Weak uniqueness and density estimates for sdes with coefficients depending on some path-functionals - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2020

Weak uniqueness and density estimates for sdes with coefficients depending on some path-functionals

Résumé

In this paper, we develop a general methodology to prove weak uniqueness for stochastic differential equations with coefficients depending on some path-functionals of the process. As an extension of the technique developed by Bass & Perkins [BP09] in the standard diffusion case, the proposed methodology allows one to deal with processes whose probability laws are singular with respect to the Lebesgue measure. To illustrate our methodology, we prove weak existence and uniqueness in two examples : a diffusion process with coefficients depending on its running symmetric local time and a diffusion process with coefficients depending on its running maximum. In each example, we also prove the existence of the associated transition density and establish some Gaussian upper-estimates.
Fichier principal
Vignette du fichier
weak_existence_sde_Final.pdf (416.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01552492 , version 1 (03-07-2017)

Identifiants

Citer

Noufel Frikha, Libo Li. Weak uniqueness and density estimates for sdes with coefficients depending on some path-functionals. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (2), pp.1002-1040. ⟨10.1214/19-AIHP992⟩. ⟨hal-01552492⟩
172 Consultations
95 Téléchargements

Altmetric

Partager

More