Querying massive graph data: A compress and search approach - Archive ouverte HAL Access content directly
Conference Papers Year :

Querying massive graph data: A compress and search approach

(1) , (1)
1
Chemseddine Nabti
Hamida Seba

Abstract

Querying graph data is a fundamental problem that witnesses an increasing interest especially for massive graph databases which come as a promising alternative to relational databases for big data modeling. In this paper, we study the problem of subgraph isomorphism search which consists to enumerate the embedding of a query graph in a data graph. The most known solutions of this NP-complete problem are backtracking-based and result in a high computational cost when we deal with massive graph databases. We address this problem and its challenges via graph compression with modular decomposition. In our approach, subgraph isomorphism search is performed on compressed graphs without decompressing them yielding substantial reduction of the search space and consequently a significant saving in processing time as well as in storage space for the graphs. We evaluated our algorithms on nine real-word datasets. The experimental results show that our approach is efficient and scalable.
Not file

Dates and versions

hal-01546080 , version 1 (23-06-2017)

Identifiers

  • HAL Id : hal-01546080 , version 1

Cite

Chemseddine Nabti, Hamida Seba. Querying massive graph data: A compress and search approach. International Conference on Internet of Things, Big Data and Security - IoTBDS 2017, Jun 2017, Porto, Portugal. ⟨hal-01546080⟩
183 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More