2 given in
Section 1, we have

φ(T̂ x) =

n(T̂ x)∑

j=0

ϕ(T j(T̂ x)) =

n2−1∑

j=n1

ϕ(T jx).

Hence,
n1+···+nℓ−1∑

j=0

ϕ(T jx) =

ℓ−1∑

k=0

φ(T̂ kx) = 2n1 + · · ·+ 2nℓ − ℓ. (2.1)

Note that the derivative of T̂ satisfies

|T̂ ′|(x) = 2n(x)+1 = 2n1 = φ(x) + 1. (2.2)

We have

n1 + · · ·+ nℓ =

ℓ−1∑

k=0

log2 |T̂
′|(T̂ kx).

Recall the set in question:

E(α) =
{
x ∈ (0, 1] : lim

n→∞

1

n

n−1∑

j=0

ϕ(T jx) = α
}

(α ≥ 1).

Define

Ẽ(α) :=
{
x ∈ (0, 1] : lim

ℓ→∞

∑ℓ−1
k=0 φ(T̂

kx)
∑ℓ−1

k=0 log2 |T̂
′|(T̂ kx)

= α
}

(α ≥ 1).

The following lemma shows the two level sets are the same.

Lemma 2.1. For all α ≥ 1, we have E(α) = Ẽ(α).
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Proof. It is evident that E(α) ⊂ Ẽ(α), because, as discussed above,

∑ℓ−1
k=0 φ(T̂

kx)
∑ℓ−1

k=0 log2 |T̂
′|(T̂ kx)

=
1

n1 + · · ·+ nℓ

n1+···+nℓ−1∑

j=0

ϕ(T jx). (2.3)

Now, we show the other direction. Take an x ∈ Ẽ(α), express x in its binary
expansion

x = [0n1−110n2−11 · · · 0nℓ−11 · · · ].

In fact, nℓ − 1 is the recurrence time for n(T̂ ℓ−1x), for each ℓ ≥ 1.
By (2.1), we have, at present,

lim
ℓ→∞

1

n1 + · · ·+ nℓ

n1+···+nℓ−1∑

j=0

ϕ(T jx) = α.

So, we are required to check it holds for all n.
For any ǫ > 0, there exists ℓ0 ∈ N such that, for any ℓ ≥ ℓ0,

α− ǫ ≤
2n1 + · · ·+ 2nℓ − ℓ

n1 + · · ·+ nℓ
≤ α+ ǫ. (2.4)

For any n1 + · · ·+ nℓ < n < n1 + · · ·+ nℓ + nℓ+1 with ℓ ≥ ℓ0, it is trivial that

2n1 + · · ·+ 2nℓ − ℓ

n1 + · · ·+ nℓ + nℓ+1
≤

1

n

n−1∑

j=0

ϕ(T jx) ≤
2n1 + · · ·+ 2nℓ + 2nℓ+1 − ℓ− 1

n1 + · · ·+ nℓ
.

Thus, it suffices to show that

2nℓ+1 = o(n1 + · · ·+ nℓ), (2.5)

which also implies

nℓ+1 = o(n1 + · · ·+ nℓ).

Let M0 be a large integer such that, for all M ≥ M0, 2M ≥ 4αM . So, when
nℓ+1 ≤M0, there is nothing to prove. So, we always assume 2nℓ+1 ≥ 4αnℓ+1.

By (2.4), we have

2n1 + · · ·+ 2nℓ − ℓ ≥ (α− ǫ)(n1 + · · ·+ nℓ),

2n1 + · · ·+ 2nℓ + 2nℓ+1 − ℓ− 1 ≤ (α+ ǫ)(n1 + · · ·+ nℓ + nℓ+1).

These give

2nℓ+1 ≤ 2ǫ(n1 + · · ·+ nℓ) + (α + ǫ)nℓ+1 + 1.

So, we have

2nℓ+1 ≤ 4ǫ(n1 + · · ·+ nℓ).

�

2.2. Dimension of Ẽ(α). Now we calculate the Hausdorff dimension of the set

Ẽ(α). At first, we give a notation.

• For each finite word w ∈
⋃
n≥{0, 1}

n of length n, a T -dyadic cylinder of
order n is defined as

In(w) = {x ∈ (0, 1] : (ǫ1, · · · , ǫn(x)) = w}.

• For (n1, · · · , nℓ) ∈ N
ℓ, a T̂ -dyadic cylinder of order ℓ is defined as

Dℓ(n1, · · · , nℓ) = {x ∈ (0, 1] : nk(x) = nk, 1 ≤ k ≤ ℓ}.
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Proof of Theorem 1.1. We consider the potential function with two parameters

ψt,q := −t log |T̂
′| − (log 2) · qφ.

Then we can define a Ruelle operator

Lt,qf(x) :=
∑

y∈T̂−1x

eψt,q(y)f(y).

By Ruelle-Perron-Frobenius transfer operator theory ([10], Section 2), for any q > 0
(to satisfy the condition 2.2 of [10]), we can find an eigenvalue λt,q and an eigen-
function ht,q for Lt,q and an eigenfunction νt,q for the conjugate operator L∗t,q.
Then the pressure function P (t, q) = logλt,q and the Gibbs measure µt,q is given
by ht,q · νt,q.

The pressure function can be computed by

P (t, q) = lim
ℓ→∞

1

ℓ
log

∑

T̂ ℓx=x

exp(Sℓψt,q(x)) = log

∞∑

j=1

2−tj−q(2
j−1).

Now we calculte the local dimension of the Gibbs measure µt,q. Let Dℓ(x) be

the T̂ -dyadic cylinder containing x of order ℓ. By the Gibbs property of µt,q,

logµt,q(Dℓ(x))

log |Dℓ(x)|
=
Sℓψt,q(x)− ℓP (t, q)

−Sℓ log |T̂ ′|(x)
=
−tSℓ log |T̂

′|(x) − (log 2) · qSℓφ(x) − ℓP (t, q)

−Sℓ log |T̂ ′|(x)

= t+ q
Sℓφ(x)

Sℓ log2 |T̂
′|(x)

+
ℓP (t, q)

Sℓ log |T̂ ′|(x)
. (2.6)

• Upper bound. For each q > 0, let t(q) be the the number such that

P (t(q), q) = 0. Then we have for all x ∈ Ẽ(α), we have

lim inf
r→0

logµ(B(x, r))

log r
≤ lim inf

ℓ→∞

logµt,q(B(x, |Dℓ(x)|))

log |Dℓ(x)|

≤ lim inf
ℓ→∞

logµt,q(Dℓ(x))

log |Dℓ(x)|
= t(q) + qα,

where for the second inequality the trivial inclusion Dℓ(x) ⊂ B(x, |Dℓ(x)|) is used.
By Billingsley Lemma, this gives an upper bound of the Hausdorff dimension of

Ẽ(α). Thus we have

dimH Ẽ(α) ≤ inf
q>0
{t(q) + qα}.

• Lower bound. Let q0 be the point such that the following infimum is attained

inf
q>0
{t(q) + qα}.

Then

t′(q0) + α = 0. (2.7)

Claim (I): The measure µt(q0),q0 is supported on Eα. Since P (t(q), q) = 0,

∂P

∂t
t′(q) +

∂P

∂q
= 0. (2.8)

On the other hand, by the ergodicity of the measure µt,q, we have for µt,q almost
all x,

lim
ℓ→∞

Sℓφ(x)

Sℓ log2 |T̂
′|(x)

=

∫
φdµt,q∫

log |T̂ ′|dµt,q
· log 2.

By Ruelle-Perron-Frobenius transfer operator theory ([10], Proposition 6.5),
∫
(log 2) · φdµt,q = −

∂P

∂q
and

∫
log |T̂ ′|dµt,q = −

∂P

∂t
.
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Thus by (2.8) and then (2.7), for µt(q0),q0 almost all x,

lim
ℓ→∞

Sℓφ(x)

Sℓ log2 |T̂
′|(x)

=

∂P
∂q

∂P
∂t

= −t′(q0) = α.

This shows Claim (I).
Claim (II). For µt(q0),q0 almost all x,

lim
n→∞

logµt(q0),q0(In(x))

log 2−n
= t(q0) + q0α,

where In(x) is the T -dyadic cylinder of order n containing x.
On one hand, by (2.6) and then by (2.8) and (2.7), one has for µt(q0),q0 almost

all x

lim
ℓ→∞

logµt(q0),q0(Dℓ(x))

log |Dℓ(x)|
= t(q0) + q0

∂P
∂q

∂P
∂t

= t(q0) + q0α. (2.9)

On the other hand, note that for any x ∈ E(α), if the binary expansion of x is
x = [0n1−110n2−11 . . . ], then for any δ > 0, for ℓ large enough,

(α− δ)ℓ ≤ 2n1 + · · · 2nℓ − ℓ = Sℓφ(x) ≤ (α + δ)ℓ.

Hence

nℓ = O(log ℓ),

which implies

lim
ℓ→∞

log |Dℓ(x)|

log |Dℓ+1(x)|
= lim

ℓ→∞

n1 + · · ·+ nℓ
n1 + · · ·+ nℓ + nℓ+1

= 1. (2.10)

Thus

lim
n→∞

logµt(q0),q0(In(x))

log 2−n
= lim
ℓ→∞

logµt(q0),q0(Dℓ(x))

log |Dℓ(x)|
.

This shows Claim (II).
To conclude the desired lower bound, we apply the classic mass transference

principle (see [3], Proposition 4.2). Since the Hausdorff dimension will not be
changed if we replace the δ-coverings by T -dyadic cylinder coverings (see [3] Section
2.4), the lower bound of the Hausdorff dimension can be given by mass transference
principle on T -dyadic cylinders. By the above two claims and the Egorov’s theorem,
for any η > 0, there exists an integer N0 such that the set

{
x ∈ Eα : µ(In(x)) ≤ |In(x)|

t(q0)+q0α−η, n ≥ N
}

is of µt(q0),q0 positive measure. So, it implies that

dimH Eα ≥ t(q0) + q0α− η.

Note that ([10], Lemma 7.5) the function q 7→ t(q) is a decreasing convex function
such that

t(0) = 1, lim
q→∞

(t(q) + q) = 0,

and

lim
q→0+

t′(q) = −∞, lim
q→+∞

t′(q) = −1.

Therefore, we have proved for any α ∈ (1,+∞)

dimH(Ẽ(α)) = inf
q>0
{t(q) + qα},

which is a Legendre transformation. All the properties stated in the Theorem

1.1 are satisfied by the function α 7→ dimH(Ẽ(α)) which is the same function as
α 7→ dimH(E(α)) by Lemma 2.1.
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For the end point α = 1, it suffices to note that the level set E(1) is nothing
but the set of numbers with frequency of the digit 1 in its binary expansion being
1. Thus the Hausdorff dimension of E(1) is 0. Hence, the Legendre transformation
formula for the Hausdorff dimension of E(α) (α > 1) holds also for α = 1.

�

3. Fast increasing Birkhoff sum

At first, we give two simple observations.

Lemma 3.1. Let W be an integer such that 2t ≤ W < 2t+1 for some positive

integer t. For any 0 ≤ n ≤ t, among the integers between W and W (1+2−n), there
is one V = V (W,n) whose binary expansion of V has at most n + 2 digits 1 and

ends with at least t− n zeros.

Proof. By the assumption, we have 2−nW ≥ 2t−n. Thus among the 2−nW consec-
utive integers from W to W (1+ 2−n) there is at least one integer which is divisible
by 2t−n which means there is an integer ℓ ≥ 1 such that

W ≤ ℓ2k−n ≤W (1 + 2−n).

Let V = ℓ2t−n and note that V is an integer whose binary expansion ends with at
least t− n zeros. Since ℓ2t−n ≤W (1 + 2−n) < 2t+2, we conclude that ℓ2t−n has at
most (t+ 2)− (t− n) = n+ 2 digits 1 in its binary expansion. �

In the follows, the base of the logarithm is taken to be 2.

Lemma 3.2. For each integer W , and any integer n ≤ logW , we can find a word

w with length

|w| ≤ (n+ 2)(2 + logW )

and for any x ∈ I|w|(w)

W ≤

|w|−1∑

j=0

ϕ(T jx) ≤W (1 + 2−n).

Proof. Let V be an integer given in Lemma 3.1. Then W ≤ V ≤ W (1 + 2−n).
Moreover if we write this number V in binary expansion:

V = 2t1 + · · ·+ 2tp ,

one has that ⌊logW ⌋ + 1 ≥ t1 > · · · > tp ≥ ⌊logW ⌋ − n and p ≤ n + 2. Consider
the word

w = (10t1−11, 10t2−11, · · · , 10tp−11)

here the word 10tp−11 is 1 when tp = 0. Then we can check that the length of w
satisfies

|w| = (t1 + 1) + · · ·+ (tp + 1) ≤ p(t1 + 1) ≤ (n+ 2)(2 + logW ),

and for any x ∈ I|w|(w),
|w|−1∑

j=0

ϕ(T jx) = V.

Hence, the proof is completed. �

We also need the following lemma whose proof is left for the reader.

Lemma 3.3. For any m ≥ 1, define

Fm =
{
x ∈ (0, 1] : ǫkm(x) = 1, for all k ≥ 1

}
.

Then dimH Fm = m−1
m

.
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Before the proof Theorem 1.2, we show the following lemma.

Lemma 3.4. Let Ψ : N → N be an increasing function such that Ψ(n)/n → ∞
as n → ∞. Assume that there exists a subsequence Nk satisfying the following

conditions

Nk −Nk−1 →∞, Ψ(Nk)−Ψ(Nk−1)→∞, (3.1)

and

Ψ(Nk−1)

Ψ(Nk)
→ 1,

log
(
Ψ(Nk)−Ψ(Nk−1)

)

Nk −Nk−1
→ 0, (3.2)

as k →∞. Then the set

EΨ(1) =
{
x ∈ (0, 1] : lim

n→∞

1

Ψ(n)
Sn(x) = 1

}

has Hausdorff dimension 1.

Proof. Fix a large integer m and write

U =
{
u = (ǫ1, · · · , ǫm) : ǫm = 1, ǫi ∈ {0, 1}, i 6= m

}
.

To avoid the abuse of notation, by the first assumption of (3.1), we assume Nk −
Nk−1 ≫ m for all k ≥ 1 by setting N0 = 0 and Ψ(N0) = 0.

For each k ≥ 1, we write

Wk := Ψ(Nk)−Ψ(Nk−1)

and let {nk} be a sequence of integers tending to ∞ such that

nk ≤ logWk, nk ·
log

(
Ψ(Nk)−Ψ(Nk−1)

)

Nk −Nk−1
→ 0.

By the second assumptions of (3.1) and (3.2), this sequence of nk ≥ 0 do exist.
Now for Wk and nk, let wk be the word given in Lemma 3.2. Then the length

ak of wk satisfies

ak ≤(nk + 2)(2 + logWk)

=(nk + 2) (2 + log(Ψ(Nk)−Ψ(Nk−1))) = o(Nk −Nk−1)
(3.3)

and for any x ∈ Iak(wk),

Wk ≤

ak−1∑

j=0

ϕ(T jx) ≤Wk(1 + 2−nk). (3.4)

Define tk, ℓk to be the integers satisfying

Nk −Nk−1 − ak = tkm+ ℓk,

for some 0 ≤ ℓk < m.
Let wk (k ≥ 1) be given as the above. We define a Cantor subset of EΨ(1) as

follows.

Level 1 of the Cantor subset. Define

E1 =
{
IN1

(u1, · · · , ut1 , 1
ℓ1 , w1) : ui ∈ U , 1 ≤ i ≤ t1

}
.

For simplicity, we use IN1
(U1) to denote a general cylinder in E1.

Level 2 of the Cantor subset. This level is composed by sublevels for each cylinder
IN1

(U1) ∈ E1. Fix an element IN1
= IN1

(U1) ∈ E1. Define

E2(IN1
(U1)) =

{
IN2

(U1, u1, · · · , ut2 , 1
ℓ2 , w2) : ui ∈ U , 1 ≤ i ≤ t2

}
.
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Then
E2 =

⋃

IN1
∈E1

E2(IN1
).

For simplicity, we use IN2
(U2) to denote a general cylinder in E2.

From Level k to k + 1. Fix INk
(Uk) ∈ Ek. Define

Ek+1(INk
(Uk)) =

{
INk+1

(Uk, u1, · · · , utk+1
, 1ℓk+1, wk+1) : ui ∈ U , 1 ≤ i ≤ tk+1

}
.

Then
Ek+1 =

⋃

INk
∈Ek

Ek+1(INk
).

Up to now we have constructed a sequence of nested sets {Ek}k≥1. Set

F =
⋂

k≥1

Ek.

We claim that
F ⊂ E(Ψ).

In fact, for all x ∈ F , by construction, for each k ≥ 1,

Nk−1∑

n=Nk−1

ϕ(T nx)

=

Nk−1+tkm−1∑

n=Nk−1

ϕ(T nx) +

Nk−1+tkm+ℓk−1∑

n=Nk−1+tkm

ϕ(T nx) +

Nk−1∑

n=Nk−1+tkm+ℓk

ϕ(T nx)

=tkO(2
m) + ℓk +Wk(1 +O(2−nk))

=O

(
(Nk −Nk−1)2

m

m

)
+ (Ψ(Nk)−Ψ(Nk−1))(1 +O(2−nk)).

Since nk →∞ which implies 2−nk → 0 as k →∞, we have

Nk−1∑

n=0

ϕ(T nx) = Ψ(Nk)
(
1 + o(1)

)
+O

(
Nk2

m

m

)
.

By the assumption Ψ(n)/n→∞ as n→∞, we then deduce

Nk−1∑

n=0

ϕ(T nx) = Ψ(Nk) + o(Ψ(Nk)),

Thus

lim
k→∞

∑Nk−1
n=0 ϕ(T nx)

Ψ(Nk)
= 1. (3.5)

While, for each Nk−1 < N ≤ Nk
∑Nk−1−1

n=0 ϕ(T nx)

Ψ(Nk)
≤

∑N−1
n=0 ϕ(T

nx)

Ψ(N)
≤

∑Nk−1
n=0 ϕ(T nx)

Ψ(Nk−1)
.

So by the first assumption of (3.2), we deduce from (3.5) that

lim
n→∞

1

Ψ(n)
Sn(x) = 1.

This proves x ∈ EΨ(1) and hence F ⊂ EΨ(1).

In the following, we will construct a Hölder function between F and Fm. Recall
that

Fm =
{
x ∈ (0, 1] : ǫkm(x) = 1, for all k ≥ 1

}
.
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Define

f : F → Fm

x → y

where y is obtained by eliminating the digits {(ǫNk−ℓk−ak+1, · · · , ǫNk
)}k≥1 in the

binary expansion of x. Now we calculate the Hölder expoent of f .
Take two points x1, x2 ∈ F closed enough. Let n be the smallest integer such

that ǫn(x1) 6= ǫn(x2) and k be the integer such that Nk < n ≤ Nk+1. Note that by
the construction of F , the digits sequence

{(ǫNk−ℓk−ak+1, · · · , ǫNk
)}k≥1 and {ǫNk+tm}1≤t≤tk+1

are the same for all x ∈ F . So we must have

Nk < n < Nk+1 − ℓk+1 − ak+1. (3.6)

Since n is strictly less than Nk+1 − ℓk+1 − ak+1 and ǫNk+tm(x1) = ǫNk+tm(x2) = 1
for all 1 ≤ t ≤ tk+1, thus, at most m steps after the position n, saying n′, ǫn′(x1) =
ǫn′(x2) = 1. So it follows that

|x1 − x2| ≥
1

2n+m
.

Again by the construction and the definition of the map f , we have y1 = f(x1)
and y2 = f(x2) have common digits up to the position n−1−(ℓ1+a1)−· · ·−(ℓk+ak).
Thus, it follows

|f(x1)− f(x2)| ≤
1

2n−1−(ℓ1+a1)−···−(ℓk+ak)
.

Recall that ℓk < m and a1 + · · ·+ ak = o(Nk) (see (3.3)) and also that Nk/k →∞
as k →∞ (by (3.1)). We have

1 ≥
n− 1− (ℓ1 + a1)− · · · − (ℓk + ak)

n+m
≥
n− 1− km− o(Nk)

n+m
= 1 + o(1),

which implies that f is (1− η)-Hölder for any η > 0. Thus

dimH F ≥ (1− η) dimH Fm.

By Lemma 3.3, we then have

dimH F ≥ (1 − η)
m− 1

m
.

By the arbitrariness of η > 0 and lettingm→∞, we conclude that dimH E(Ψ) = 1.
This finishes the proof. �

Proof of Theorem 1.2. Observe that the Hausdorff dimensions of EΨ(β) are equal
to that of EΨ(1) for all β > 0. We need only replace Ψ(n) by βΨ(n). But it will
not change the order of Ψ and all calculations are the same to that for EΨ(1).

To show dimH EΨ(1) = 1, we can apply Lemma 3.4 directly. If Ψ(n) = n logn,
we can choose Nk = k2. For Ψ(n) = na (a > 1), we can also choose Nk = k2.
Suppose now Ψ(n) = 2n

γ

with 0 < γ < 1/2. Let δ > 0 be small such that

γ

1− γ
+ δγ < 1 (3.7)

which is possible since γ < 1/2. Take

Nk = ⌊k
1

1−γ
+δ⌋. (3.8)

Then we have

Nk+1 −Nk ≈ k
γ

1−γ
+δ, (3.9)
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and

log(Ψ(Nk+1)−Ψ(Nk)) ≈ log(Ψ′(Nk)(Nk+1 −Nk)) ≈ N
γ
k + log(Nk+1 −Nk) ≈ N

γ
k .

This shows the validity of (3.1). Moreover,

log(Ψ(Nk+1)−Ψ(Nk))

Nk+1 −Nk
≈
k

γ
1−γ

+γδ

k
γ

1−γ
+δ

= k−δ(1−γ) → 0 (k →∞).

Thus the second assumption of (3.2) is satisfied. At last, for the first assumption
in (3.2), by (3.7)

Ψ(Nk−1)

Ψ(Nk)
= 2(k−1)

γ
1−γ

+δγ
−k

γ
1−γ

+δγ

→ 1.

Hence Lemma 3.4 applies.

Now suppose that Ψ(n) = 2n
γ

with 1/2 ≤ γ < 1. Let β > 0 be given. Then, by
(2.1) we have for x ∈ EΨ(β), if x has binary expansion

x = [0n1−110n2−11 · · · 0nℓ−11 · · · ]

then

Sn1+n2+···+nℓ
(x)

Ψ(n1 + n2 + · · ·+ nℓ)
=

2n1 + 2n2 + · · ·+ 2nℓ − ℓ

2(n1+n2+···+nℓ)γ
→ β,

Sn1+n2+···+nℓ+1(x)

Ψ(n1 + n2 + · · ·+ nℓ + 1)
=

2n1 + 2n2 + · · ·+ 2nℓ − ℓ+ 2nℓ+1−1

2(n1+n2+···+nℓ+1)γ
→ β.

(3.10)

Since
2(n1+n2+···+nℓ)γ

2(n1+n2+···+nℓ+1)γ
→ 1,

by dividing the two limits of (3.10), we deduce that

2n1 + 2n2 + · · ·+ 2nℓ − ℓ+ 2nℓ+1−1

2n1 + 2n2 + · · ·+ 2nℓ − ℓ
= 1 +

2nℓ+1−1

2n1 + 2n2 + · · ·+ 2nℓ − ℓ
→ 1,

which implies that

Sn1+n2+···+nℓ+1
(x)

Sn1+n2+···+nℓ
(x)

= 1 +
2nℓ+1 − 1

2n1 + 2n2 + · · ·+ 2nℓ − ℓ
→ 1.

Combining with (3.10), we get

1←
Ψ(n1 + · · ·+ nℓ+1)

Ψ(n1 + · · ·+ nℓ)
=

2(n1+n2+···+nℓ+nℓ+1)γ

2(n1+n2+···+nℓ)γ
.

Thus

(n1 + n2 + · · ·+ nℓ + nℓ+1)
γ − (n1 + n2 + · · ·+ nℓ)

γ

=(n1 + n2 + · · ·+ nℓ)
γ

((
1 +

nℓ+1

n1 + n2 + · · ·+ nℓ

)γ
− 1

)

≃
γnℓ+1

(n1 + n2 + · · ·+ nℓ)1−γ
→ 0.

Therefore, for any ε > 0, there exists k0 ≥ 1 such that for all j > k0,

nj < ε(n1 + n2 + · · ·+ nj−1)
1−γ . (3.11)

Then for any k0 < j ≤ ℓ

nj < ε(n1 + n2 + · · ·+ nℓ)
1−γ .

This implies

Sn1+n2+···+nℓ
(x) = 2n1 + 2n2 + · · ·+ 2nℓ − ℓ

≤M + ℓ2ǫ(n1+n2+···+nℓ)1−γ

− ℓ,
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with M := 2n1 + · · ·+ 2nk0 . Thus

Sn1+n2+···+nℓ
(x)

Ψ(n1 + n2 + · · ·+ nℓ)
<
M + ℓ2ǫ(n1+n2+···+nℓ)1−γ

− ℓ

2(n1+n2+···+nℓ)γ
. (3.12)

By observing nj ≥ 1, we deduce that (3.12) converges to 0 for 1/2 ≤ γ < 1, a
contradiction to (3.10). Hence EΨ(β) is an empty set.

Suppose that γ ≥ 1. Then by (2.1) we have for x ∈ EΨ(β)

Sn1+n2+···+nℓ
(x)

Ψ(n1 + n2 + · · ·+ nℓ)
=

2n1 + 2n2 + · · ·+ 2nℓ − ℓ

2(n1+n2+···+nℓ)γ
→ β,

Sn1+n2+···+nℓ−1(x)

Ψ(n1 + n2 + · · ·+ nℓ − 1)
=

2n1 + 2n2 + · · ·+ 2nℓ − ℓ− 1

2(n1+n2+···+nℓ−1)γ
→ β.

(3.13)

However,

2n1 + 2n2 + · · ·+ 2nℓ − ℓ

2n1 + 2n2 + · · ·+ 2nℓ − ℓ− 1
→ 1 but

2(n1+n2+···+nℓ)γ

2(n1+n2+···+nℓ−1)γ
≥ 2,

which is a contradiction. �

4. The potential 1/x

In fact, the techniques in Section 3 can be applied to the continuous potential
g : x 7→ 1/x on (0, 1] which has a singularity at 0.

Proof of Theorem 1.3. We first note that if x ∈ (0, 1] has binary expansion x =
[0n1s . . . ], then ϕ(x) = 2n and

2n ≤ g(x) ≤ 2n + 2n−s+1 = 2n(1 + 2−s+1). (4.1)

In Lemma 3.2, for an integerW , and for any integer n ≤ logW , we can construct
instead of the words w = (10t1−11, 10t2−11, · · · , 10tp−11), the following word

w = (10t1−11s+1, 10t2−11s+1, · · · , 10tp−11s+1).

Then the length of the word satisfies

|w| =

p∑

i=1

(ti + s+ 1) ≤ p(t1 + s+ 1) ≤ (n+ 2)(logW + s+ 2). (4.2)

By (4.1), for any x ∈ I|w|(w),

W + s(n+ 2) ≤

|w|−1∑

j=0

g(T jx) ≤W (1 + 2−n) · (1 + 2−s) + 2s(n+ 2).

For each k ≥ 1, we still write

Wk := Ψ(Nk)−Ψ(Nk−1)

and let nk, sk be a sequence of integers tending to ∞ such that

nk ·
log

(
Ψ(Nk)−Ψ(Nk−1)

)

Nk −Nk−1
→ 0, (4.3)

nk · sk
Nk −Nk−1

→ 0, (4.4)

and
nk · sk

Ψ(Nk)−Ψ(Nk−1)
→ 0. (4.5)

By (3.1) and (3.2), these two sequences of nk ≥ 0, sk ≥ 0 do exist.
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Now for Wk and nk, sk, let wk be the word given as above. Then by (4.3) and
(4.4), the length ak of wk satisfies

ak ≤(nk + 2)(logWk + sk + 2)

=(nk + 2) (log(Ψ(Nk)−Ψ(Nk−1)) + sk + 2)

=o(Nk −Nk−1)

(4.6)

and for any x ∈ Iak(wk),

Wk + sk(nk + 2) ≤

ak−1∑

j=0

g(T jx) ≤Wk(1 + 2−nk) · (1 + 2−sk) + 2sk(nk + 2). (4.7)

Hence by (4.5) we still have the same estimation:

Nk−1∑

n=0

g(T nx) = Ψ(Nk) + o(Ψ(Nk)),

and the rest of the proof is the same.

We can repeat the same arguments in Section 3 and show that for potential g,
the set EΨ(β) is empty if Ψ(n) = 2n

γ

(γ ≥ 1/2).
In fact, by definition, for x ∈ EΨ(β), if x has binary expansion

x = [0n1−110n2−11 · · · 0nℓ−110nℓ+1−11 · · · ]

then

Sn1+n2+···+nℓ
g(x)

Ψ(n1 + n2 + · · ·+ nℓ)
→ β,

Sn1+n2+···+nℓ+1g(x)

Ψ(n1 + n2 + · · ·+ nℓ + 1)
→ β.

Thus

Sn1+n2+···+nℓ
g(x)

Sn1+n2+···+nℓ+1g(x)
→ 1.

Observing ϕ ≤ g ≤ 2ϕ, we have

2nℓ+1

Sn1+n2+···+nℓ
g(x)

→ 0,

which then implies
Sn1+n2+···+nℓ

g(x)

Sn1+n2+···+nℓ+1
g(x)

→ 1.

By the definition of x ∈ EΨ(β), we have

Ψ(n1 + n2 + · · ·+ nℓ+1)

Ψ(n1 + n2 + · · ·+ nℓ)
→ 1.

This further implies the same inequality (3.11) and the rest of proof is the same by
noting ϕ ≤ g ≤ 2ϕ. �
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