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WEAK UNIQUENESS AND DENSITY ESTIMATES FOR SDES WITH COEFFICIENTS

DEPENDING ON SOME PATH-FUNCTIONALS

NOUFEL FRIKHA AND LIBO LI

Abstract. In this paper, we develop a general methodology to prove weak uniqueness for stochastic differential
equations with coefficients depending on some path-functionals of the process. As an extension of the technique
developed by Bass & Perkins [BP09] in the standard diffusion case, the proposed methodology allows one to deal with
processes whose probability laws are singular with respect to the Lebesgue measure. To illustrate our methodology, we
prove weak existence and uniqueness in two examples : a diffusion process with coefficients depending on its running
symmetric local time and a diffusion process with coefficients depending on its running maximum. In each example,
we also prove the existence of the associated transition density and establish some Gaussian upper-estimates.

1. Introduction

In the present paper, we investigate the weak existence and uniqueness of a one-dimensional stochastic differential
equation (SDE in short) with coefficients depending on some path-functional A and dynamics given by

(1.1) Xt “ x`
ż t

0

bpXs, AspXqqds `
ż t

0

σpXs, AspXqqdWs, t P r0, T s

where pWtqtě0 stands for a one-dimensional Brownian motion and pAtpXqqtě0 is an Rd´1-valued functional depend-
ing on the path X , d ě 2. Some examples include its local and occupation times, its running maximum or minimum,
its first hitting time of a level, its running average, etc. From the point of view of applications, systems of the type

(1.1) appear in many fields. Let us mention stochastic Hamiltonian systems where AtpXq “
şt
0
F ps,Xsqds, see e.g.

[Soi94] for a general overview, [Tal02] for convergence to equilibrium or [BPV01] for an application to the pricing of
Asian options. We also mention [For11], where the author constructs a weak solution to the SDE (1.1) with b ” 0
and AtpXq “ max0ďsďtXs is the running maximum of X and investigates an application in mathematical finance.

In the standard multi-dimensional diffusion framework, the martingale approach initiated by Stroock and Varad-
han turns out to be particularly powerful when trying to get uniqueness results. It is now well-known that the
martingale problem associated to a multi-dimensional diffusion operator is well posed as soon as the drift is bounded
measurable and that the diffusion matrix is continuous (with respect to the space variable) and strictly positive,
see e.g. Stroock and Varadhan [SV79]. In the indicated framework, uniqueness is derived from Calderón-Zygmund
estimates. Also, when a is Hölder continuous, an analytical approach using Schauder estimates can be applied, see
e.g. Friedman [Fri64].

Recently, Bass and Perkins [BP09] introduced a new technique for proving uniqueness for the martingale problem
and illustrated it in the framework of non-degenerate, non-divergence and time-homogeneous diffusion operators
under the assumption that the diffusion matrix is strictly positive and Hölder continuous. It has also been recently
extended by Menozzi [Men11] for a class of multi-dimensional degenerate Kolmogorov equations that is the case

of a multi-dimensional path functional A “ pA1
t , ¨ ¨ ¨ , ANt qtě0 given by: A1

t pXq “
şt
0
F1pXs, AspXqqds, A2

t pXq “şt
0
F2pA1

s, ¨ ¨ ¨ , ANs qds, ¨ ¨ ¨ , ANt pXq “
şt
0
FN pAN´1

s , ANs qds, under an assumption of weak Hörmander type on the
functions pF1, ¨ ¨ ¨ , FN q. The approach in the two mentioned papers consists in using a perturbation method for
Markov semigroups, known as the parametrix technique, such as exposed in Friedman [Fri64] in the case of uniformly
elliptic diffusion. More precisely, the first step of the strategy is to approximate the original system by a simple
process obtained by freezing the drift and the diffusion coefficients in the original dynamics, and use the fact that
the transition density of such approximation as well as its derivatives can be explicitly estimated. Then, the key
ingredient is the smoothing property of the underlying parametrix kernel, see assumption (H1) (iv) in Section 2.1
for a precise statement. This property reflects the quality of the approximation of the original dynamics. An
important remark is that this smoothing property is only achieved when the freezing point, that is the point where
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the coefficients are evaluated in the approximation process, is chosen to be the terminal point where the transition
density is evaluated.

The main purpose of this paper is to develop a technique in order to prove weak uniqueness as well as existence
of a transition density for some SDEs with path-functional coefficients where the probability law of the couple
pXt, AtpXqq may be singular with respect to the Lebesgue measure on Rd. The main new feature added here
compared to previous works on this topic is that our technique enables us to deal with a process whose probability
law is absolutely continuous with respect to a σ-finite measure.

Our methodology can be summed up as follows: suppose that the transition density of the Markov process
pWt, AtpW qqtě0 with initial point x exists with respect to a σ-finite measure νpx, dyq, not necessarily being the
Lebesgue measure on Rd, and a chain rule (Itô’s) formula for fpt,Xt, AtpXqq is available, where f belongs to a suit-
able class of functions D related to the domain of the infinitesimal generator of the Markov process pWt, AtpW qqtě0.
Then as soon as the derivatives of the transition density of pWt, AtpW qqtě0 satisfies some good estimates or equiv-
alently if the parametrix kernel enjoys a smoothing property with respect to νpx, dyq, one has the main tools to
prove weak uniqueness for the SDE (1.1).

Since the probability law of the process pXt, AtpXqqtě0 may be singular, it is not clear how to select the approx-
imation process and even if this crucial smoothing property will be achieved in such context. Let us be more precise
on one example. If one considers the couple pXt, AtpXqqtě0, AtpXq “ L0

t pXq being the symmetric local time at
point 0 accumulated by X up to time t, it is easy to see that on tT0 ą tu, T0 being the first hitting time of 0 by
X , one has L0

t pXq “ 0 whereas on tT0 ď tu, the process may accumulate local time so that the probability law
of the couple pXt, L

0
t pXqq consists in two parts, one being singular with an atom in the local time part, the other

one (hopefully) being absolutely continuous with respect to the Lebesgue measure on R ˆ R`. Hence, we see that
for such dynamics the situation is more challenging than in the standard diffusion setting. This new difficulty will
be overcome by choosing two independent parametrix kernels, one for each part, and then by proceeding with a
non-trivial selection of the freezing point according to the singular measure induced by the approximation process.
Even in this singular framework, one is able to prove that the smoothing property of the parametrix kernel still
holds which is as previously mentioned the keystone to prove weak uniqueness for the SDE (1.1). As far as we know
these feature appears to be new.

It will be apparent in what follows that our approach is not limited to the one-dimensional SDE case and can be
easily adapted to multi-dimensional examples such as the one studied in [Men11]. However, we decide to confine our
presentation to the one-dimensional framework to foster understanding of the main arguments. As an illustration
of our methodology we consider two examples. In the first one, we choose AtpXq “ L0

t pXq, t ě 0, where L0
t pXq

is the symmetric local time at 0 accumulated by X up to time t. The bivariate density of Brownian motion and
its running symmetric local time at 0 can be found e.g. in Karatzas & Shreve [KS84]. In the second example, we
consider the running maximum of the process, that is AtpXq “ max0ďsďtXs, t ě 0.

The first part of our main results can be seen as an application of the general methodology developed in Section
2. More precisely, in Theorem 3.3 and Theorem 3.7 we prove that weak uniqueness holds for the SDE (1.1) when
the path-functional is the symmetric local time or the running maximum, under the assumption that the drift b is
bounded measurable and the diffusion coefficient a “ σ2 is uniformly elliptic, bounded and η-Hölder-continuous,
for some η P p0, 1s.

Finally, the strategy developed in this paper can be used not only to prove the existence, but also to retrieve an
explicit representation of the transition density (with respect to a σ-finite measure) of pXt, AtpXqqtě0 as an infinite
series. Obviously, such results are out of reach by using standard Malliavin calculus techniques, which cannot
be employed here under such rather mild smoothness assumptions on the coefficients, or the Fourier transform
approach developed in Fournier and Printemps [FP10].

However, one has to overcome new technical issues compared to the standard diffusion setting investigated by
Friedman [Fri64] or even to the degenerate case considered by Delarue and Menozzi [DM10]. Leaving this technical
discussion to Section 3.3, we only point out that the main difficulty lies in the non-integrable time singularity
induced by the mixing of the singular and non-singular parts of the parametrix kernel. In order to overcome this
issue, which to our best knowledge appears to be new, the key idea is to use the symmetry of the density of the
killed proxy with respect to the initial and terminal points, in order to retrieve the integrability in time of the
underlying parametrix kernel. As the second part of our main results, we prove the existence of the transition
density for pXt, AtpXqqtě0 as well as its representation in infinite series for the two examples mentioned before, see
Theorem 3.10 and Theorem 3.18 below. Some Gaussian upper-estimates are also established.
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Notations:

We introduce here some basic notations and definitions used throughout this paper. For a sequence of linear oper-
ators pSiq1ďiďn, we define

śn

i“1 Si “ S1 ¨ ¨ ¨Sn. We will often use the convention
ś

H “ 1 which appears when we

have for example
ś´1

i“0. Let J be a subset of Rd, we denote by Ckb pJ q, the collection of bounded continuous functions
which are k-times continuously differentiable with bounded derivatives in the interior of J . The derivatives at the
boundary BJ are defined as limits from the interior and it is assumed that they exist and are finite. The set BbpJ q is
the collection of real-valued bounded measurable maps defined on J . Furthermore we will use the following notation
for time and space variables sp “ ps1, ¨ ¨ ¨ , spq, zp “ pz1, ¨ ¨ ¨ , zpq, the differentials dsp “ ds1 ¨ ¨ ¨ dsp, dzp “ dz1 ¨ ¨ ¨dzp
and for a fixed time t ě 0, we denote by ∆pptq “ tsp P r0, tsp : sp`1 :“ 0 ď sp ď sp´1 ď ¨ ¨ ¨ ď s1 ď t “: s0u. For
a multi-index α “ pα1, ¨ ¨ ¨ , αℓq of length ℓ, we sometimes write Bαfpxq “ Bxα1

¨ ¨ ¨ Bxαℓ
fpxq, for a vector x. We

denote by y ÞÑ gpct, yq the transition density function of the standard Brownian motion with variance c, i.e.
gpct, yq “ p2πtcq´1{2 expp´y2{p2tcqq, y P R. The associated non-normalized Hermite polynomials are defined re-
spectively as Hipct, yq “ Biygpct, yq, i P N. For a fixed given point z P Rd, the Dirac measure is denoted by δzpdxq.
For a, b P R, we use the notation a — b if there exists a constant C ą 1 such that C´1b ď a ď Cb. We denote
by |f |8 the supremum norm of a function f . Throughout the paper, we will often use the space-time inequality

@x P R, |x|pe´qx2 ď pp{p2qeqqp{2, valid for any p, q ą 0 and sometimes will omit to refer to it explicitly.

2. Abstract framework for weak uniqueness

2.1. A perturbation formula.

Throughout this section, we assume that there exists a weak solution pX,W q, tFtu to (1.1) and that the process
Yt :“ pXt, AtpXqqtě0, starting from the initial point x at time 0, lives on a closed space J Ă Rd. The process
pXt, AtpXqqtě0 induces a probability measure Px (or simply denoted P) on Ω “ Cpr0,8q,J q which is endowed
with the canonical filtration pFtqtě0. We consider the collection of linear maps pPtqtě0 defined by Ptfpxq :“
ErfpXt, AtpXqqs for f P BbpJ q. It is important to point out that, at this moment, we do not know whether Y is a
(strong) Markov process or not. However, one of our main assumption (see assumption (H1) (ii) below) links the
process Y to the solution of a martingale problem in the sense of Stroock & Varadhan [SV79]. As in the standard
diffusion case, the strong Markov property will be a consequence of weak uniqueness.

We define the shift operators pθtyqpsq “ ypt` sq, 0 ď s ă 8 for t ě 0 and y P Cpr0,8q,J q. For any deterministic
time t ě 0, we denote by Qt,w the regular conditional probability for Px given Ft and let Pt,w be the probability

measure given by Pt,w :“ Qt,w ˝ θ´1
t . In particular, for every F P BpCpr0,8q,J qq, one has Pxpθ´1

t F |Ftqpwq “
Qt,wpθ´1

t F q “ Pt,wpF q, for Px-a.e. w P Ω.
As a substitute for the Markov property, we will assume that there exists a weak solution starting from x “ yptq

at time 0 such that the probability measure induced by this solution is exactly Pt,w, for every w R N , N being a
Px-null event of Ft. As in the standard diffusion case, this will be a standard consequence of existence of solutions
to the associated martingale problem. This assumption allows to prove that the finite-dimensional distributions
are unique once we know that two weak solutions have the same one-dimensional marginal distributions, see e.g.
Chapter 5 in [KS91] or Chapter VI in [Bas97].

We denote the approximation or the proxy process by X̄, that is the solution of (1.1) with b “ 0 and the diffusion
coefficient σ evaluated at some fixed point z P J . Without going into details at this point, the key idea is to consider
the process Y as a perturbation of the proxy Ȳ “ pX̄t, ApX̄tqqtě0 whose law is denoted by p̄tpx, dyq “ p̄zt px, dyq.
Accordingly, we define the collection of linear maps pP̄tqtě0 by P̄tfpxq :“ ErfpX̄t, AtpX̄qqs “

ş
fpyqp̄tpx, dyq for

f P BbpJ q. To indicate that one is working with the approximation or the proxy process with coefficients frozen
at z or functions associated with the approximation process frozen at z, we put a bar on top of the function. To
indicate that the frozen point is the terminal point y of the proxy density, we will put a hat instead of a bar. To
derive a first order expansion of pPtqtě0 and prove weak uniqueness, we make the following assumptions:

Assumptions (H1): Given the initial and frozen point x, z P J .

(i) (a) The proxy process Ȳ z is a Markov process with infinitesimal generator L̄z .
(b) There exists a σ-finite measure νpx, .q such that for all t ą 0, the law of Ȳ zt is absolutely continuous

with respect to νpx, .q. More specifically, there exists a νpx, dyq-integrable function pt, x, yq ÞÑ p̄zt px, yq
satisfying

p̄zt px, dyq “ p̄zt px, yqνpx, dyq
and P̄ zt fpxq “

ş
fpyqp̄zt px, yqνpx, dyq for all f P BbpJ q.
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(ii) There exists a class of functions D Ă DompL̄zq X CbpJ q and a linear operator L acting on D such that:
(a) For all g P C8

b pJ q, P̄ zt g P D.
(b) For all functions h such that: s ÞÑ hps, .q P C1pR`,Dq, the process

hpt, Ytq ´ hp0, xq ´
ż t

0

tB1hps, Ysq ` Lhps, Ysqu ds, t ě 0

is a continuous square integrable martingale under Px.
(c) There exists a parametrix kernel θ̄t with respect to the measure ν, that is a measurable map pt, z, x, yq ÞÑ

θ̄zt px, yq such that for all g P C8
b pJ q

pL ´ L̄
zqP̄ zt gpxq “

ż
gpyqθ̄zt px, yqνpx, dyq, t ą 0.(2.1)

(iii) For all x, y P J , the maps pt, zq ÞÑ p̄zt px, yq and pt, zq ÞÑ θ̄zt px, yq are continuous on p0,8q ˆ J .

(iv) For all t ą 0, there exists some νpx, dyq-integrable functions p˚
t px, yq, θ˚

t px, yq, a constant ζ̄ “ ζ̄pzq P R and
a positive constant C, eventually depending on t but in a non-decreasing way, such that

|p̄zt px, yq| ď p˚
t px, yq, |θ̄zt px, yq| ď θ˚

t px, yq, and

ż
|θ˚
t px, yq|νpx, dyq ď Ctζ̄ .

For the case z “ y, we assume that the parametrix kernel enjoys the following smoothing property: there
exists ζ ą ´1 and a positive constant C, eventually depending on t in a non-decreasing way, such that

(2.2) @t ą 0, @x P J ,

ż
|θ̄yt px, yq|νpx, dyq ď Ctζ .

(v) For any g P CbpJ q, one has

lim
tÓ0

ż
gpyqp̄yt px, yqνpx, dyq “ gpxq.

For notational simplicity, we define for t ą 0,

p̂tpx, yq :“ p̄
y
t px, yq,

P̂tfpxq :“
ż
fpyqp̂tpx, yqνpx, dyq “

ż
fpyqp̄yt px, yqνpx, dyq,

Stgpxq :“
ż
gpyqθ̂tpx, yqνpx, dyq “

ż
gpyqθ̄yt px, yqνpx, dyq.

Remark 2.1. The set of assumptions (H1) will allow us to prove a perturbation formula of the map Pt around P̂t,
see Theorem 2.2 below. The kernel of St defined above satisfies the smoothing property (iv) which is, as mentioned
in the introduction, the key point to prove uniqueness in law for equation (1.1). This smoothing property was
exploited in [BP09] and then in [Men11] for some degenerate Kolmogorov equations. The main new feature added
here is that we are able to deal with a process that admits a density with respect to a σ-finite measure (with
eventually several atoms). In particular, the process can be singular in the sense that it may not admit a transition
density with respect to the Lebesgue measure on J .

Assumption (H1) (ii) b) provides a chain rule formula for the process Y “ pXt, AtpXqqtě0 for a suitable class of
functions D included in the domain of L̄. The operator L is identified by means of this chain rule formula. As we
will see in Section 3, this assumption will help us to formulate the martingale problem associated to the process Y .
This will be used later on in order to establish the existence of a weak solution to the SDE (1.1). It is important
to point out that we don’t know if Y is a (strong) Markov process for the moment. In general, as in the standard
diffusion case, this will be a consequence of weak uniqueness, or equivalently of the well-posedness of the martingale
problem, see [SV79], [KS91] or [Bas97].

Theorem 2.2. Assume that (H1) holds. Then, for any g P CbpJ q,

PT gpxq “ P̂T gpxq `
ż T

0

PsST´sgpxq ds.
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Proof. Let f P C8
b pJ q. For t P r0, T s and r ą 0, by assumption (H1) (ii) a) and b) applied to pt, xq ÞÑ hpt, xq “

P̄T´t`rfpxq P C1pr0, T s,Dq, there exists a continuous martingale pM̄tq0ďtăT starting at 0 such that

P̄T´t`rfpYtq “ P̄T`rfpxq `
ż t

0

pBs ` LqP̄T´s`rfpYsq ds ` M̄t

“
ż
fpyqp̄zT`rpx, yqνpx, dyq `

ż t

0

ż
fpyqθ̄zT´s`rpYs, yqνpYs, dyq ds ` M̄t.

We now proceed to the diagonalisation argument, that is the argument that allows one to select the freezing point
z according to the measure νpx, dyq. We consider a sequence of non-negative mollifiers δzε , ε ą 0, such that δzε ď Cε
and pδzε qεą0 converges weakly to the Dirac mass at z as ε Ñ 0. For g P C8

b pJ q, we apply the above decomposition
for f “ δzεg and take expectations. We obtain

PtP̄T´t`rδ
z
εgpxq “

ż
δzεpyqgpyqp̄zT`rpx, yqνpx, dyq `

ż t

0

ż
δzε pyqgpyqErθ̄zT´s`rpYs, yqνpYs, dyqs ds.

We let t Ñ T and integrate with respect to z, by continuity, we get

(2.3)

ż
PT P̄rδ

z
εgpxqdz “

ż ż
δzε pyqgpyqp̄zT`rpx, yqνpx, dyqdz `

ż T

0

ż
Er
ż
δzεpyqgpyqθ̄zT´s`rpYs, yqνpYs, dyq sdz ds

We pass to the limit as ε Ñ 0 and then let r Ñ 0 in (2.3). We first give some useful estimates. By using (H1)
(iv) and (2.2), we have

|
ż
δzε pyqp̄zrpYT , yqdz| ď p˚

r pYT , yq,(2.4)

|pL ´ L̄qP̄tδzεgpxq| ď Cε|g|8tζ̄ .(2.5)

Let us consider the left-hand side of (2.3). From (2.4), we can apply Fubini’s theorem to obtain
ż
ErP̄rδzεgpYT qsdz “ Er

ż ż
δzε pyqgpyqp̄zrpYT , yqνpYT , dyqdzs(2.6)

“ Er
ż "ż

δzεpyqp̄zrpYT , yqdz
*
gpyqνpYT , dyqs.

By a similar argument, one can apply dominated convergence theorem together with (H1) (iii) to obtain

lim
εÓ0

ż
ErP̄rδzεgpYT qsdz “ Er

ż
p̄yrpYT , yqgpyqνpYT , dyqs “ ErP̂rgpYT qs.

Consequently, by letting r Ñ 0 and using (H1) (iii) and (v), we obtain again by the dominated convergence theorem

limrÓ0 ErP̂rgpYT qs “ PT gpxq.
For the right-hand side of (2.3). Again by (2.4) we can apply Fubini’s theorem and then the dominated conver-

gence theorem while having in mind (H1) (iii). This yields

lim
εÓ0

ż
P̄T`rδ

z
εgpxqdz “ lim

εÓ0

ż "ż
δzεpyqgpyqp̄zT`rpx, yqdz

*
νpx, dyq(2.7)

“
ż
gpyqp̄yT`rpx, yqνpx, dyq “ P̂T`rgpxq.

Letting r Ñ 0, by (H1) (iii) we deduce from the continuity of r ÞÑ P̂rgpxq that limrÓ0 P̂T`rgpxq “ P̂T gpxq. The
second term on the right-hand side of (2.3) is computed similarly by using (H1) (ii). To pass to the limit as ε Ñ 0,
we apply the dominated convergence theorem using (H1) (iv) and (iii) we obtain

lim
εÓ0

ż T

0

ż
Er
ż
δzεpyqgpyqθ̄zT´s`rpYs, yqνpYs, dyqsdz ds(2.8)

“ lim
εÓ0

Er
ż T

0

ż "ż
gpyqδzεpyqθ̄zT´s`rpYs, yqdz

*
νpYs, dyq dss

“ Er
ż T

0

ż
lim
εÓ0

"ż
gpyqδzεpyqθ̄zT´s`rpYs, yqdz

*
νpYs, dyq dss

“ Er
ż T

0

ż
gpyqθ̄yT´s`rpYs, yqνpYs, dyq dss “ Er

ż T

0

ST´s`rgpYsqdss
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and to pass to the limit as r Ñ 0, we remark that (H1) (iv) (ζ ą ´1) implies the continuity at 0 of r ÞÑ
Er
şT
0
ST´s`rgpYsqdss. The result is valid for g P C8

b pRdq and an approximation argument completes the proof. �

We are not so far from obtaining a representation of PT g in infinite series. Once weak existence and uniqueness
for the SDE (1.1) is established, this representation will be useful in order to derive the existence of a transition
density for the process Y . We will also use it to derive some Gaussian upper-bound estimates for the density of the
couple pXT , AT pXqq.

Corollary 2.1. Assume that (H1) holds and that for any g P CbpJ q and t ą 0, the function x ÞÑ Stg defined in
Section 2.1 belongs to CbpJ q. Then one may iterate the first order formula in Theorem 2.2 to obtain

PT gpxq “ P̂T gpxq `
ÿ

ně1

InT gpxq(2.9)

with

InT gpxq “
ż

∆npT q
dsnP̂snSsn´1´sn ¨ ¨ ¨ST´s1gpxq.

Moreover, the series (2.9) converges absolutely and uniformly for x P J .

Proof. We remark that since for all t ą 0, x ÞÑ Stgpxq P CbpJ q, we can iterate the first order expansion in Theorem
2.2 to obtain

PT gpxq “ P̂T gpxq `
N´1ÿ

n“1

ż

∆npT q
dsnP̂snSsn´1´sn ¨ ¨ ¨ST´s1gpxq ` R

N
T gpxq

where the remainder term is given by

R
N
T gpxq “

ż

∆N pT q
dsNPsNSsN´1´sN ¨ ¨ ¨ST´s1gpxq.

From iterative application of estimate (2.2), the remainder term is bounded by

|RN
T gpxq| ď CT |g|8

ż

∆N pT q
dsN

N´1ź

n“0

Cpsn ´ sn´1qζ ď CNT T
Np1`ζq Γp1 ` ζqN

Γp1 `Np1 ` ζqq

where ζ ÞÑ Γpζq is the Gamma function.
By Lemma 5.1 and the asymptotics of the Gamma function at infinity, we clearly see that the remainder goes

to zero uniformly in x P J as N Ò 8. �

2.2. Weak Uniqueness.

Throughout this section, we will assume that (H1) holds and prove weak uniqueness for the SDE (1.1). The main
argument is an extension of the technique introduced by Bass & Perkins [BP09], which allows us to deal with
singular probability law in the sense that the law of Yt, t ą 0 may not be absolutely continuous with respect to the
Lebesgue measure on Rd. Moreover, the new contribution of this section compared to the existing literature on this
topic is that we identify the main assumptions (H1) and (H2) needed to establish weak uniqueness, thus allowing
for a general treatment.

We consider two weak solutions of the SDE (1.1) starting at time 0 from the same initial point x P J . Denote
by P1 and P2 the two probability measures induced on the space pCpr0,8q,J q, BpCpr0,8q,J qqq. Define f P BbpJ q
and λ ą 0

Siλfpxq :“ Eir
ż 8

0

e´λtfpYtqdts “
ż 8

0

e´λtEirfpYtqs dt, i “ 1, 2, S∆
λ fpxq :“ pS1

λ ´ S2
λqfpxq

}S∆
λ } :“ sup

}f}8ď1

|S∆
λ f |.

We notice that by (H1) (ii) b),

(2.10) Siλpλ´ Lqfpxq “ fpxq, @f P D, i “ 1, 2.

For z P J , the resolvent of the process with frozen coefficients is defined by

R̄λfpxq “
ż 8

0

e´λtP̄tfpxqdt, @f P BbpJ q
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and for f P D one has

(2.11) R̄λpλ´ L̄qf “ f.

We make the following assumptions:

Assumption (H2): For all λ ą 0, one has R̄λD Ă D and for f P D,

pλ´ L̄qR̄λf “ R̄λpλ ´ L̄qf and pL ´ L̄qR̄λfpxq “
ż 8

0

e´λtpL ´ L̄qP̄tfpxq dt.

Let z P Rd and r ą 0. We consider a sequence of non-negative mollifiers δzε , ε ą 0, converging to the Dirac mass
at z as ε Ñ 0. Let us first observe that if g P C8

b pJ q then P̄rg P D, and by (H2) and (2.11), one has

pλ´ LqR̄λP̄rδzεgpxq “ pλ´ L̄qR̄λP̄rδzεgpxq ´ pL ´ L̄qR̄λP̄rδzεgpxq
“ P̄rδ

z
εgpxq ´ pL ´ L̄qR̄λP̄rδzεgpxq.(2.12)

Note that the second term appearing in the right-hand side of the above equality can be expressed as

(2.13) pL ´ L̄qR̄λP̄rδzεgpxq “
ż 8

0

e´λtpL ´ L̄qP̄t`rδzεgpxq dt.

We are now ready to prove weak uniqueness for (1.1).

Theorem 2.3. Assume (H1) and (H2) are satisfied, then weak uniqueness holds for the SDE (1.1).

Proof. The first part of the proof is similar to that of Theorem 2.2. We integrate both sides of (2.12) with respect
to dz, apply S∆

λ and then pass the limit as ε, r Ñ 0. For i “ 1, 2, using estimates (2.4) and (2.5) we can apply
Fubini’s theorem. This yields

Siλ

ż
pλ´ LqR̄zλP̄ zr δzεg dz “

ż 8

0

e´λtEir
ż

pλ ´ LqR̄zλP̄ zr δzεgpYtqdzsdt “
ż
Siλpλ´ LqR̄zλP̄ zr δzεgdz.

Then by using the fact that R̄λP̄rδεg P D and (H2), we deduce

S∆
λ p

ż
P̄ zr δ

z
εg dzq ´ S∆

λ p
ż

pL ´ L̄
zqR̄zλP̄ zr δzεg dzq “ 0.

Let us consider the first term in the above expression and take the limit as ε Ñ 0 and then let r Ñ 0. For
i “ 1, 2, under (H1), the limit in ε can be taken using dominated convergence theorem while the limit as r Ñ 0
follows using (H1) (v) (similar to (2.7)),

lim
rÓ0

lim
εÓ0

ż 8

0

e´λtEir
ż
P̄ zr δ

z
εgpYtqdzsdt “ lim

rÓ0

ż 8

0

e´λtEirP̂rgpYtqsdt “
ż 8

0

e´λtEirgpYtqsdt.

This shows that limr,εÓ0 S∆
λ p

ş
P̄ zs δ

z
εg dzqpxq “ S∆

λ gpxq. For the second term, we first rewrite it using (2.13). For
i “ 1, 2, since r ą 0, the Fubini’s theorem can be applied due to (2.5). Next, from (H1) (v), the dominated
convergence theorem can be applied to pass to the limit in ε,

lim
εÓ0

ż 8

0

e´λuEir
ż ż

e´λtpL ´ L̄zqP̄ zt`rδzεgpYuq dtdzsdu

“
ż 8

0

e´λu
ż 8

0

e´λt lim
εÓ0

Eir
ż

pL ´ L̄zqP̄ zt`rδzεgpYuqdzs dtdu

“
ż 8

0

e´λuEir
ż 8

0

e´λt
St`rgpYuqdtsdu.

where the last equality follows from similar arguments as those employed in (2.8). One can now let r goes to zero
by using estimates in (H1) (iv) or (2.2) to obtain

lim
rÓ0

ż 8

0

e´λuEir
ż 8

0

e´λt
St`rgpYuqdt sdu “

ż 8

0

e´λuEir
ż 8

0

e´λt
StgpYuqdt sdu.

By putting the two terms together, we obtain

S∆
λ g “ S∆

λ p
ż 8

0

e´λtStg dtq.

and one can pick λ such that

|
ż 8

0

e´λtStgdt| ď |g|8
ż 8

0

e´λttζdt “ |g|8
Γpζq
λ1`ζ ă 1

2
|g|8,
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From the above computation and the definition of }S∆
λ }, we find that

|S∆
λ g| “ |S∆

λ p
ż 8

0

e´λtStg dtq| ď 1

2
}S∆
λ }|g|8,

By an approximation argument, the last inequality remains valid for bounded continuous functions g supported
in J and, by a monotone class argument, it extends to bounded measurable functions. Taking the supremum over
|g|8 ď 1 yields }S∆

λ } ď 1
2

}S∆
λ } and, since }S∆

λ } ă 8, we conclude that S∆
λ “ 0. Consequently,

ş8
0
e´λtE1rgpYtqsdt “ş8

0
e´λtE2rgpYtqsdt. By the uniqueness of the Laplace transform together with continuity w.r.t the variable t,

E1rgpYtqs “ E2rgpYtqs for all t ě 0 if g is bounded measurable.
Now one can use the standard argument based on regular conditional probabilities to show that the finite

dimensional distributions of the process pYtqtě0 “ pXt, AtpXqqtě0 agree under P1 and P2. This is where we use the
assumption on regular conditional probability measure introduced in the first paragraph of Section 2.1. Since this
arguments is standard, we omit it. This suffices to prove weak uniqueness, see [SV79], Section 5.4.C in [KS91] or
Section VI.2 in [Bas97]. �

3. Two examples

3.1. A diffusion process and its running symmetric local time.

In this example, we consider the SDE with dynamics

(3.1) Xt “ x`
ż t

0

bpXs, L
0
spXqqds `

ż t

0

σpXs, L
0
spXqqdWs

where L0
spXq is the symmetric local time at 0 accumulated by X at time s. Here J “ R ˆ R`, AtpXq “ L0

t pXq
and d “ 2. We introduce the following assumptions:

(R-η) The coefficients b and a “ σ2 are bounded measurable functions defined on RˆR`. The diffusion coefficient
a is η-Hölder continuous on R ˆ R`.

(UE) There exists some constant a ą 0 such that @px, ℓq P R ˆ R`, a ď apx, ℓq.

Let D be the class of function f P C
2,1
b pRzt0u ˆR`q X CbpR ˆR`q such that B1fp0`, ℓq “ limxÓ0

fpx,ℓq´fp0,ℓq
x

and

B1fp0´, ℓq “ limxÒ0
fpx,ℓq´fp0,ℓq

x
exist, are finite and satisfy the following transmission condition:

(3.2) @ℓ P R`,
B1fp0`, ℓq ´ B1fp0´, ℓq

2
` B2fp0, ℓq “ 0.

We define the linear operator L by:

Lfpx, ℓq “ bpx, ℓqB1fpx´, ℓq ` 1

2
apx, ℓqB2

1fpx´, ℓq, px, ℓq P R ˆ R`.

As mentioned in the introduction, we need a chain rule formula for the process pXt, AtpXqqtě0 which allows
to identify the set of functions D and the linear operator L. In fact, the set D described above is precisely the
set of functions for which we are able to provide a good characterisation of the martingale problem. Indeed, one
has to rely on the following chain rule formula or generalisation of the Itô formula whose proof closely follows the
arguments of Theorem 2.2 in Elworthy & al. [ETZ07] or Theorem 2.1 in Peskir [Pes05]. Note that here that we are
working with the symmetric local time at zero whereas the right local time is considered in [ETZ07].

Proposition 3.1 (Generalised Itô’s formula). Assume that f P C1,2,1pR` ˆRz t0uˆR`qXCpR` ˆRˆR`q satisfies:
B2fpt, 0`, ℓq “ limxÓ0pfpt, x, ℓq ´ fpt, 0, ℓqq{x and B2fpt, 0´, ℓq “ limxÒ0pfpt, x, ℓq ´ fpt, 0, ℓqq{x exist and are finite.
Then, one has

fpt,Xt, L
0
t pXqq “ fp0, x, 0q `

ż t

0

 
B1fps,Xs, L

0
spXqq ` Lfps, .qpXs, L

0
spXqq

(
ds

`
ż t

0

"B2fps, 0`, L0
spXqq ´ B2fps, 0´, L0

spXqq
2

` B3fps, 0, L0
spXqq

*
dL0

spXq

`
ż t

0

σpXs, L
0
spXqqB2fps,Xs´, L0

spXqqdWs a.s.
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3.2. Weak Existence.

Now that we have identified the set D and the linear operator L, the weak existence of a solution to (3.1) follows
from a standard compactness argument that we present here for sake of completeness. Actually, it is equivalent to
the existence of a solution to the following martingale problem.

We will say that a probability measure P on pCpr0,8q,R ˆ R`q,BpCpr0,8q,R ˆ R`qq endowed with the canonical
filtration pFtqtě0 is a solution to the local martingale problem if P py1p0q “ x, y2p0q “ 0q “ 1, t ÞÑ y2ptq is a non-
decreasing process P -a.s. and

(3.3) fpyptqq ´ fpyp0qq ´
ż t

0

Lfpypsqqds

is a continuous local martingale for f P C2,1pRzt0uˆR`,Rq XCpRˆR`q satisfying the transmission condition (3.2).
We will say that P is a solution to the martingale problem if (3.3) is a continuous square integrable martingale for
every f P D. Similarly to the standard diffusion case (see e.g. Proposition 5.4.11 in [KS91], since the coefficients b
and σ are bounded, existence of a solution to the local martingale problem is equivalent to the existence of solution
to the (non-local) martingale problem.

We now claim that a probability measure that solves the local martingale problem induces a weak solution to the
functional SDE (3.1). Indeed, for the choices px, ℓq ÞÑ x and px, ℓq ÞÑ x2, following similar lines of proof of Proposition

5.4.6 in [KS91], one obtains that there exists a (one-dimensional) standard Brownian motion W “ tWt, F̃t; 0 ď t ă
8u eventually defined on an extension of the original probability space pCpr0,8q,R ˆ R`q,BpCpr0,8q,Rˆ R`q, P q
such that

y1ptq “ y1p0q `
ż t

0

bpypsqqds `
ż t

0

σpypsqqdWs.

We first consider px, ℓq ÞÑ |x| ´ ℓ P C2,1pRz t0u ˆ R`q X CpR ˆ R`q and note that it satisfies the transmis-
sion condition (3.2). Hence, we derive that there exists a local martingale M1 such that |y1ptq| ´ |x| ´ y2ptq “şt
0
bpypsqqsignpy1psqqds ` M1

t . Moreover, from the Tanaka formula |y1ptq| ´ |x| “
şt
0
signpy1psqqdy1psq ` L0

t py1q.
Hence, there exists a local martingale M2 such that L0

t py1q ´ y2ptq “ M2
t . However, since y2 is non-decreasing, this

means that M2 is a continuous local martingale of bounded variation. It follows that M2 is identically equal to
zero and y2ptq “ L0

t py1q. Finally, we get that ty1,W, pF̃tqtě0u is a weak solution to the SDE (3.1). Moreover, as in
the standard diffusion case, see e.g. Chapter 6 in [SV79] or Lemma 5.4.19 in [KS91], the measure Pt,w “ Qt,w ˝ θ´1

t ,
where Qt,w is a regular conditional probability for P x given Ft, solves the martingale problem for every w R N ,
N P Ft being a P x-null event.

We are now in position to prove the existence of a weak solution to the SDE (3.1). The lines of reasoning here
are standard, see e.g. Theorem 5.4.22 in [KS91]. We provide them for sake of completeness.

Theorem 3.1. Assume that the coefficients b, σ : R ˆ R` Ñ R are bounded and continuous functions. Then, for
every x P R, there exists a weak solution to the SDE (3.1).

Proof. Let us consider on some probability space pΩ,F ,Pq a Brownian motion W “
 
Wt,F

W
t , 0 ď t ă 8

(
and let

tFtu be the augmented filtration satisfying the usual conditions. For integers j ě 0, n ě 1 we consider the dyadic

rationals t
pnq
j “ j2´n, j “ 0, ¨ ¨ ¨ , 2n and introduce the functions ψnptq “ t

pnq
j , for t P rtpnq

j , t
pnq
j`1q. For each integer

n ě 1, we define the continuous process ypnq “ tpypnq
1 ptq, ypnq

2 ptqq,Ft; 0 ď t ă 8u by setting ypnqp0q “ px, 0q and

then recursively for t P ptpnq
j , t

pnq
j`1s:

y
pnq
1 ptq “ y

pnq
1 ptpnq

j q ` bpypnqptpnq
j qqpt ´ t

pnq
j q ` σpypnqptpnq

j qqpWt ´W
t

pnq
j

q,

y
pnq
2 ptq “ L0

t pypnq
1 q

for j “ 0, ¨ ¨ ¨ , 2n. Defining the new coefficients for y P Cpr0,8q,R ˆ R`q
bpnqpt, yq :“ bpyψnptqq, σpnqpt, yq :“ σpyψnptqq, t ě 0

we remark that ypnq solves the functional SDE

y
pnq
1 ptq “ x`

ż t

0

bpnqps, ypnqqds `
ż t

0

σpnqps, ypnqqdWs

y
pnq
2 ptq “ L0

t py
pnq
1 q

which clearly satisfies

sup
ně1

Er|ypnqptq ´ ypnqpsq|2ps ď Cpt ´ sqp, 0 ď s ď t ď T
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for some positive constant C independent of n, t and s. Thus, the sequence of probability measures Ppnq “
P ˝ pypnqq´1, n ě 1, is tight. Relabelling the indices if necessary, we may assert that pPpnqqně1 converges weakly to
a probability measure P˚.

Let h P D. We denote by tBtu the canonical filtration. It remains to prove that for every bounded, continuous
function f : Cpr0,8q,R ˆ R`q Ñ R which are Bs-measurable, one has

(3.4) EP˚

”"
hpyptqq ´ hpypsqq ´

ż t

s

Lhpypvqqdv
*
fpyq

ı
“ 0.

From Proposition 3.1, one has

EPpnq

”"
hpyptqq ´ hpypsqq ´

ż t

s

L
pnq
v hpypnqqdv

*
fpyq

ı
“ 0,

with

Lpnq
v hpyq “ bpnqpv, yqB1hpypvqq ` 1

2
apnqpv, yqB2

1hpypvqq ` B3hpypvqq1ty1pvqě0u.

Thus it remains to prove that bpnq and apnq converges to b and a uniformly on compact subset of Cpr0,8q,R ˆ
R` ˆ R`q. Let K be a compact subset of Cpr0,8q,R ˆ R`q so that

M :“ sup
wPK,vPr0,T s

|wpuq| ă 8, lim
nÑ`8

max
|t´s|ď2´n,ps,tqPr0,T s2,wPK

|wptq ´ wpsq| “ 0

Since b and σ are uniformly continuous on r´M,M s ˆ r0,M s, for every positive ε we can find an integer npεq
such that

sup
sPr0,T s,wPK

!
|bpnqps, wq ´ bpwq| ` |σpnqps, wq ´ σpwq|

)
ď ε, n ě npεq

and the uniform convergence on K of pbpnq, apnqq to pb, aq follows. This completes the proof of Theorem 3.1. �

Remark 3.2. We proved that weak existence for the SDE (3.1) holds under the assumption that b and σ are
continuous and bounded. Using a transformation of the drift via the Girsanov theorem, one easily obtain weak
existence under the assumption that b is bounded measurable and a “ σ2 is continuous and uniformly elliptic. We
omit technical details and refer the interested reader to Proposition 5.3.6 in [KS91] for a similar argument in the
standard diffusion setting. Hence, we conclude that under (R-η), for some η P p0, 1s, and (UE), weak existence
holds for the SDE (3.1).

3.3. Weak uniqueness and representation of the transition density.

We now introduce the proxy process X̄t :“ x0`σpz1qWt, t ě 0, obtained from the original processX by removing
the drift part and by freezing the diffusion coefficient at z1 “ px1, ℓ1q P R ˆ R`. For f P CbpR ˆ R`q, we define

P̄tfpx0, ℓ0q “ ErfpX̄t, ℓ0 ` L0
t pX̄qqs

“ Erfpx0 ` σ̄Wt, ℓ0 ` L0
t pX̄qqs,

where σ̄ “ σpz1q, ā “ σ̄2, and for f P D, the operator

L̄fpx, ℓq “ 1

2
ā B2

1fpx´, ℓq, px, ℓq P R ˆ R`.

We now compute the bivariate transition density of the approximation process pX̄t, L
0
t pX̄qqtě0 from the joint

density of pWt, L
0
t pW qq which is readily available from Karatzas & Shreve [KS84].

We denote by T0 “ inf tt ě 0 : x0 ` σpz1qWt “ 0u the first hitting time of 0 by the process pX̄tqtě0. Let f P
CbpR ˆ R`q. We compute each term of the following decomposition:

P̄tfpx0, ℓ0q :“ Erfpx0 ` σ̄Wt, ℓ0q1tT0ětus ` Erfpx0 ` σ̄Wt, ℓ0 ` L0
t pX̄qq1tT0ătus

“: I ` II

In the first term, the Brownian motion does not accumulate local time at zero. The bivariate density of
pWt,max0ďsďtWsq, see e.g. [KS91], gives

I “
ż

RˆR`

fpx, ℓq tH0pāt, x´ x0q ´H0pāt, x` x0qu1tx0xě0udxδℓ0pdℓq.
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To compute II we make use of the bivariate density of pWt, L
0
t pW qqtě0 established in [KS84]. Conditioning with

respect to T0 and using the strong Markov property of W yield

II “
ż t

0

PpT0 P dsqErfpx0 ` σ̄Wt, ℓ0 ` L0
t pX̄qq|T0 “ ss

“
ż t

0

PpT0 P dsqErfpσ̄Wt´s, ℓ0 ` σ̄L0
t´spW qqs

“
ż t

0

ds p´H1qps, |x0|
σ̄

q
ż

RˆR`

fpσ̄x, ℓ0 ` σ̄ℓqp´H1qpt ´ s, |x| ` ℓqdxdℓ

where we used the exact expression for the density of the passage time T0, namely PpT0 P dsq “ p´H1qps, |x0|{σ̄qds,
s ą 0 and x0 P R. Since the sum of independent passage times is again a passage time, see e.g. page 824 of Karatzas
& Shreve [KS84], one has

(3.5) p´H1qpt, |x| ` |y|q “
ż t

0

ds p´H1qpt ´ s, |x|qp´H1qps, |y|q; x, y ‰ 0, t ą 0.

Combining these observations with Fubini’s theorem and a change of variable yield

II “
ż

RˆR`

fpx, ℓq1
ā

p´H1qpt, |x| ` |x0| ` ℓ´ ℓ0

σ̄
q1tℓ0ďℓudxdℓ.

Combining I and II, we see that the couple pX̄t, ℓ0 ` L0
t pX̄qq admits a density px, ℓq ÞÑ p̄tpx0, ℓ0, x, ℓq, that is

p̄tpx0, ℓ0, dx, dℓq “ p̄tpx0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq, t ą 0,

with p̄tpx0, ℓ0, x, ℓq :“ f̄tpx0, xq1tℓ“ℓ0u ` q̄tpx0, ℓ0, x, ℓq1tℓ0ăℓu and

f̄tpx0, xq :“ H0pāt, x´ x0q ´H0pāt, x` x0q,

q̄tpx0, ℓ0, x, ℓq :“ ´1

ā
H1pt, p|x| ` |x0| ` ℓ´ ℓ0q{σ̄q,

νpx0, ℓ0, dx, dℓq :“ 1tℓ0ăℓudxdℓ ` 1tx0xě0udxδℓ0pdℓq.

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let p̂tpx0, ℓ0, x, ℓq “ f̂tpx0, xq1tℓ“ℓ0u `
q̂tpx0, ℓ0, x, ℓq1tℓ0ăℓu with

f̂tpx0, xq :“ H0papx, ℓ0qt, x´ x0q ´H0papx, ℓ0qt, x` x0q,

q̂tpx0, ℓ0, x, ℓq :“ ´ 1

apx, ℓqH1pt, p|x| ` |x0| ` ℓ´ ℓ0q{σpx, ℓqq.

Hence, we see that both measures p̄t and p̂t consist of two parts, the first part is absolutely continuous with
respect to the σ-finite measure 1tx0xě0udxδℓ0pdℓq. Here the approximation process consists in freezing the diffusion

coefficient at px, ℓ0q. This is a natural idea since in this part the process X̄ does not accumulate local time at zero
and ℓ0 is the both the initial and terminal point of the density. The second part is absolutely continuous with
respect to the Lebesgue measure on R ˆ R`. Here the approximation process is obtained by freezing the diffusion
coefficient at the terminal point of the density as in the standard diffusion case.

The first main result of this section establishes weak uniqueness for the SDE (3.1) by proving that assumptions
(H1) and (H2) of Section 2.1 are satisfied. Its proof is given in the Appendix.

Theorem 3.3. For η P p0, 1s, under (R-η) and (UE), weak uniqueness holds for the SDE (3.1).

In the following, we show that, given px0, ℓ0q P RˆR`, the transition density of the process pXx0

t , ℓ0 `L0
t pXqqtě0

is absolutely continuous with respect to the sigma finite measure νpx0, ℓ0, dx, dℓq. Our strategy consists in estab-
lishing a representation in infinite series of Ptg from which stems an explicit representation of the density of the
couple pXx0

t , ℓ0 ` L0
t pXqq, see Theorem 3.4. Though we will not proceed in that direction, we point out that this

representation may be useful in order to study the regularity properties of the density, to obtain integration by parts
formulas or to derive an unbiased Monte Carlo simulation method. We refer the interested reader to [FKHL16] for
some results in that direction related to the first hitting times of one-dimensional elliptic diffusions.
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To this end, we need to iterate the first step expansion obtained in Theorem 2.2. We recall that

Stgpx0, ℓ0q :“
ż
gpx, ℓq

"
´1

2

papx0, ℓ0q ´ apx, ℓqq
a2px, ℓq H3pt, |x| ` |x0| ` ℓ´ ℓ0

σpx, ℓq q

`bpx0, ℓ0qsignpx0q
a

3

2 px, ℓq
H2pt, |x| ` |x0| ` ℓ´ ℓ0

σpx, ℓq q
*
1tℓąℓ0udxdℓ(3.6)

`
ż
gpx, ℓ0q

"
1

2
papx0, ℓ0q ´ apx, ℓ0qq tH2papx, ℓ0qt, x´ x0q ´H2papx, ℓ0qt, x` x0qu

´bpx0, ℓ0q tH1papx, ℓ0qt, x´ x0q ´H1papx, ℓ0qt, x` x0quu1txx0ě0udx

with signpx0q “ ´1tx0ď0u ` 1tx0ą0u. From this expression, we see that px0, ℓ0q ÞÑ Stgpx0, ℓ0q is not continuous at
zero, unless bp0, ℓ0q “ 0, ℓ0 P R`. Hence, we cannot use directly Corollary 2.1. We proceed as follows. We first
consider the drift-less SDE. We then briefly indicate how to proceed in the presence of a bounded measurable drift
by means of the Girsanov theorem. From now on, we let b ” 0.

We will use the notation Stgpx0, ℓ0q “
ş
gpx, ℓqθ̂tpx0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq with

θ̂tpx0, ℓ0, x, ℓq :“
#

´ 1
2

papx0,ℓ0q´apx,ℓqq
a2px,ℓq H3pt, |x|`|x0|`ℓ´ℓ0

σpx,ℓq q, ℓ ą ℓ0,
1
2

papx0, ℓ0q ´ apx, ℓ0qq tH2papx, ℓ0qt, x´ x0q ´H2papx, ℓ0qt, x` x0qu , ℓ “ ℓ0.
(3.7)

Since the function px0, ℓ0q ÞÑ Stgpx0, ℓ0q is continuous on R ˆ R`, applying Corollary 2.1, we get

PT gpx0, ℓ0q “ P̂T gpx0, ℓ0q `
ÿ

ně1

ż

∆npT q
P̂snSsn´sn´1

¨ ¨ ¨ST´s1gpx0, ℓ0q dsn(3.8)

with the convention s0 “ T .
In order to retrieve the transition density associated to pPtqtě0, we are aiming to prove an integral representation

for the above series. More precisely, our aim is to prove that the right-hand side of (3.8) can be written asş
gpx, ℓqpT px0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq, with an explicit representation for pT px0, ℓ0, x, ℓq. We start by an examination

of the n-th term of the series expansion.
Before proceeding, we observe that the measure νpx0, ℓ0, dx, dℓq satisfies a useful convolution type property in

the sense that

νpx0, ℓ0, dx1, dℓ1qνpx1, ℓ1, dx, dℓq “ upx0, ℓ0, x, ℓ, dx1, dℓ1qνpx0, ℓ0, dx, dℓq(3.9)

where we set

upx0, ℓ0, x, ℓ, dx1, dℓ1q :“
#
1tℓ0ăℓ1ăℓudx

1dℓ1 ` 1tx1x0ą0udx
1δℓ0pdℓ1q ` 1txx1ą0udx

1δℓpdℓ1q, ℓ0 ă ℓ,

1tx0x1ą0udx
1δℓ0pdℓ1q, ℓ0 “ ℓ, x0x ą 0.

Applying repeatedly (3.9) and using Fubini’s theorem, we get
ż

∆npT q
dsnP̂snSsn´1´sn . . .ST´s1gpx0, ℓ0q

“
ż

RˆR`

gpx, ℓq
#ż

∆npT q
dsn

ż

pRˆR`qn
p̂snpx0, ℓ0, x1, ℓ1q

ˆ
«
nź

i“1

θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

ff+
νpx0, ℓ0, dx, dℓq

“
ż

RˆR`

gpx, ℓqpnT px0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq

where we set

pnT px0, ℓ0, x, ℓq :“

$
’’&
’’%

ş
∆npT q dsn

ş
pRˆR`qn p̂snpx0, ℓ0, x1, ℓ1qˆ”śn

i“1 θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

ı
n ě 1,

p̂T px0, ℓ0, x, ℓq n “ 0.

(3.10)

From (3.7) and the space-time inequality, it is easy to see that obtain the following estimate

|θ̂tpx0, ℓ0, x, ℓq| ď

$
&
%

C

t
3´η
2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q, ℓ ą ℓ0,

C

t
1´

η
2

H0pct, x´ x0q, ℓ “ ℓ0,
(3.11)
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for some constants C, c ą 1.
We are ready to give a representation for the density of the couple pXx0

t , ℓ0 ` L0
t pXx0qq. As already mentioned

in the introduction, we point out that the proof of the convergence of the asymptotic expansion for the transition
density is not standard in the current setting. Indeed, in the classical diffusion setting, the parametrix expansion

of the transition density converges since the order of the singularity in time induced by the parametrix kernel θ̂t is
of order t´1` η

2 , which is still integrable near 0. The situation here is much more delicate. At first glance, the order

of the time singularity in θ̂t consists in two parts. The first part corresponds to the non-singular part of the law of

pX̄x0

t , ℓ0 ` L0
t pX̄x0qq. From (3.11), it induces a singularity in time of order t

´3`η
2 which is integrable in time after

integrating the kernel H0pct, |x| ` |x0| ` ℓ´ ℓ0q on the domain R ˆ pℓ0,8q.
The second part corresponds to the singular case where the law of pX̄x0

t , ℓ0 ` L0
t pX̄x0qq, is the one of the proxy

process killed when it reaches zero, and is absolutely continuous with respect to the singular measure dxδℓ0pdℓq.
Here the situation is standard and the singularity in time appearing in (3.11) is integrable.

The main difficulty appears when one wants to control the whole convolution appearing in the right-hand side of
(3.10). More precisely, it lies in the cross-terms which are of a different nature, for instance when one convolutes the

non-singular part in the convolution kernel θ̂T´s1 and the singular part in the convolution kernel θ̂s1´s2 . Standard
arguments such as the one used in [Fri64] or [Men11] do not guarantee the convergence of the integral defining
(3.10). To overcome this difficulty and show that the parametrix expansion for the transition density converges, one
has to make use of the key estimate obtained in Lemma 5.3 which relies on the symmetry in the initial and terminal
point of the density of the killed proxy process, in order to retrieve the integrability in time of the underlying
convolution kernel.

As our second main result, we prove that the transition density of pXt, ℓ0 ` L0
t pXqqtě0 exists and satisfies a

Gaussian upper bound. Its proof is given in the Appendix.

Theorem 3.4. Assume that (R-η) and (UE) hold for some η P p0, 1s. For px0, ℓ0q P R ˆ R`, define the measure

pT px0, ℓ0, dx, dℓq :“ pT px0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq
“ p1T px0, ℓ0, x, ℓq1tℓ0ăℓudxdℓ ` p2T px0, ℓ0, xq1txx0ě0udxδℓ0pdℓq

with pT px0, ℓ0, x, ℓq :“
ř
ně0 p

n
T px0, ℓ0, x, ℓq and

p1T px0, ℓ0, x, ℓq :“
ÿ

ně0

pnT px0, ℓ0, x, ℓq, p2T px0, ℓ0, xq :“
ÿ

ně0

pnT px0, ℓ0, x, ℓ0q.

Then, both series defining p1T px0, ℓ0, x, ℓq and p2T px0, ℓ0, xq converge absolutely and uniformly for px0, ℓ0q, px, ℓq P
pR ˆ R`q2. Moreover for h P CbpR ˆ R`q the following representation for the semigroup holds,

PThpx0, ℓ0q “
ż

RˆR`

hpx, ℓq pT px0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq.

Therefore, for all px0, ℓ0q P RˆR`, the function px, ℓq ÞÑ pT px0, ℓ0, x, ℓq is the probability density function of the
random vector pXx0

T , ℓ0 `L0
T pXx0qq with respect to the σ-finite measure νpx0, ℓ0, dx, dℓq, where Xx0

T is the solution
taken at time T of the SDE (3.1) starting from x0 at time 0, L0

T pXx0q being its running symmetric local time at
time T .

Finally, there exists some constants C, c ą 1 such that for all px0, ℓ0q, px, ℓq P R ˆ R`, the following Gaussian
upper-bounds hold

(3.12) p1T px0, ℓ0, x, ℓq ď CT´1{2H0pcT, |x| ` |x0| ` ℓ´ ℓ0q and p2T px0, ℓ0, xq ď CH0pcT, x´ x0q.

Remark 3.5. The above Theorem proves the existence of a transition density for the Markov process pXt, ℓ0 `
L0
t pXqqtě0 where the dynamics is given by (3.1) without drift. In order to add a drift, one can use the Girsanov

Theorem as follows. Let R ˆ R` Q px, ℓq ÞÑ bpx, ℓq be a real-valued bounded measurable function. We consider

the unique weak solution tpX,W q, pΩ,F ,Pq, pFtqtě0u of (3.1). Let ĂWt :“ Wt `
şt
0
b̃pXs, L

0
spXqqds, with b̃px, ℓq :“

bpx, ℓq{σpx, ℓq. Then, defining the new probability measure on FT by

dQ

dP
:“ exp

#
´
ż T

0

b̃pXs, L
0
spXqqdWs ´ 1

2

ż T

0

b̃2pXs, L
0
spXqqds

+
,

from Girsanov’s Theorem, we know that
 

p rX,ĂW q, pΩ,F ,Qq, pFtqtě0

(
, with rXt “ x`

şt
0
σp rXs, Asp rXqqdĂWs is a weak

solution to (3.1) with b ” 0. We also know from Theorem 3.3 that weak uniqueness holds for this equation and
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from Theorem 3.4 it admits a transition density with respect to the measure νpx0, ℓ0, dx, dℓq. Therefore, for any
bounded measurable function h : R ˆ R` Ñ R, we can write for t ď T ,

Pthpx0, ℓ0q :“ EPrhpXt, ℓ0 ` L0
t pXqqs

“
ż

RˆR`

hpx, ℓqEQ

” dP
dQ

ˇ̌
ˇ pXt, ℓ0 ` L0

t pXqq “ px, ℓq
ı
p̄tpx0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq.

From the above we deduce that the random vector pXt, ℓ0 ` L0
t pXqq, t ą 0, admits a density with respect to

the measure νpx0, ℓ0, dx, dℓq. Then, by an approximation argument that we omit, one may extend Theorem 2.2
to include functions g that are bounded measurable with respect to the space variable x. Hence, one may iterate

the first step formula and obtain the semigroup expansion (2.9) where the function Stg is given by (3.6) and θ̂t is
defined accordingly. Finally, one has to repeat the arguments employed in the proof of Theorem 3.4. We omit the
remaining technical details.

Remark 3.6. We again point out that the representation in infinite series obtained previously are of great interest.
For instance, one may be interested in studying regularity properties of pt, x0, ℓ0, x, ℓq ÞÑ p1t px0, ℓ0, x, ℓq, p2t px0, ℓ0, x, ℓq,
to derive a probabilistic interpretation of Ptg and ptpx0, ℓ0, x, ℓq and to obtain some integration by parts formulas
or an unbiased Monte Carlo simulation scheme. We refer e.g. to [FKHL16], [GM92] and the references therein for
some results in that direction concerning to the first hitting times of one-dimensional elliptic diffusions.

3.4. A diffusion process with coefficients depending on its running maximum.

We now turn our attention to the following SDE with dynamics

(3.13) Xt “ x0 `
ż t

0

bpXs,Msqds `
ż t

0

σpXs,MsqdWs

where Mt “ AtpXq :“ m0 _max0ďsďtXs, m0 ě x0, is the running maximum of the process X at time t. The state
space of the process pXt,Mtqtě0 is denoted by the closed set J “

 
px,mq P R2 : x ď m

(
. We define accordingly

the collection of linear maps Ptfpx0,m0q “ ErfpXt,Mtqs for f P BbpJ q and introduce the following assumptions:

(R-η) The coefficients b and a “ σ2 are bounded measurable functions defined on J . The diffusion coefficient a
is η-Hölder continuous on J .

(UE) There exists some constant a ą 0 such that @px,mq P J , a ď apx,mq.

Although the lines of reasoning used in the proof of Theorem 3.7 and Theorem 3.8 are rather similar to those
employed in the case of the SDE with its running symmetric local time, we decided to include this example in order
to illustrate the generality of our framework. Indeed, unlike the local time and also the examples considered so far
in the literature by means of the parametrix technique, see e.g. [Men11], the running maximum is not a continuous
additive functional. This difference is reflected in the definition of the collection of linear maps pPtqtě0, and also in
the definition of the approximation process Ȳ and the maps pP̄tqtě0, see below in Section 3.5. This allows to define
a Markov semigroup for Ȳ and later on for Y .

The weak existence of a solution to the SDE (3.13) follows from standard results, see e.g. Chapter 6 in [SV79]
or Theorem 5.4.22 and Remark 5.4.23 in [KS91], see also Forde [For11] for another approach under the assumption
that a and b are continuous bounded functions. We also refer to the previous Remark 3.2 for the case of bounded
measurable drift.

In the same spirit as in the previous section, we can characterise solutions of the SDE (3.13) in terms of the

associated (local) martingale problem. We let D be the class of functions f : J Ñ R such that f P C
2,1
b pJ q which

satisfies the condition B2fpm,mq “ 0, m P R. For f P D, we define the operator

Lfpx,mq “ 1

2
apx,mqB2

1fpx,mq ` bpx,mqB1fpx,mq.

Observing that the process t ÞÑ Mt increases only on the set tt : Xt “ Mtu and by applying Itô’s lemma, we get

(3.14) fpt,Xt,Mtq “ fp0, x0,m0q `
ż t

0

tpB1fps, .q ` Lfps, .qqpXs,Msqu ds `
ż t

0

σpXs,MsqB2fps,Xs,MsqdWs

for f P C1pR`,Dq.
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3.5. Weak uniqueness and representation of the transition density.

We now introduce the proxy process X̄t :“ x0`σpz1qWt, t ě 0, obtained from the original processX by removing
the drift part and by freezing the diffusion coefficient at z1 “ px1,m1q P J in the dynamics (3.13). As already done
for the original process Y , for f P CbpJ q, we define accodingly

P̄tfpx0,m0q “ ErfpX̄t, M̄tqs
“ Erfpx0 ` σpz1qWt,m0 _ max

0ďsďt
px0 ` σpz1qWsqqs,

and, with σ̄ “ σpz1q, ā “ σ̄2, for f P D, the operator

L̄fpx,mq “ 1

2
āB2

1fpx,mq, px,mq P J .

We now compute the law of the couple pX̄t, M̄tq. We denote by Tm0
“ inf tt ě 0 : x0 ` σ̄Wt “ m0u the first

hitting time of 0 by the process pX̄tqtě0. Let f P CbpJ q. We decompose P̄tfpx0,m0q as follows

P̄tfpx0,m0q :“ Erfpx0 ` σ̄Wt,m0q1tTm0
ětus

` Erfpx0 ` σ̄Wt,m0 _ max
0ďsďt

px0 ` σ̄Wsqq1tTm0
ătus

“ I ` II.

From the reflection principle of Brownian motion, see e.g. [KS91], one derives the law of the proxy process killed
when it exits p´8,m0q, namely

I “ Erfpx0 ` σ̄Wt,m0q1tTm0
ětus “

ż

R2

fpx,mq tH0pāt, x´ x0q ´H0pāt, 2m0 ´ x´ x0qu1tx_x0ďm0u dxδm0
pdmq

From the bivariate density of pWt,max0ďsďtWsq, see e.g. Proposition 2.8.1 in [KS91], we obtain

II “ Erfpx0 ` σ̄Wt,m0 _ max
0ďsďt

px0 ` σ̄Wsqq1tTm0
ătus

“ Erfpx0 ` σ̄Wt, max
0ďsďt

px0 ` σ̄Wsqq1tmax0ďsďtpx0`σ̄Wsqěm0us

“
ż

R2

fpx,mqp´2H1qpāt, 2m´ x´ x0q1tx_x0_m0ďmudxdm.

Combining I and II, we see that the couple pX̄t, M̄tq admits a density px,mq ÞÑ p̄tpx0,m0, x,mq that is

p̄tpx0,m0, dx, dmq “ p̄tpx0,m0, x,mqνpx0,m0, dx, dmq, t ą 0,

with p̄tpx0,m0, x,mq :“ f̄tpx0, xq1tm“m0u ` q̄tpx0,m0, x,mq1tm0ămu and

f̄tpx0, xq :“ H0pāt, x´ x0q ´H0pāt, 2m0 ´ x´ x0q,
q̄tpx0,m0, x,mq :“ ´2H1pāt, 2m´ x´ x0q,

νpx0,m0, dx, dmq :“ 1txďmu1tm0ămudxdm ` 1tx0ďm0u1txďm0udxδm0
pdmq.

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let p̂tpx0,m0, x,mq “ f̂tpx0, xq1tm“m0u `
q̂tpx0, ℓ0, x, ℓq1tm0ămu with

f̂tpx0, xq :“ H0papx,m0qt, x´ x0q ´H0papx,m0qt, 2m0 ´ x´ x0q,
q̂tpx0,m0, x,mq :“ ´2H1papx,mqt, 2m´ x´ x0q.

We also observe that pP̄tqtě0 defines a Markov semigroup. The first main result of this section establishes weak
uniqueness for the SDE (3.13) by proving that assumptions (H1) and (H2) of Section 2.1 are satisfied. Its proof
is given in the Appendix.

Theorem 3.7. For η P p0, 1s, under (R-η) and (UE), weak uniqueness holds for the SDE (3.13).

Next we show that, given px0,m0q P J , the law of pXx0

T ,MT q is absolutely continuous with respect to the measure
νpx0,m0, dx, dmq. Our strategy is similar to the one used in the case of the SDE with its running local time, that
is we establish a representation in infinite series of Ptg from which stems an explicit representation of the density
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of the couple pXx0

t , ℓ0 ` L0
t pXqq, see Theorem 3.8 below. We first set

Stgpx0,m0q :“
ż
gpx,mq

"
1

2
papx0,m0q ´ apx,mqqp´2H3qpapx,mqt, 2m ´ x´ x0q

` bpx0,m0qp´2H2qpapx,mqt, 2m ´ x´ x0q
*
1txďmu1tm0ămudxdm

`
ż
gpx,m0q

"
1

2
papx0,m0q ´ apx,m0qqpH2papx,m0qt, x´ x0q ´H2papx,m0qt, 2m0 ´ x´ x0qq(3.15)

` bpx0,m0qpH1papx,m0qt, 2m0 ´ x´ x0q ´H1papx,m0qt, x´ x0qq
*
1txăm0udx

“
ż
gpx,mqθ̂tpx0,m0, x,mqνpx0,m0, dx, dmq

with

θ̂tpx0,m0, x,mq :“
$
’&
’%

1
2

papx0,m0q ´ apx,mqqp´2H3qpapx,mqt, 2m ´ x´ x0q ` bpx0,m0qp´2H2qpapx,mqt, 2m ´ x´ x0q, x ď m, m0 ă m,
1
2

papx0,m0q ´ apx,m0qqpH2papx,m0qt, x´ x0q ´H2papx,m0qt, 2m0 ´ x´ x0qq x ă m0, m “ m0.

`bpx0,m0qpH1papx,m0qt, 2m0 ´ x´ x0q ´H1papx,m0qt, x´ x0qq,
We remark that the function px0,m0q ÞÑ Stgpx0,m0q is continuous on J . This is different from the case of the

local time, where due to the presence of the sign function, we required that b “ 0 in order to ensure that the
continuity of px0,m0q ÞÑ Stgpx0,m0q on J .

One may now iterate the first step of the expansion obtained in Theorem 2.2. More precisely, by applying
Corollary 2.1 and setting by convention s0 “ T , we get

PT gpx0,m0q “ P̂T gpx0,m0q `
ÿ

ně1

ż

∆npT q
P̂snSsn´sn´1

¨ ¨ ¨ST´s1gpx0,m0q dsn.(3.16)

We again observe the following convolution type property of the singular measure, namely

νpx0,m0, dx
1, dm1qνpx1,m1, dx, dmq “ upx0,m0, x,m, dx

1, dm1qνpx0,m0, dx, dmq(3.17)

where we set

upx0,m0, x,m, dx
1, dm1q

:“
#
1tx1_x0_m0ăm1u1tm1ămudx

1dm1 ` 1tx1ăm0udx
1δm0

pdm1q ` 1tx1ămudx
1δmpdm1q m0 ă m,x ď m,

1tx1ăm0udx
1δm0

pdm1q m “ m0, x ď m0.

Then we examine the n-th term of the series expansion, and by using Fubini’s theorem and recursively applying
(3.17), it can be expressed as

ż

∆npT q
dsnP̂snSsn´1´sn . . .ST´s1gpx0,m0q

“
ż

R2

gpx,mq
#ż

∆npT q
dsn

ż

pR2qn
p̂snpx0,m0, x1,m1q

ˆ
«
nź

i“1

θ̂sn´i´sn´i`1
pxi,mi, xi`1,mi`1qupx0,m0, xi`1,mi`1, dxi, dmiq

ff+
νpx0,m0, dx, dmq

“
ż

R2

gpx,mqpnT px0,m0, x,mqνpx0,m0, dx, dmq

where we set

pnT px0,m0, x,mq :“

$
’’&
’’%

ş
∆npT q dsn

ş
pR2qn p̂snpx0,m0, x1,m1qˆ”śn

i“1 θ̂sn´i´sn´i`1
pxi,mi, xi`1,mi`1qupx0,m0, xi,mi, dxi`1, dmi`1q

ı
n ě 1,

p̂T px0,m0, x,mq n “ 0.

(3.18)

We are now ready to give a representation for the density of the couple pXx0

t ,MtpXx0qq. As already mentioned
in the case of the SDE with its running local time, the proof of the convergence of the asymptotic expansion for the
transition density is not standard in the current setting. To overcome the main difficulty which again comes from
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the different nature of the two kernels in θ̂t one has to make use of the key estimate obtained in Lemma 5.3. This
allows to obtain the convergence of the parametrix expansion for the transition density. Similar Gaussian upper
bounds for this density are also established. The proof is given in the Appendix.

Theorem 3.8. Assume that (R-η) and (UE) hold for some η P p0, 1s. For px0,m0q P J , define the measure

pT px0,m0, dx, dmq :“ pT px0,m0, x,mqνpx0,m0, dx, dmq
“ p1T px0,m0, x,mq1txďmu1tm0ămudxdm ` p2T px0,m0, xq1txďm0u dx δm0

pdmq

with pT px0,m0, x,mq :“ ř
ně0 p

n
T px0,m0, x,mq and

p1T px0,m0, x,mq :“
ÿ

ně0

pnT px0,m0, x,mq, p2T px0,m0, xq :“
ÿ

ně0

pnT px0,m0, x,m0q.

Then, both series p1T px0,m0, x,mq and p2T px0,m0, xq converge absolutely and uniformly for px0,m0q, px,mq P J .
Moreover for h P CbpJ q, the following representation for the semigroup holds,

PThpx0,m0q “
ż

RˆR`

hpx,mq pT px0,m0, dx, dmq.

Therefore, for all px0,m0q P J , the function J Q px,mq ÞÑ pT px0,m0, x,mq is the probability density function
with respect to the measure νpx0,m0, dx, dmq of the random vector pXx0

T ,m0_MT pXx0qq, whereXx0

T is the solution
taken at time T of the SDE (3.13) starting from x0 at time 0 and MT pXx0q is its running maximum at time T
starting from m0 at time 0.

Finally, for some positive C, c ą 1, for all px0,m0q, px,mq P J , the following Gaussian upper-bounds hold

(3.19) p1T px0,m0, x,mq ď CT´1{2H0pcT, 2m´ x´ x0q and p2T px0, ℓ0, xq ď CH0pcT, x´ x0q.

4. Conclusion

In this paper, we obtained weak existence and uniqueness for some SDEs with coefficients depending on some
path-dependent functionals pAtpXqqtě0 under mild assumptions on the coefficients, namely bounded measurable
drift and uniformly elliptic Hölder-continuous diffusion coefficient. We illustrated our approach on two examples:
an SDE with coefficients depending on its running local time and an SDE with coefficients depending on its running
maximum. We also established the existence as well as a representation in infinite series of the density for the
couple pXt, AtpXqq in both examples. Some Gaussian upper-bounds are also obtained.

Obviously, a wide variety of Brownian functionals can be investigated. Simple extensions include for instance
the case AtpXq “ pτL ^ t,XτL^tq, where τL “ inf tt ě 0 : Xt ě Lu is the first hitting time of the barrier L by
X or the bivariate functional AtpW q “ pmin0ďsďtXs,max0ďsďtXsq. More challenging extensions could include
other type of processes. One notably may consider the case of a skew diffusion with path-dependent coefficients
involving its local and occupation times, see Appuhamillage & al. [ABT`11] for an expression of the trivariate

density pBpαq
t , L0

t pBpαqq,Γ0
t pBpαqqq, t ě 0, where pBpαq

t qtě0 is an α-skew Brownian motion or reflected SDEs. This
will be developed in future works.

Acknowledgement. The authors wish to thank Professor Arturo Kohatsu-Higa for his careful readings and valu-
able comments on the writing of this paper.

5. Appendix

5.1. Proof of Theorem 3.3.

From the Markov property of the Brownian motion W , one can deduce that pX̄t, ℓ0 ` L0
t pX̄qqtě0 is a Markov

process so that

ErfpX̄s ` σ̄pWt`s ´Wsq, ℓ0 ` L0
spX̄q ` L0

t`spX̄q ´ L0
spX̄qq|Fss “ P̄tfpX̄s, ℓ0 ` L0

spX̄qq.

From the expression of p̄t, direct computations show that if f P C8
b pR ˆ R`q, then one has P̄tf P D, t ą 0 and

BtP̄tf “ L̄P̄tf “ P̄tL̄f , for f P D. Indeed, the latter formula holds since L̄ is the infinitesimal generator of pP̄tqtě0

acting on D Ă DompL̄q. One can also obtain the same result by using the generalised Itô’s formula of Proposition
3.1.
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Now, in order to obtain θ̄tpx0, ℓ0, x, ℓq, we first remark that

@t ą 0, pL ´ L̄qP̄tfpx0, ℓ0q “ 1

2
papx0, ℓ0q ´ āqB2

1P̄tfpx0, ℓ0q ` bpx0, ℓ0qB1P̄tfpx0, ℓ0q

“
ż
fpx, ℓq

"
1

2
papz0q ´ apz1qqB2

x0
p̄tpx0´, ℓ0, dx, dℓq ` bpz0qBx0

p̄tpx0´, ℓ0, dx, dℓq
*

for px0, ℓ0q P RˆR`, where we used the Lebesgue differentiation theorem for the last equality. Simple computations
yield

Bx0
p̄tpx0´, ℓ0, dx, dℓq “

 
Bx0

f̄tpx0, xq1tℓ“ℓ0u ` Bx0
q̄tpx0´, ℓ0, x, ℓq1tℓ0ăℓu

(
νpx0, ℓ0, dx, dℓq ,

B2
x0
p̄tpx0´, ℓ0, dx, dℓq “

 
B2
x0
f̄tpx0, xq1tℓ“ℓ0u ` B2

x0
q̄tpx0´, ℓ0, x, ℓq1tℓ0ăℓu

(
νpx0, ℓ0, dx, dℓq

with,

Bx0
f̄tpx0, xq “ ´pH1pāt, x´ x0q `H1pāt, x` x0qq,

B2
x0
f̄tpx0, xq “ pH2pāt, x´ x0q ´H2pāt, x` x0qq,

Bx0
q̄tpx0´, ℓ0, x, ℓq “ ´ signpx0q

ā
3

2

H2pt, |x| ` |x0| ` ℓ´ ℓ0

σ̄
q,

B2
x0
q̄tpx0´, ℓ0, x, ℓq “ ´ 1

ā2
H3pt, |x| ` |x0| ` ℓ´ ℓ0

σ̄
q.

Hence, one has pL ´ L̄qP̄tfpx0, ℓ0q :“
ş
fpx, ℓqθ̄z1t px0, ℓ0, x, ℓqνpx0, ℓ0, dx, dℓq with

θ̄z1t px0, ℓ0, x, ℓq

:“
#

´ 1
2

papz0q´apz1qq
ā2

H3pt, |x|`|x0|`ℓ´ℓ0
σ̄

q ´ bpz0q signpx0q
ā

3

2

H2pt, |x|`|x0|`ℓ´ℓ0
σ̄

q, ℓ ą ℓ0,

1
2

papz0q ´ apz1qq tH2pāt, x´ x0q ´H2pāt, x` x0qu ´ bpz0q tH1pāt, x´ x0q `H1pāt, x` x0qu , ℓ “ ℓ0.

We now prove that (H1) (iv) and (v) are satisfied. Before that, we point out that the inequality

px` x0q2 “ px´ x0q2 ` 4xx0 ě px´ x0q2

is valid on the set txx0 ě 0u which implies H0pct, x ` x0q ď H0pct, x ´ x0q. We first prove (H1) (iv). Using the
fact that a is uniformly elliptic and bounded together with the space-time inequality we can bound θ̄z1t px0, ℓ0, x, ℓq
as follows

|θ̄z1t px0, ℓ0, x, ℓq| ď

$
&
%
C
´

1

t
3

2

` |b|8

t

¯
H0pct, |x0| ` |x| ` ℓ´ ℓ0q, ℓ ą ℓ0,

C
´

1
t

` |b|8

t
1

2

¯
H0pct, x0 ´ xq, x0x ą 0, ℓ “ ℓ0.

Similar computation shows that θ̂tpx0, ℓ0, x, ℓq can be bounded as follows

|θ̂tpx0, ℓ0, x, ℓq| ď

$
&
%
C
´

1

t
3´η
2

` |b|8

t

¯
H0pct, |x0| ` |x| ` ℓ´ ℓ0q, ℓ ą ℓ0

C
´

1

t
1´

η
2

` |b|8

t
1

2

¯
H0pct, x0 ´ xq, x0x ą 0, ℓ “ ℓ0.

On the set tℓ ą ℓ0u, the integral of θ̂tpx0, ℓ0, x, ℓq against νpx0, ℓ0, dx, dℓq can be estimated through integration by
parts with respect to ℓ and using the fact that t ď T , that is

ˆ
1

t
3´η
2

` |b|8
t

˙ż

R

ż 8

ℓ0

H0pct, |x0| ` |x| ` ℓ´ ℓ0qdxdl “ C
1

t
3´η
2

ż

R

ż 8

0

H0pct, |x0| ` |x| ` ℓqdℓdx(5.1)

“ 1

t
3´η
2

ż

R

ż 8

0

ℓp´H1qpct, |x0| ` |x| ` ℓqdℓdx

ď C
1

t
3´η
2

ż 8

0

ż 8

0

pℓ ` |x0|qp´H1qpct, |x0| ` x` ℓqdxdℓ

“ C
1

t
3´η
2

ż 8

0

pℓ` |x0|qH0pct, |x0| ` ℓqdℓ

ď C
|b|8
t1´ η

2

.
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On the set tx0x ą 0u X tℓ “ ℓ0u, straightforward integration gives

ż

R

ˆ
1

t1´ η
2

` |b|8
t
1

2

˙
H0pct, x0 ´ xqdx ď Cp1 ` |b|8t

1´η
2 q

t1´ η
2

.(5.2)

From the above computations, we conclude that (H1) (iv) is satisfied. We now prove (H1) (v) that is,

lim
εÑ0

ż

R2

fpx, ℓqp̂εpx0, ℓ0, dx, dℓq Ñ fpx0, ℓ0q, f P CbpR ˆ R`q.

We consider the change of variable ℓ1 “ ℓ´ ℓ0 and x “ x1, and decompose
ş
R2 fpx, ℓqp̂εpx0, ℓ0, dx, dℓq as follows

ż

Rˆr0,8q
fpx1, ℓ0 ` ℓ1qrp̂εpx0, 0, dx1, dℓ1q ´ p̄εpx0, 0, dx1, dℓ1qs `

ż

Rˆr0,8q
fpx1, ℓ0 ` ℓ1qp̄εpx0, 0, dx1, dℓ1q

where the frozen point in p̄ε is given by px1, ℓ1q “ px0, 0q. It is clear from the continuity of f that the second term
converges to fpx0, ℓ0q as ε Ó 0. To show that the first term vanishes as ε Ó 0, we apply the mean value theorem

|
ż

Rˆr0,8q
fpx1, ℓ0 ` ℓ1qrp̂εpx0, 0, dx1, dl1q ´ p̄εpx0, 0, dx1, dℓ1qs|

ď C|f |8
ż

Rˆr0,8q
εp|x0 ´ x1|η ` |ℓ1|ηq

 
|H3pcε, |x0| ` |x| ` ℓ1q| ` |H2pcε, |x0| ` |x| ` ℓ1q|

(
dx1dℓ1

` C|f |8
ż

R

ε|x0 ´ x1|ηr|H2pcε, x0 ´ x1q| ` |H2pcε, x0 ` x1q|s1tx0x1ą0udx
1

ď Cε
η
2

where the last inequality follows from the space-time inequality and computations similar to (5.1) and (5.2).

We now prove that (H2) holds. Let g P D. Using the expression of the measure px0, ℓ0q ÞÑ p̄tpx0, ℓ0, dx, dℓq, we
obtain that px0, ℓ0q ÞÑ P̄tgpx0, ℓ0q P C

2,1
b pRzt0u,R`,Rq and some simple computations (that we omit) shows that

B1P̄tgp0`, ℓ0q ´ B1P̄tgp0´, ℓ0q
2

“
ż
gpx, ℓ0qp´H1qpāt, |x|qdx´

ż
gpx, ℓq
ā

3

2

H2pt, |x| ` ℓ´ ℓ0

σ̄
q1tℓěℓ0udxdℓ “ ´B2P̄tgp0, ℓ0q.

Moreover, using integration by parts formula, one shows that px0, ℓ0q ÞÑ B1P̄tgpx0, ℓ0q, B2
1P̄tgpx0, ℓ0q, B2P̄tgpx0, ℓ0q

are bounded by a constant depending of |B1g|8, |B2
1g|8, |B2g|8 which is uniform in t. Hence, one has R̄λD Ă D

and pL ´ L̄qR̄λg “
ş8
0
e´λtpL ´ L̄qP̄tgdt for g P D. The relation pλ ´ L̄qR̄λg “ R̄λpλ ´ L̄qg follows from the fact

that P̄tL̄g “ BtP̄tg which in turn is a consequence of the generalised Itô lemma obtained in Proposition 3.1 and
the semigroup property satisfied by pP̄tqtě0. We conclude that (H1) and (H2) are satisfied. The proof is now
complete.

5.2. Proof of Theorem 3.4.

As already mentioned, we prove the result for b ” 0. In order to include a drift, we refer to Remark 3.5. We
examine the n-th term of the series (3.8) and prove an important smoothing property of the kernel. More precisely,
let x “ xn`1, ℓ “ ℓn`1 and s0 “ T , we claim the following key inequality

|
ż

pRˆR`qn
p̂snpx0, ℓ0, x1, ℓ1q

#
nź

i“1

θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

+
|(5.3)

ď
nź

i“1

Cpsi´1 ´ siq´1` η
2 ˆ

"
1

T
1

2

H0pcT, |x| ` |x0| ` ℓ´ ℓ0q1tℓ0ăℓu

`
" |x|β

T
β
2

^ |x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txx0ě0u1tℓ“ℓ0u

*
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for any β P r0, 1s. From the previous bound and Lemma 5.1 we deduce that

|pnT px0, ℓ0, x, ℓq|

ď |
ż

∆npT q
dsn

ż

pRˆR`qn
p̂snpx0, ℓ0, x1, ℓ1q

#
nź

i“1

θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

+
|

ď
ż

∆npT q
dsn

nź

i“1

Cpsi´1 ´ siq´1` η
2 ˆ

"
1

T
1

2

H0pcT, |x| ` |x0| ` ℓ´ ℓ0q1tℓ0ăℓu

`
" |x|β

T
β
2

^ |x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txx0ě0u1tℓ“ℓ0u

*

“ pCT η{2Γpη{2qqN
Γp1 `Nη{2q

"
1

T
1

2

H0pcT, |x| ` |x0| ` ℓ´ ℓ0q1tℓ0ăℓu `
" |x|β

T
β
2

^ |x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txx0ě0u1tℓ“ℓ0u

*

with the convention s0 “ T . Hence, from Fubini’s theorem, the semigroup series obtained from Corollary 2.1 admits
the following integral representation

PT gpx0, ℓ0q “
ż

RˆR`

gpx, ℓq
˜
ÿ

ně0

pnT px0, ℓ0, x, ℓq
¸
νpx0, ℓ0, dx, dℓq

where pnT px0, ℓ0, x, ℓq is given by (3.10). Moreover, from the above inequality, for any px0, ℓ0q, px, ℓq P R ˆ R`, one
gets the following Gaussian upper bounds

ˇ̌
ˇ
ÿ

ně0

pnT px0, ℓ0, x, ℓq
ˇ̌
ˇ

ď CT

"
1

T
1

2

H0pcT, |x| ` |x0| ` ℓ´ ℓ0q1tℓ0ăℓu `
" |x|β

T
β
2

^ |x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txx0ě0u1tℓ“ℓ0u

*

where CT :“
ř
Ně1pCT η{2Γpη{2qqN{Γp1 `Nη{2q ă 8, for some constants C, c ą 1.

The proof will be complete once we prove (5.3). We proceed by induction and show that for j “ 1, . . . , n, the
following estimate holds

|
ż

pRˆR`qj
p̂snpx0, ℓ0, x1, ℓ1q

#
jź

i“1

θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

+
|

ď
jź

i“1

Cpsn´i ´ sn´i`1q´1` η
2

$
&
%p 1

s
1

2

n´j

H0pcsn´j , |xj`1| ` |x0| ` ℓj`1 ´ ℓ0q1tℓ0ăℓj`1u

`

$
&
%

|xj`1|β

s
β
2

n´j

^ |x0|β

s
β
2

n´j

^ 1

,
.
-H0pcsn´j , xj`1 ´ x0q1txj`1x0ě0u1tℓj`1“ℓ0u

,
.
- .(5.4)

We start by proving a one step estimate, namely we compute an upper bound for
ż

RˆR`

p̂snpx0, ℓ0, x1, ℓ1qθ̂sn´1´snpx1, ℓ1, x2, ℓ2qupx0, ℓ0, x2, ℓ2, dx1, dℓ1q.(5.5)

This term can be decomposed as follows A11tℓ2“ℓ0u1tx2x0ě0u ` pA2 ` A3 ` A4q1tℓ0ăℓ2u. More precisely, on the
set tℓ2 “ ℓ0u X tx2x0 ě 0u, equation (5.5) is equal to

ż

R

p̂snpx0, ℓ0, x1, ℓ0qθ̂sn´1´snpx1, ℓ1, x2, ℓ1q1tx0x1ě0udx1 :“ A1.

On the set tℓ0 ă ℓ2u, equation (5.5) is equal to
ż

RˆR`

p̂snpx0, ℓ0, x1, ℓ1qθ̂sn´1´snpx1, ℓ1, x2, ℓ2q1tx1x0ě0udx1δℓ0pdℓ1q

`
ż

RˆR`

p̂snpx0, ℓ0, x1, ℓ1qθ̂sn´1´snpx1, ℓ1, x2, ℓ2q1tx2x1ě0udx1δℓ2pdℓ1q

`
ż

RˆR`

p̂snpx0, ℓ0, x1, ℓ1qθ̂sn´1´snpx1, ℓ1, x2, ℓ2q1tℓ0ďℓ1ďℓ2udx1dℓ1

:“ A2 `A3 `A4
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From the space-time inequality and Lemma 5.3, for all β P r0, 1s, one has

|A1| ď C

ż

R

#
|x1|β

s
β
2

n

^ |x0|β

s
β
2

n

^ 1

+
1tx1x0ě0uH0pcsn, x1 ´ x0q

#
|x2|β

psn´1 ´ snq 2´η`β
2

^ |x1|β

psn´1 ´ snq 2´η`β
2

^ 1

psn´1 ´ snq1´ η
2

+

ˆH0pcpsn´1 ´ snq, x2 ´ x1qdx1

ď C

psn´1 ´ snq1´ η
2

$
&
%

|x2|β

s
β
2

n´1

^ |x0|β

s
β
2

n´1

^ 1

,
.
-H0pcsn´1, x2 ´ x0q

where we separated the two cases sn P p0, sn´1{2q and sn P psn´1{2, sn´1q for the last inequality. Indeed, if
sn P p0, sn´1{2q, one has psn´1 ´ snq — sn´1 so that using the inequality

|x2|β

psn´1 ´ snq 2´η`β
2

^ |x1|β

psn´1 ´ snq 2´η`β
2

^ 1

psn´1 ´ snq1´ η
2

ď C

psn´1 ´ snq1´ η
2

$
&
%

|x2|β

s
β
2

n´1

^ 1

,
.
-

and the semigroup property of the Gaussian kernel, one gets

|A1| ď C

psn´1 ´ snq1´ η
2

$
&
%

|x2|β

s
β
2

n´1

^ 1

,
.
-H0pcsn´1, x2 ´ x0q.

To obtain the bound with |x0|β{s
β
2

n´1, we notice that |x1|β ď Cp|x1 ´ x0|β ` |x0|βq and use the following bound

|A1| ď C
|x0|β

s
β
2

n´1

ż

R

1

s
β
2

n

1tx1x0ě0uH0pcsn, x1 ´ x0q |x1 ´ x0|β
psn´1 ´ snq1´ η

2

H0pcpsn´1 ´ snq, x2 ´ x1qdx1

` C
|x0|β

s
β
2

n´1

ż

R

1tx1x0ě0uH0pcsn, x1 ´ x0q 1

psn´1 ´ snq1´ η
2

H0pcpsn´1 ´ snq, x2 ´ x1qdx1

ď C

psn´1 ´ snq1´ η
2

|x0|β

s
β
2

n´1

H0pcsn´1, x2 ´ x0q

where we used the space-time inequality for the last inequality. This proves the desired bound for sn P p0, sn´1{2q
and the second case sn P psn´1{2, sn´1q follows from similar arguments.

Again from Lemma 5.3, with β “ 1, one has

|A2| ď C

ż

R

#
|x1|β

|sn| β
2

^ |x0|β

|sn| β
2

^ 1

+
H0pcsn, x1 ´ x0q1tx1x0ě0u

1

psn´1 ´ snq 3´η
2

H0pcpsn´1 ´ snq, |x2| ` |x1| ` ℓ2 ´ ℓ0qdx1

ď C

#
1

s
β
2

1 psn´1 ´ snq 3´η´β
2

^ 1

psn´1 ´ snq 3´η
2

+
H0pcsn´1, |x2| ` x0 ` ℓ2 ´ ℓ0q

ď C

psn´1 ´ snq1´ η
2

1

s
1

2

n´1

H0pcsn´1, |x2| ` x0 ` ℓ2 ´ ℓ0q

where we used the inequality 1

s
β
2
n psn´1´snq

3´η´β
2

^ 1

psn´1´snq
3´η
2

ď 1

psn´1´snq
3´η
2

ď C 1

psn´1´snq
1´η
2

1

s
1

2

n´1

for sn P

p0, sn´1{2q and 1

s
β
2
n psn´1´snq

3´η´β
2

^ 1

psn´1´snq
3´η
2

ď 1

s
β
2
n psn´1´snq

3´η´β
2

ď C

psn´1´snq1´
η
2

1

s
1

2
n

ď C

psn´1´snq1´
η
2

1

s
1

2

n´1

for

sn P psn´1{2, sn´1q.

Similarly, from Lemma 5.3 with β “ 1, one has

|A3| ď
ż

R

C

s
1

2

n

H0pcsn, |x1| ` |x0| ` ℓ1 ´ ℓ0q 1

psn´1 ´ snq1´ η
2

#
|x1|β

psn´1 ´ snqβ
2

^ 1

+
H0pcpsn´1 ´ snq, x2 ´ x1q1tx2x1ě0udx1

ď C

psn´1 ´ snq1´ η
2

1

s
1

2

n´1

H0pcsn´1, |x2| ` |x0| ` ℓ2 ´ ℓ0q
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where we separated the computations into the two cases sn P p0, sn´1{2q and sn P psn´1{2, sn´1q and followed
similar arguments to the previously cases. Finally, from Lemma 5.2, one has

|A4| ď C

ż

Rˆpℓ0,ℓ2q

1

s
1

2

n

H0pcsn, |x1| ` |x0| ` ℓ1 ´ ℓ0q 1

psn´1 ´ snq 3´η
2

H0pcpsn´1 ´ snq, |x2| ` |x1| ` ℓ2 ´ ℓ1qdx1dℓ1

ď C

psn´1 ´ snq1´ η
2

1

s
1

2

n´1

H0pcsn´1, |x2| ` |x0| ` ℓ2 ´ ℓ0q.

Combining all the previous computations, one gets

|
ż

RˆR`

p̂snpx0, ℓ0, x1, ℓ1qθ̂sn´1´snpx1, ℓ1, x2, ℓ2qupx0, ℓ0, x2, ℓ2, dx1, dℓ1q|

ď C

psn´1 ´ snq1´ η
2

1

s
1

2

n´1

H0pcsn´1, |x2| ` |x0| ` ℓ2 ´ ℓ0q1tℓ0ăℓ2u

` C

psn´1 ´ snq1´ η
2

$
&
%

|x2|β

s
β
2

n´1

^ |x0|β

s
β
2

n´1

^ 1

,
.
-H0pcsn´1, x2 ´ x0q1tx2x0ě0u1tℓ2“ℓ0u(5.6)

for any β P r0, 1s and for some positive constant C depending only on the coefficient σ.
Now, we assume that the bound given in (5.4) is valid at step j and we prove that a similar bound holds at step

j ` 1, namely

|
ż

pRˆR`qj`1

p̂snpx0, ℓ0, x1, ℓ1q
#
j`1ź

i“1

θ̂sn´i´sn´i`1
pxi, ℓi, xi`1, ℓi`1qupx0, ℓ0, xi`1, ℓi`1, dxi, dℓiq

+
|

ď
j`1ź

i“1

Cpsn´i ´ sn´i`1q´1` η
2

$
&
%

1

s
1

2

n´pj`1q

H0pcsn´pj`1q, |xj`2| ` |x0| ` ℓj`2 ´ ℓ0q1tℓ0ăℓj`2u

`

$
&
%

|xj`2|β

s
β
2

n´pj`1q

^ |x0|β

s
β
2

n´pj`1q

^ 1

,
.
-H0pcsn´pj`1q, xj`2 ´ x0q1txj`2x0ě0u1tℓj`2“ℓ0u

,
.
- .(5.7)

From (5.4), the left-hand side of (5.7) is bounded by

jź

i“1

Cpsn´i ´ sn´i`1q´1` η
2

ż

RˆR`

$
&
%

1

s
1

2

n´j

H0pcsn´j , |xj`1| ` |x0| ` ℓj`1 ´ ℓ0q1tℓ0ăℓj`1u `

$
&
%

|xj`1|β

s
β
2

n´j

^ |x0|β

s
β
2

n´j

^ 1

,
.
-

ˆH0pcsn´j , xj`1 ´ x0q1txj`1x0ě0u1tℓj`1“ℓ0u

+
ˆ θ̂sn´pj`1q´sn´j

pxj`1, ℓj`1, xj`2, ℓj`2qupx0, ℓ0, xj`2, ℓj`2, dxj`1, dℓj`1q

which is in turn equal to
śj`1

i“1 Cpsn´i ´ sn´i`1q´1` η
2

 
A11txjx0ě0u1tℓj`2“ℓ0u ` pA2 `A3 `A4q1tℓ0ăℓj`2u

(
with

A1 :“
ż

R

$
&
%

|xj`1|β

s
β
2

n´j

^ |x0|β

s
β
2

n´j

^ 1

,
.
-H0pcsn´j , xj`1 ´ x0q1txj`1x0ě0u

1

psn´pj`1q ´ sn´jq1´ η
2

ˆ
#

|xj`2|β

psn´pj`1q ´ sn´jq
β
2

^ |xj`1|β

psn´pj`1q ´ sn´jq
β
2

^ 1

+
H0pcpsn´pj`1q ´ sn´jq, xj`2 ´ xj`1q1txj`2xj`1ě0udxj`1

ď C

psn´pj`1q ´ sn´jq1´ η
2

$
&
%

|xj`2|β

s
β
2

n´pj`1q

^ |x0|β

s
β
2

n´pj`1q

^ 1

,
.
-H0pcsn´pj`1q, xj`2 ´ x0q1txj`2x0ě0u

where the last inequality follows from considering the two cases sn´j P p0, sn´pj`1q{2q and sn´j P psn´pj`1q{2, sn´pj`1qq
and following similar arguments to the one used in the first step.
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Again from Lemma 5.3, for any β P r0, 1s, one has

A2 :“
ż

R

$
&
%

|xj`1|β

s
β
2

n´j

^ |x0|β

s
β
2

n´j

^ 1

,
.
-H0pcsn´j , xj`1 ´ x0q1txj`1x0ě0u

1

psn´pj`1q ´ sn´jq
3´η
2

ˆH0pcpsn´pj`1q ´ sn´jq, |xj`2| ` |xj`1| ` ℓj`2 ´ ℓ0qdxj`1

ď

$
&
%

1

s
β
2

n´jpsn´pj`1q ´ sn´jq
3´η´β

2

^ 1

psn´pj`1q ´ sn´jq
3´η
2

,
.
-H0pcsn´pj`1q, |xj`2| ` |x0| ` ℓj`2 ´ ℓ0q

ď C

psn´pj`1q ´ sn´jq1´ η
2

1

s
1

2

n´pj`1q

H0pcsn´pj`1q, |xj`2| ` |x0| ` ℓj`2 ´ ℓ0q

where we again separated the computations into the two cases sn´j P p0, sn´pj`1q{2q and sn´j P psn´pj`1q{2, sn´pj`1qq.
Similarly, from Lemma 5.3 with β “ 1, one has

A3 :“ C

ż

R

1

s
1

2

n´j

H0pcsn´j , |xj`1| ` |x0| ` ℓj`1 ´ ℓ0q 1

psn´pj`1q ´ sn´jq1´ η
2

#
|xj |β

psn´pj`1q ´ sn´jq
β
2

^ 1

+

ˆH0pcpsn´pj`1q ´ sn´jq, xj`2 ´ xj`1q1txj`1xj`2ě0udxj`1

ď C

psn´pj`1q ´ sn´jq1´ η
2

1

s
1

2

n´pj`1q

H0pcsn´pj`1q, |xj`2| ` |x0| ` ℓj`2 ´ ℓ0q

where we followed similar arguments as done for the first step. Finally, from Lemma 5.2, one has

A4 :“ C

ż

Rˆpℓ0,ℓjq

1

s
1

2

j`1

H0pcsn´j , |xj`1| ` |x0| ` ℓj`1 ´ ℓ0q 1

psn´pj`1q ´ sn´jq
3´η
2

ˆH0pcpsn´pj`1q ´ sn´jq, |xj`2| ` |xj`1| ` ℓj`2 ´ ℓj`1qdxj`1dℓj`1

ď C

psn´pj`1q ´ sn´jq1´ η
2

1

s
1

2

n´pj`1q

H0pcsn´pj`1q, |xj`2| ` |x0| ` ℓj`2 ´ ℓ0q.

Hence (5.7) is valid and therefore by induction, the estimate (5.4) holds for j “ 1, . . . , n. Now, the Gaussian bound
(5.3) follows from (5.4) by taking j “ n and applying the change of variable k “ n´ i.

5.3. Proof of Theorem 3.7.

From the expression of P̄tf , we remark that px0,m0q ÞÑ P̄tfpx0,m0q P C
2,1
b pJ q if f P C8

b pJ q and satisfies the
condition B2P̄tfpm0,m0q “ limx0Òm0

B2P̄tfpx0,m0q “ 0, m0 P R. Moreover, simple computations (that we omit
here) yield BtP̄tfpx0,m0q “ L̄P̄tfpx0,m0q, t ą 0, px0,m0q P J . Then, for px0,m0q P J , we write

pL ´ L̄qP̄tfpx0,m0q “ 1

2
papx0,m0q ´ apx1,m1qqB2

1P̄tfpx0,m0q ` bpx0,m0qB1P̄tfpx0,m0q

“
ż

R2

fpx,mqθ̄px1,m1q
t px0,m0, x,mqνpx0,m0, dx, dmq

where νpx0,m0, dx, dmq “ 1txďmu1tm0ămudxdm ` 1txďm0udxδm0
pdmq and

θ̄
px1,m1q
t px0,m0, x,mq

:“

$
’&
’%

1
2

papx0,m0q ´ apx1,m1qqp´2H3qpāt, 2m´ x´ x0q ` bpx0,m0qp´2H2qpāt, 2m´ x´ x0q, x ď m, m0 ă m,
1
2

papx0,m0q ´ apx1,m1qqpH2pāt, x´ x0q ´H2pāt, 2m0 ´ x´ x0qq x ă m0, m “ m0

`bpx0,m0qpH1pāt, 2m0 ´ x´ x0q ´H1pāt, x´ x0qq.

Hence, we see that (H1) (i), (ii), (iii) hold. We now verify (H1) (iv) for ζ̄ “ ´1. We proceed as in subsection 5.1.

From (UE), there exists positive constants C, c ą 0 such that for any t ą 0 and px0,m0q P J , one has

|p̄tpx0,m0, x,mq| ď C
 

p´H1qpct, 2m´ x´ x0q1txďmu1tmăm0u `H0pct, x´ x0q1tm“m0u
(
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and the right-hand side of the above inequality is νpx0,m0, dx, dmq integrable. In the same spirit, from (UE),

(HR) and the space-time inequality, we bound θ̄
px1,m1q
t px0,m0, x,mq as follows

|θ̄px1,m1q
t px0,m0, x,mq| ď

$
&
%

C
´

1

t
3

2

` |b|8

t

¯
H0pct, 2m´ x´ x0q, x ď m, m0 ă m,

C
´

1
t

` |b|8

t
1

2

¯
H0pct, x´ x0q, x ă m0, m “ m0.

Integrating with respect to νpx0,m0, dx, dmq yields

ż

R2

|θ̄px1,m1q
t px0,m0, x,mq|νpx0,m0, dx, dmq ď C

ˆ
1

t
3

2

` |b|8
t

˙ż 8

m0

ż m

´8
H0pct, 2m´ x´ x0qdxdm

` C

ˆ
1

t
` |b|8

t
1

2

˙ż m0

´8
H0pct, x´ x0qdx

ď C

ˆ
1

t
3

2

` |b|8
t

˙ż 8

m0

pm ´m0qH0pct,m´m0qdm ` Cp1 ` |b|8t
1

2 q
t

ď Cp1 ` |b|8t
1

2 q
t

.

Similarly, when we let the freezing point be the end point of the transition density, that is px1,m1q “ px,mq,
noting that m´m0 ď 2m´ x´ x0, for m0 ď m, x0 ď x, from (HR), (UE) and the space-time inequality we get

|θ̄px,mq
t px0,m0, x,mq| ď

$
&
%

C
´

1

t
3´η
2

` |b|8

t

¯
H0pct, 2m´ x´ x0q, x ď m, m0 ă m,

C
´

1

t
1´

η
2

` |b|8

t
1

2

¯
H0pct, x´ x0q, x ă m0, m “ m0.

The above estimate in turn implies

ż

R2

|θ̄px,mq
t px0,m0, x,mq|νpx0,m0, dx, dmq ď C

ˆ
1

t
3´η
2

` |b|8
t

˙ż 8

m0

ż m

´8
H0pct, 2m´ x´ x0qdxdm

` C

ˆ
1

t1´ η
2

` |b|8
t
1

2

˙ż m0

´8
H0pct, x´ x0qdx

ď C

ˆ
1

t
3´η
2

` |b|8
t

˙ż 8

m0

pm ´m0qH0pct,m´m0qdm ` Ct

t1´ η
2

ď Ct

t1´ η
2

where in the second last inequality, we have applied integration by parts with respect to x and taken Ct “ Cp1 `
|b|8t

1´η
2 q. Hence, we conclude that (H1) (iv) is satisfied with ζ̄ “ ´1 and ζ “ ´1 ` η{2. Assumption (H1) (v),

(H1) (vi), (H2) are obtained following the same arguments as in the case of the diffusion process and its running
local time, therefore details are omitted.

5.4. Proof of Theorem 3.8.

In the model of the SDE with its running local time, we examine the n-th term of the series (3.16) and we take
the convention x “ xn`1, m “ mn`1 and s0 “ T . We prove the following key inequality

|
ż

pR2qn
p̂snpx0,m0, x1,m1q

#
nź

i“1

θ̂sn´i´sn´i`1
pxi,mi, xi`1,mi`1qupx0,m0, xi`1,mi`1, dxi, dmiq

+
|

ď
nź

k“1

Cpsk´1 ´ skq´1` η
2

"
1

T
1

2

H0pcT, 2m´ x´ x0q1txămu1tℓ0ămu

`
" |m ´ x|β

T
β
2

^ |m ´ x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txăm0u1tm“m0u

*
(5.8)
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for any β P r0, 1s. From the previous bound, we deduce that

|
ż

∆npT q
dsn

ż

pR2qn
p̂snpx0,m0, x1,m1q ˆ

#
nź

i“1

θ̂sn´i´sn´i`1
pxi,mi, xi`1,mi`1qupx0,m0, xi`1,mi`1, dxi, dmiq

+
|

ď
ż

∆npT q
dsn

nź

k“1

Cpsk´1 ´ skq´1` η
2

"
1

T
1

2

H0pcT, 2m´ x´ x0q1txămu1tm0ămu

`
" |m ´ x|β

T
β
2

^ |m ´ x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txăm0u1tm“m0u

*

“ CpN, T q
"

1

T
1

2

H0pcT, 2m´ x´ x0q1txămu1tm0ămu `
" |m´ x|β

T
β
2

^ |m´ x0|β

T
β
2

^ 1

*
H0pcT, x´ x0q1txăm0u1tm“m0u

*

where, from Lemma 5.1, CpN, T q :“ pCTη{2Γpη{2qqN
Γp1`Nη{2q . Hence, from Fubini’s theorem, the semigroup series obtained

from Corollary 2.1 admits the following integral representation

PT gpx0,m0q “
ż

R2

gpx,mq
˜
ÿ

ně0

pnT px0,m0, x,mq
¸
νpx0,m0, dx, dmq

where pnT px0,m0, x,mq is given by (3.18). Moreover, from the above inequality, for any px0,m0q, px,mq P J 2, one
gets the following Gaussian upper bounds

|pT px0,m0, x,mq| :“ |
ÿ

ně0

pnT px0,m0, x,mq|

ď CT

"
1?
T
H0pcT, 2m´ x´ x0q1txďmu1tm0ămu `H0pcT, x´ x0q1txăm0u1tm“m0u

*
(5.9)

where CT :“
ř
Ně1pCT η{2Γpη{2qqN{Γp1 ` Nη{2q ă 8, for some constants C, c ą 1. Hence it remains to prove

(5.8). Since its proof is similar to the proof of (5.3) in the case of local time, we briefly present the guidelines and
omit technical details. First we note that from Lemma 5.3 and the space-time inequality, the following estimates
hold

|p̂tpx0,m0, x,mq| ď

$
’&
’%

C

t
1

2

H0pct, 2m´ x´ x0q, x ď m, m0 ă m,

C

"
|m´x0|β

t
β
2

^ |m´x|β

t
β
2

^ 1

*
H0pct, x´ x0q, x ă m0, m “ m0.

and similarly

|θ̂tpx0,m0, x,mq| ď

$
’&
’%

C

t
3´η
2

H0pct, 2m´ x´ x0q, x ď m, m0 ă m,

C

t
1´

η
2

"
|m´x0|β

t
β
2

^ |m´x|β

t
β
2

^ 1

*
H0pct, x´ x0q, x ă m0, m “ m0

where β P r0, 1s can be freely chosen. We proceed in a similar fashion to the case of the local time and first compute
an upper bound for

ż

R2

p̂spx0,m0, x
1,m1qθ̂t´spx1,m1, x,mqupx0,m0, x,m, dx

1, dm1q.(5.10)

In the current case of the maximum there are also four terms to consider. On the set tm0 ă m,x ď mu, we note
that equation (5.10) is equal to

ż

R2

p̂spx0,m0, x
1,m1qθ̂t´spx1,m1, x,mq1tx1_x0_m0ăm1u1tx_x1_m1ămu1tm1ămudx

1dm1

`
ż

R2

p̂spx0,m0, x
1,m1q1tm0“m1uθ̂t´spx1,m1, x,mq1tx_x1_m1ămu1tx1ăm0uδm0

pdm1qdx1

`
ż

R2

p̂spx0,m0, x
1,m1q1tx1_x0_m0ăm1uθ̂t´spx1,m1, x,mq1tm1“mu1tx1ămuδmpdm1qdx1

“: pA1 `A2 `A3qpx0,m0, x,mq
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and, on the set tm “ m0u, (5.10) is equal to
ż

R2

p̂spx0,m0, x
1,m1qθ̂t´spx1,m1, x,mq1tx1ăm0u1txăm1u1tm“m1uδm0

pdm1qdx1

“ 1txăm0u1tm0“mu

ż

R

p̂spx0,m0, x
1,m0qθ̂t´spx1,m0, x,mqdx1

“: A4px,m0, x,mq.
From Lemma 5.2, one directly gets

|A1| ď 1

pt ´ sq1´ η
2

C?
t
H0pct, 2m´ x´ x0q1tx_x0_m0ămu.

For the term A2, we notice that m0 “ m1 ă m and for β “ 1, we obtain the following bound

|A2| ď C

pt´ sq 3´η
2

ż

R

" |m0 ´ x1|β

s
β
2

^ |m0 ´ x0|
s

β
2

^ 1

*
H0pcs, x1 ´ x0qH0pcpt ´ sq, 2m´ x´ x1q1tx_x1_m0ămu1tx1ăm0udx

1

ď C

pt´ sq1´ η
2

` 1

2

" |m1 ´ x1 `m´ x|β

s
β
2

1tsPp t
2
,tsu ` 1tsPp0, t

2
qu

*

ˆ
ż

R

H0pcs, x1 ´ x0qH0pcpt ´ sq, 2m´ x´ x1q1tx_x1_m0ămu1tx1ăm0udx
1

ď C

pt´ sq1´ η
2

1

t
1

2

H0pct, 2m´ x´ x0q1tx_x0_m0ămu

where the last inequality follows from the fact that m1 ´ x1 ` m ´ x ď 2m ´ x ´ x1 and the space-time inequality
in the case s P p t

2
, tq and Gaussian convolution together with pt ´ sq — t otherwise.

For the term A3, we note that m0 ă m and |m ´ x| ď |m´ x`m0 ´ x0| ď |2m´ x´ x0|. Hence, one has

|A3| ď C

pt´ sq1´ η
2

ż

R

1

s
1

2

H0pcs, 2m´ x1 ´ x0q
#

|m ´ x|β

pt ´ sqβ
2

^ |m ´ x1|β

pt ´ sqβ
2

^ 1

+
H0pcpt ´ sq, x´ x1q1tx1_x0_m0ămu1tx1ămudx

1.

On the set s P p t
2
, tq, by the Gaussian convolution, we obtain

|A3| ď C

s
1

2

1

pt´ sq1´ η
2

H0pct, 2m´ x´ x0q1tx_x0_m0ămu ď C

pt ´ sq1´ η
2

1

t
1

2

H0pct, 2m´ x´ x0q1tx_x0_m0ămu.

On the set s P p0, t
2

q, take β “ 1 and by the space-time inequality, one gets

|A3| ď C
1

s
1

2

1

pt ´ sq1´ η
2

|m´ x|
pt ´ sq 1

2

ż

R

H0pcs, 2m´ x1 ´ x0qH0pcpt´ sq, x´ x1q1tx1_x0_m0ămu1tx1ămudx
1

ď C
1

s
1

2

1

pt ´ sq1´ η
2

|2m´ x´ x0|?
t

ż

R

H0pcs, 2m´ x1 ´ x0qH0pcpt ´ sq, x´ x1q1tx1_x0_m0ămu1tx1ămudx
1.

ď C
1

pt ´ sq1´ η
2

1

t
1

2

H0pct, 2m´ x´ x0q1tx_x0_m0ămu.

For the term A4, we note that m0 “ m so that from Lemma 5.3 one gets

|A4| ď C

pt ´ sq1´ η
2

ż

R2

" |m0 ´ x0|β

s
β
2

^ |m0 ´ x1|β

s
β
2

^ 1

*
H0pcs, x1 ´ x0q

ˆ
#

|m ´ x|β

pt ´ sqβ
2

^ |m ´ x1|β

pt ´ sqβ
2

^ 1

+
H0pcpt ´ sq, x´ x1q1tx1ăm0u1txăm1u1tm0“muδm0

pdm1qdx1

ď C

pt ´ sq1´ η
2

ż

R2

##
|m´ x0|β

s
β
2

^ p|m ´ x|β ` |x´ x1|β

s
β
2

ˆ p|m´ x|β

pt ´ sqβ
2

^ 1qq ^ 1

+
1tsPp t

2
,tqu

`
#

|m´ x|β

pt ´ sqβ
2

^ p|m ´ x0|β ` |x0 ´ x1|β

pt ´ sqβ
2

ˆ p|m ´ x0|β

s
β
2

^ 1qq ^ 1

+
1tsPp0, t

2
qu

+

ˆH0pcs, x1 ´ x0qH0pcpt´ sq, x´ x1q1tx1ăm0u1txăm1u1tm0“muδm0
pdm1qdx1

ď C

pt ´ sq1´ η
2

" |m´ x0|β

t
β
2

^ |m´ x|β

t
β
2

^ 1

*
H0pct, x´ x0q1txăm0u1tm0“mu.
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Therefore summarising the above, the following Gaussian upper bound holds

|
ż

R2

p̂spx0,m0, x
1,m1qθ̂t´spx1,m1, x,mqupx0,m0, x,m, dx

1, dm1q|

ď

$
’&
’%

C

pt´sq1´
η
2

1

t
1

2

H0pct, 2m´ x´ x0q, x ď m, m0 ă m,

C

pt´sq1´
η
2

"
|m´x|β

t
β
2

^ |m´x0|β

t
β
2

^ 1

*
H0pct, x´ x0q, x ă m0, m “ m0.

for any β P r0, 1s. By an induction argument which is similar to the case of local time, one gets

|pnT px0,m0, x,mq| ď
#
Cnp

ş
∆npT q dsn

śn

k“1psk´1 ´ skq´1` η
2 q ˆ 1?

T
H0pcT, 2m´ x´ x0q, x ď m, m0 ă m,

Cnp
ş
∆npT q dsn

śn
k“1psk´1 ´ skq´1` η

2 q ˆH0pcT, x´ x0q, x ă m0, m “ m0.

We omit technical details. Hence from Lemma 5.1 and the asymptotic property of the Gamma function, the
Gaussian upper bound (5.9) for the transition density is valid. This concludes the proof.

5.5. Some useful technical results.

Lemma 5.1. Let b ą ´1 and a P r0, 1q. Then for any t0 ą 0,
ż

∆npt0q
dtn t

b
n

n´1ź

j“0

ptj ´ tj`1q´a “ t
b`np1´aq
0 Γnp1 ´ aqΓp1 ` bq

Γp1 ` b` np1 ´ aqq

Proof. Using the change of variables s “ ut, one has
ż t

0

sbpt ´ sq´ads “ tb`1´a
ż 1

0

ubp1 ´ uq´adu “ tb`1´aBp1 ` b, 1 ´ aq

where px, yq ÞÑ Bpx, yq “
ş1
0
tx´1p1 ´ tqy´1dt stands for the standard Beta function. Using this equality repeatedly,

we obtain the statement. �

Lemma 5.2. Let c1 ą 0. For any px, x0q P R2, 0 ď ℓ0 ď ℓ2 and 0 ă s ă t, one has
ż

Rˆpℓ0,ℓq

1

pt ´ sq 1

2

H0pc1pt´ sq, |x| ` |x1| ` ℓ´ ℓ1q 1

s
1

2

H0pc1s, |x1| ` |x0| ` ℓ1 ´ ℓ0qdx1dℓ1 ď C

t
1

2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q

for some positive constants C, c independent of t, x0, ℓ0 and ℓ. Similarly, for any px0,m0q P J , m ě m0 and
0 ă s ă t, one hasż

pm0,mqˆp´8,m1q

1

pt ´ sq 1

2

H0pc1pt ´ sq, 2m´ x´ x1q 1

s
1

2

H0pc1s, 2m1 ´ x1 ´ x0qdx1dm1 ď C

t
1

2

H0pct, 2m´ x´ x0q

for some positive constants C, c independent of t, x0, m0 and m.

Proof. We will only prove the first bound. The second one follows from similar arguments. For simplicity, we write

C2 :“
ż

Rˆpℓ0,ℓq

1

pt ´ sq 1

2

H0pcpt ´ sq, |x| ` |x1| ` ℓ´ ℓ1q 1

s
1

2

H0pcs, |x1| ` |x0| ` ℓ1 ´ ℓ0qdx1dℓ1.

Let us assume that |x| ` |x0| ` ℓ ´ ℓ0 ď t
1

2 . We use the fact that the diagonal estimate is global. For s P r t
2
, ts,

one has s — t so that
1

s
1

2

H0pcs, |x1| ` |x0| ` ℓ1 ´ ℓ0q ď Ct´1 ď CH0pct, |x| ` |x0| ` ℓ´ ℓ0q

which in turn implies:

|C2| ď C?
t
H0pct, |x|`|x0|`ℓ´ℓ0q

ż

Rˆpℓ0,ℓq

1

pt ´ sq 1

2

H0pcpt´sq, |x|`|x1|`ℓ´ℓ1qdx1dℓ1 ď C?
t
H0pct, |x|`|x0|`ℓ´ℓ0q.

Similarly, for s P r0, t
2

s, one has

|C2| ď C?
t
H0pct, |x| ` |x0| ` ℓ´ ℓ0q.

Hence, the claim follows in the diagonal regime |x| ` |x0| ` ℓ ´ ℓ0 ď t
1

2 . We now consider the off-diagonal regime

|x| ` |x0| ` ℓ´ ℓ0 ą t
1

2 . We write R ˆ pℓ0, ℓq “ D1 YD2 where

D1 :“
 

px1, ℓ1q P R ˆ pℓ0, ℓq : |x1| ` |x0| ` ℓ1 ´ ℓ0 ď |x| ´ |x1| ` ℓ´ ℓ1( ,
D2 :“

 
px1, ℓ1q P R ˆ pℓ0, ℓq : |x1| ` |x0| ` ℓ1 ´ ℓ0 ą |x| ´ |x1| ` ℓ´ ℓ1( .
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On the set D1, we remark |x| ´ |x1| ` ℓ´ ℓ1 — |x| ` |x0| ` ℓ´ ℓ0, so that

1

pt ´ sq 1

2

H0pcpt´ sq, |x| ` |x1| ` ℓ´ ℓ1q ď C

t

p|x| ` |x0| ` ℓ´ ℓ0q2
pt ´ sq 1

2

H0pcpt ´ sq, |x| ` |x0| ` ℓ´ ℓ0q

ď C

t
1

2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q

where we used the space-time inequality for the last inequality. Hence, one gets
ż

D1

1

pt ´ sq 1

2

H0pcpt ´ sq, |x| ` |x1| ` ℓ´ ℓ1q 1

s
1

2

H0pcs, |x1| ` |x0| ` ℓ1 ´ ℓ0qdx1dℓ1 ď C

t
1

2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q.

On the set D2, one has |x| ´ |x1| ` ℓ´ ℓ1 — |x| ` |x0| ` ℓ´ ℓ0, so that

1

s
1

2

H0pcs, |x1| ` |x0| ` ℓ1 ´ ℓ0q ď C

t

p|x| ` |x0| ` ℓ´ ℓ0q2
s

1

2

H0pcs, |x| ` |x0| ` ℓ´ ℓ0q

ď C

t
1

2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q

which in turn yields
ż

D2

1

pt ´ sq 1

2

H0pcpt ´ sq, |x| ` |x1| ` ℓ´ ℓ1q 1

s
1

2

H0pcs, |x1| ` |x0| ` ℓ1 ´ ℓ0qdx1dℓ1 ď C

t
1

2

H0pct, |x| ` |x0| ` ℓ´ ℓ0q

and proves the claim. �

Lemma 5.3. Let a ą 0. Define f̄tpx0, xq :“ H0pat, x´x0q´H0pat, x`x0q. For any β P r0, 1s, there exists C, c ą 1,
such that for any px0, xq P R2 such that xx0 ě 0 and r “ 0, 2, the following estimates hold:

|Brx0
f̄tpx0, xq| ď C

t
r
2

" |x|β

t
β
2

^ |x0|β

t
β
2

^ 1

*
H0pct, x´ x0q.

Let p̄tpx0, xq :“ H0pat, x´ x0q ´H0pat, 2m0 ´ x´ x0q, for r “ 0, 1, 2, one has

|Brx0
p̄tpx0, xq| ď C

t
r
2

" |m0 ´ x0|β

t
β
2

^ |m0 ´ x|β

t
β
2

^ 1

*
H0pct, x´ x0q, x0, x ď m0.

Proof. From the expression of f̄tpx0, xq, the following estimates for f̄tpx0, xq and its derivatives hold

|Brx0
f̄tpx0, xq| ď C

t
r
2

pH0pct, x´ x0q `H0pct, x` x0qq, r “ 0, 2.

Furthermore, for px0, xq P R2 such that xx0 ě 0, one has H0pct, x` x0q ď H0pct, x´ x0q, since in the exponent

px´ x0q2 ` 4x0px´ x0q ` 4x20 ě px´ x0q2.

Hence, we deduce that |Brx0
f̄tpx0, xq| ď Ct´

r
2 gpct, x´ x0q. To derive the bounds with the |x|β or |x0|β terms, we

first consider the case where |x|2 ď t, to estimate f̄tpx0, xq “ H0papy, ℓqt, x´ x0q ´ H0papy, ℓqt, x` x0q one applies
the mean value theorem to gpapy, ℓqt, x´ x0q with respect to the points x and ´x to obtain for some θ P r0, 1s,

|f̄tpx0, xq| “ |2xBxH0papy, ℓqt, x0 ´ θx` p1 ´ θqxq| ď C
|x|β

t
β
2

H0pct, x´ x0q

where in the second line we have used the space-time inequality and the fact that |x|1´β ď t
1´β
2 . For the case that

|x|2 ě t, one directly gets

|f̄tpx0, xq| ď C
|x|β

t
β
2

H0pct, x´ x0q.

The proof for the second derivatives of f̄zt px0, xq as well as the estimates with the |x0|β term and the estimates for
Brx0

p̄tpx0, xq follow similar arguments and details are omitted. �
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