Estimating a density, a hazard rate, and a transition intensity via the ρ-estimation method - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Estimating a density, a hazard rate, and a transition intensity via the ρ-estimation method

Mathieu Sart
  • Fonction : Auteur
  • PersonId : 1066600
  • IdRef : 17521963X

Résumé

We propose a unified study of three statistical settings by widening the ρ-estimation method developed in [BBS17]. More specifically, we aim at estimating a density, a hazard rate (from censored data), and a transition intensity of a time inhomogeneous Markov process. We relate the performance of ρ-estimators to deviations of an empirical process. We deduce non-asymptotic risk bounds for an Hellinger-type loss when the models consist, for instance, of piecewise polynomial functions, multimodal functions, or functions whose square root is piecewise convex-concave. Under convex-type assumptions on the models, maximum likelihood estimators coincide with ρ-estimators, and satisfy therefore our risk bounds. However, our results also apply to some models where the maximum likelihood method does not work. Subsequently, we present an alternative way, based on estimator selection, to define a piecewise polynomial estimator. We control the risk of the estimator and carry out some numerical simulations to compare our approach with a more classical one based on maximum likelihood only.
Fichier principal
Vignette du fichier
ArticleHal.pdf (619.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01557973 , version 1 (06-07-2017)
hal-01557973 , version 2 (21-12-2017)
hal-01557973 , version 3 (31-01-2018)
hal-01557973 , version 4 (07-11-2018)
hal-01557973 , version 5 (22-07-2020)

Identifiants

  • HAL Id : hal-01557973 , version 4

Citer

Mathieu Sart. Estimating a density, a hazard rate, and a transition intensity via the ρ-estimation method. 2018. ⟨hal-01557973v4⟩

Collections

ICJ-PSPM
360 Consultations
451 Téléchargements

Partager

More