Concentration inequalities for suprema of unbounded empirical processes
Résumé
In this paper, we provide new concentration inequalities for suprema of (possibly) non-centered and unbounded empirical processes associated with independent and identically distributed random variables. In particular, we establish Fuk–Nagaev type inequalities with the optimal constant in the moderate deviation bandwidth. The proof builds on martingale methods and comparison inequalities, allowing to bound generalized quantiles as the so-called Conditional Value-at-Risk. Importantly, we also extent the left concentration inequalities of Klein (2002) to classes of unbounded functions.
Origine | Publication financée par une institution |
---|