LOCAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATION IN BIFURCATING MARKOV CHAIN MODEL - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

LOCAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATION IN BIFURCATING MARKOV CHAIN MODEL

Résumé

We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain on R d. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidth is selected by a method inspired by the works of Goldenshluger and Lepski [18]. Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty.
Fichier principal
Vignette du fichier
BR1.pdf (414.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01557228 , version 1 (05-07-2017)

Licence

Identifiants

Citer

Siméon Valère Bitseki Penda, Angelina Roche. LOCAL BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATION IN BIFURCATING MARKOV CHAIN MODEL. 2017. ⟨hal-01557228⟩
362 Consultations
128 Téléchargements

Altmetric

Partager

More