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CONCENTRATION INEQUALITIES
FOR SUPREMA OF UNBOUNDED
EMPIRICAL PROCESSES
INÉGALITÉS DE CONCENTRATION POUR
LES SUPREMA DE PROCESSUS
EMPIRIQUES NON BORNÉS

Abstract. — In this paper, we provide new concentration inequalities for suprema of
(possibly) non-centered and unbounded empirical processes associated with independent and
identically distributed random variables. In particular, we establish Fuk–Nagaev type inequal-
ities with the optimal constant in the moderate deviation bandwidth. The proof builds on
martingale methods and comparison inequalities, allowing to bound generalized quantiles as
the so-called Conditional Value-at-Risk. Importantly, we also extent the left concentration
inequalities of Klein (2002) to classes of unbounded functions.
Résumé. — Dans cet article, nous donnons des inégalités de concentration pour des su-

prema de processus empiriques non bornés et (éventuellement) non centrés, associés à des
variables aléatoires indépendantes et identiquement distribuées. En particulier, nous établis-
sons des inégalités de type Fuk–Nagaev avec constantes optimales dans la bande des moyennes
déviations. Notre approche est basée sur des techniques de martingales et des inégalités de
comparaison permettant de majorer des quantiles généralisés comme la CVaR. Nous étendons
également les inégalités de concentration à gauche de Klein (2002) à des classes de fonctions
non bornées.
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832 A. MARCHINA

1. Introduction

Let T be a countable index set. For each k = 1, . . . , n, let Xk := (Xk, t)t∈T
be a collection of centered real-valued random variables such that X1, . . . , Xn are
independent and identically distributed according to a law P . Define the envelope
of the collection of coordinates by
(1.1) Mk := sup

t∈T
|Xk, t| for all k = 1, . . . , n .

Throughout the paper, we assume that
(1.2) E

[
M2

1

]
<∞ .

Set now for all t ∈ T , Sn, t := X1, t + . . . +Xn, t. For a given (deterministic) vector
c := (ct)t∈T , we define
(1.3) Z := sup{Sn, t + nct : t ∈ T } .
The vector c is introduced to consider possibly non-centered empirical processes.

Remark 1.1. — In this paper, as in [BLM13, LvdG14], we express the empirical
process in terms of random vector. If the indices t ∈ T are associated with measurable
functions ft : X → R defined on some measurable space (X ,F), and if Y1, . . . , Yn
is a sequence of centered iid random variables, then defining Xk, t = ft(Yk) leads to
the other classical notation (in the centered case),

Z = sup
{

n∑
k=1

f(Yk) : f ∈ F

}
,

where F := {ft : t ∈ T }.

The question asked in this paper is: without the classical boundedness condition
on the random variables Xk, t, how to provide an upper bound on the upper tail
quantiles of Z − E[Z] and E[Z]− Z?
As a direct consequence of such bounds, we will then able to derive deviation

inequalities and moment inequalities which have their own interest in practical
applications such as statistical learning. Let us emphasize that in the literature, there
are only few studies in the unbounded setting. First, we recall that the bounded
case (that is, for all t ∈ T , Xk, t 6 1 a.s. or |Xk, t| 6 1 a.s) is handled by Talagrand’s
inequality. Precisely, it is the merit of Talagrand [Tal96] to obtain the first a functional
Bennett inequality for suprema of empirical processes, but with unspecified constants.
Ledoux [Led97] introduces a new method based on entropic inequalities to recover
more directly Talagrand’s result. This method is the starting point of a series of
paper, mainly to reach optimal constants in Talagrand’s inequality: Massart [Mas00],
Rio [Rio01, Rio02, Rio12], Bousquet [Bou03], Klein [Kle02] and Klein and Rio [KR05].
For an overview of the results in the bounded case, we refer the reader to Section 12
in the book of Boucheron, Lugosi, and Massart [BLM13].
The different attempts to get tail bounds for suprema of unbounded empirical

processes I am aware of, have been investigated by Adamczak [Ada08], Lederer and
van de Geer [LvdG14, L13], and Dirksen [Dir15]. Under the moment condition on
the envelope ‖M1‖ψα < +∞ for some α ∈ ]0 , 1], where ‖.‖ψα is the Orlicz norm
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Concentration inequalities for suprema of unbounded empirical processes 833

associated with ψα(x) = exp(xα) − 1 (the case α = 1 corresponds to having sub-
exponential tails), Adamczak [Ada08, Theorem 4] proves the following deviation
inequality: let Z̃ = supt∈T |

∑n
k=1Xk, t|, then for all 0 < ε < 1, δ > 0, and t > 0,

(1.4) P
(
Z̃ > (1 + ε)E[Z̃] + t

)
6 exp

(
− t2

2(1 + δ)nσ2

)
+ 3 exp

(
−
(

t

Cα, ε, δ‖maxkMk‖ψα

)α)
,

where σ2 = supt∈T Var(X1, t) is the wimpy variance, and Cα, ε, δ is an unspecified
constant. In [LvdG14, Corollary 3.1], Lederer and van de Geer only require that
‖M1‖p <∞ for some p > 2, and obtain that for all ε > 0 and t > 0,

(1.5) P
(
Z̃ > (1 + ε)E[Z̃] + t

)
6 min

16 r6 p
t−r

(
4σ
√
rn+

(64
ε

+ 7 + ε
)
r1−r/pnr/p‖M1‖p

)r
.

These two results are based on truncation arguments and on Talagrand type in-
equalities for suprema of bounded empirical processes. That explains the additional
factor (1 + ε) in front of E[Z]. The same authors in [L13, Theorem 8] provide an
exponential tail bound for Z̃ under a uniform Bernstein condition. To do this, they in-
troduce the Bernstein–Orlicz norm that they combine with a variation of the classical
chaining. In [Dir15, Corollary 5.2], assuming the same uniform Bernstein condition
as in [L13], Dirksen uses the generic chaining to upper bound all pth moments of Z̃
and thus he derives an exponential tail bound by a standard optimization argument.
In the present paper, we relax the previous tail assumptions by only assuming the

mild condition that ‖M1‖p is finite for some p > 2. We will prove in particular the
following deviation inequality around E[Z], without extra centering term εE[Z] and
with explicit constants (see Theorem 2.1 below): for any u ∈ ]0 , 1[,

P
(
Z > E[Z] +

√
2n log(1/u) (σ +√vn ) + n1/p(p+ 8) ‖M1‖pu−1/p

)
6 u,

where vn satisfies vn = o(1) as n tends to infinity. We emphasize that the constant 1
in front of σ

√
2n log(1/u) is optimal and, in addition, we show that we cannot expect

to have a nonasymptotic upper bound with σ instead of σ + vn (see Section 1.3
below). Moreover, our term vn is of a correct order. The proofs of our results rely on
martingales methods, comparison inequalities, and recent concentration inequalities
for real-valued martingales proved by Rio [Rio17a]. Another important point is that
we do not seek to directly control the upper tail quantile as usual, but instead we
control the Conditional Value-At-Risk of Z − E[Z]. Finally, let us mention that
we already use martingale methods in a previous work to obtain concentration
inequalities for (general) separately convex functions [Mar18]. However when we
apply the results to the case of unbounded empirical processes, the upper bound
suffer from the fact that they do not involve the wimpy variance σ2 and then are
less interesting for the statistical applications we have in mind.
In order to explain our results, let us give some definitions and notation.
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834 A. MARCHINA

1.1. Upper tail quantile and Conditional Value-At-Risk

Let X be a real-valued random variable. As usual, we denote by FX its distribution
function and by F−1

X the càdlàg inverse of FX .
Definition 1.2. — The “upper tail” quantile function of X, which is the càdlàg

inverse of the tail function t 7→ 1− FX(t), is denoted by QX . It is defined by
QX(u) := inf{x ∈ R : 1− FX(x) 6 u} .

Note that QX(u) is the value of the usual quantile function at point 1 − u. The
basic property of QX is: x < QX(u) if and only if 1 − FX(x) > u. This ensures
that QX(U) has the same distribution as X for any random variable U uniformly
distributed over [0 , 1].
Definition 1.3. — Assume that X is integrable. The Conditional Value-at-Risk

(CVaR for short) of X is defined by

(1.6) Q̃X(u) := 1
u

∫ u

0
QX(s)ds for any u ∈ ]0 , 1] .

It is worth noticing that, for any u ∈ ]0 , 1[, if the distribution of X has no atom
at QX(u), then (see, for instance, [Pin14b, Section 5.9] in Pinelis)

E [X | X > QX(u)] = u−1 sup
P(A)6u

E [X1A] = Q̃X(u) .

When X has a finite Laplace transform on a right neighborhood of 0, we denote
by `X the log-Laplace transform of X, given by
(1.7) `X(t) := logE [exp(tX)] for any t > 0 .
The Legendre transform `∗X of X is defined by

(1.8) `∗X(λ) := sup {λt− `X(t) : t > 0} for any λ > 0 .
We recall that the inverse function of `∗X admits the following variational expression

(see, for instance, Rio [Rio17b, Lemma A.2]):
(1.9) `∗−1

X (x) = inf
{
t−1(`X(t) + x) : t > 0

}
for any x > 0 .

Clearly, one has QX 6 Q̃X . Moreover,
(1.10) Q̃X(u) 6 `∗−1

X (log(1/u)) for any u ∈ ]0 , 1] .
This result may be found in Pinelis [Pin14b, Theorem 3.4]. In this paper, we will

focus on upper bounds on the CVaR of Z−E[Z] instead of on its upper tail quantile
function (also known as the Value-at-Risk). To a certain extent, we can consider
that the CVaR is superior than the Value-at-Risk since it has stronger mathematical
properties which are very useful in optimization modeling or statistics. We refer the
reader to Pinelis [Pin14b] or Rockafellar and Uryasev [RU00] (see also the references
therein) for more on the CVaR. One property that will be of interest to us is the
subadditivity of the CVaR (see [Pin14b, Theorem 3.4]):
Proposition 1.4. — LetX and Y be real-valued and integrable random variables

(X and Y may not be independent). Then, for any u ∈ ]0 , 1],
Q̃X+Y (u) 6 Q̃X(u) + Q̃Y (u) .

ANNALES HENRI LEBESGUE



Concentration inequalities for suprema of unbounded empirical processes 835

1.2. Aim and organization of the paper

In a well known paper [CIS76], Cirel’son, Ibragimov and Sudakov proved a com-
parison inequality between the quantiles of a supremum of a Gaussian process
and those of a standard Gaussian random variable (see [CIS76, pages 22-23]).
Precisely, let (Gt)t∈T be a centered Gaussian process indexed by T such that
ZG := supt∈T Gt < ∞ almost surely. Define σ2

G := supt∈T E[G2
t ], and let Y be

a standard Gaussian random variable. They proved that for any u, v ∈ ]0 , 1],

(1.11)
∣∣∣QZG−E[ZG](u)−QZG−E[ZG](v)

∣∣∣ 6 σG |QY (u)−QY (v)| .

Now, combining this inequality with (1.10) yields that for any u ∈ ]0 , 1],

(1.12) Q̃ZG−E[ZG](u) 6 σG Q̃Y (u) 6 σG `
∗−1
Y (log(1/u)) = σG

√
2 log(1/u) .

For the convenience of the reader, we provide a proof of the first inequality in (1.12)
in Appendix A. Note that this inequality could be also deduced from Bobkov [Bob03,
Corollary 2].
Since the empirical process Sn, t, t ∈ T , converges fidi (after suitable normalization)

towards a Gaussian process, the aim is then to reach an extension of the Gaussian
bound (1.12) for Z − E[Z] in the unbounded case.
Let us mention the considerable work of Boucheron, Bousquet, Lugosi, and Mas-

sart [BBLM05] concerning moment inequalities for general functions of independent
random variables. Their methods are based on an extension of the entropy method
proposed by Ledoux, which allows to derive a moment inequality on ‖(Z−E[Z])+‖p,
p > 2, for centered processes (that is c ≡ 0 in (1.3)). However, considering the upper
bound that their inequality provides on the quantile, we may notice that it is subop-
timal in the moderate deviations bandwidth. Precisely, there is a power u−1/p instead
of the term

√
log(1/u) we would like to have by comparing with the right-hand side

in (1.12). Furthermore, it seems beyond the scope of classical functional analysis
tools to handle non-centered empirical processes.
Our method is based on a martingale decomposition of Z − E[Z] into a sum of

two martingales. The subadditivity of the CVaR allows us to treat each martingale
separately. The difficulties lie in the control of their increments, in particular their
conditional variance. To this end, we shall establish comparison inequalities with
respect to a class of convex functions, similar to Hoeffding’s classical inequalities
concerning bounded random variables [Hoe63].
In addition, we want our inequalities on Z − E[Z] to generalize those known for

the sums of independent random variables, corresponding to a class T reduced to
one element. When the random variables are unbounded but with finite variances,
their deviations are handled by Fuk–Nagaev inequalities. The best known constants
are given recently by Rio [Rio17a] in the context of real-valued martingales. In the
setting of real-valued iid centered random variables X1, . . . , Xn, he proves that, for
any u ∈ ]0 , 1],

(1.13) Q̃Sn(u) 6 σ
√

2n log(1/u) + n1/pKp ‖X1‖p u
−1/p,
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836 A. MARCHINA

where p > 2, Sn := X1 + . . . +Xn, the constant Kp, depending only on p, is explicit
and σ2 := Var(X1). The reader may notice that the constant 1 in front of the term
σ
√

2n log(1/u) is optimal.
The organization of the paper is as follows. In Section 2, we present our main

results which are Fuk–Nagaev and Rosenthal type inequalities for Z − E[Z] and
E[Z]− Z. A detailed application under the assumption that the Xk,t’s have power
tails is given. In Section 3, we derive upper bounds for E[(Z −E[Z]− t)α+], α > 1. In
Section 4, we study left deviation inequalities which turn out to be easier to obtain
than the right ones. All the proofs are deferred to Section 5. Before starting, let us
do some comments on the variance factor in our inequalities.

1.3. About the variance factor

Let (Gt)t∈T be a centered Gaussian process such that ZG := supt∈T Gt < ∞
almost surely. As a consequence of (1.12), one can derive the following upper bound
on the variance:

(1.14) Var(ZG) 6 σ2
G,

where σ2
G := supt∈T E[G2

t ] = supt∈T Var(Gt). Then, a natural question is whether
(1.14) is satisfied by Z with

(1.15) σ2 := sup {Var(X1, t) : t ∈ T } = sup
{
E
[
X2

1, t

]
: t ∈ T

}
.

The answer is no, even in the bounded case (see, for instance, [BLM13, Exercise 11.1]
for a simple counterexample). Let us give another example in the unbounded case
that will be useful in Section 2 to comment on the variance factor appearing in our
results.

Example 1.5. — Let U,U1, . . . , Un be a sequence of iid random variables uniformly
distributed on [0 , 1]. Let ` > 2, ∆ > 0 and p ∈ ]0 , 1[. Let S be the set of all finite
unions of disjoint intervals with rational endpoints, which measure is lower than p,
and included in [0 ,∆]. Define

Z := sup
S ∈S

n∑
k=1

(
U
−1/`
k 1S(Uk)−

∫
S
u−1/`du

)
,

and σ2 := supS ∈S Var(U−1/`1S(U)). Then, for p and ∆ small enough, one can show
that there exists K > 0 such that

(1.16) 1
n

Var(Z)− σ2 > K

(
E[Z]
n

) `−2
`−1

.

The details of the proof of (1.16) are deferred to Appendix A. Therefrom, since
we want to provide nonasymptotic inequalities, we cannot expect, as in (1.13), the
quantity σ

√
2n log(1/u) in the moderate deviation part: a corrective term to σ is

required. Let us now describe this quantity which appears in our inequalities.

ANNALES HENRI LEBESGUE
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First, we set for all k = 1, . . . , n,

(1.17) Ek := E

sup
t∈T

1
k

k∑
j=1

Xj, t

 .
Next, we define the following class of distribution functions:

Definition 1.6. — Let q ∈ [0 , 1]. Let ψ be a nonnegative random variable and
set bψ, q := F−1

ψ (1 − q). We denote by Fψ, q the distribution function of ψ1ψ> bψ, q ,
that is

(1.18) Fψ, q(x) := (1− q)106x<bψ, q + Fψ(x)1x> bψ, q for all x ∈ R.

Let ψ and X be two nonnegative random variables such that X is first-order
stochastically dominated by ψ, that is P(X > x) 6 P(ψ > x) for all x > 0. Let
ζψ, q be a random variable with distribution function Fψ, q, where q is such that
E[X] 6 E[ζψ, q]. Then [Ben08, Lemma 1] of Bentkus (see also [Mar18, Lemma 4.3]
in Marchina) ensures that

(1.19) E[ϕ(X)] 6 E[ϕ(ζψ, q)] for any function ϕ ∈ H1
+,

where H1
+ := {ϕ : ϕ is convex, differentiable, and limx→−∞ ϕ(x) = 0}.

If E[X] = E[ζψ,q], then the above inequality is true for any convex function. In
order to have a better understanding of this result, see that the distributions Fψ, q,
q ∈ [0 , 1], are the extremal ones satisfying 0 6 X 6st ψ, where 6st denote the
first-order stochastic dominance. If ψ = b is a constant, the extremal distributions
are the two-valued ones µq := (1− q)δ0 + qδb, q ∈ [0 , 1]. And it is well known that for
any convex function ϕ, E[ϕ(X)] 6

∫
ϕdµq0 , where q0 is such that E[X] =

∫
xdµq0 (see

Hoeffding [Hoe63]). Then (1.19) is an extension of Hoeffding’s comparison inequality
to unbounded random variables.

Notation 1.7. — Throughout the rest of the paper, ζk denotes a random variable
with distribution function F2M1, qk where qk is the greatest real in [0 , 1] such that
E[ζk] = Ek. Define also

(1.20) Vn :=
n∑
k=1

E
[
ζ2
k

]
, and vn := Vn

n
.

The variance factor in our inequalities is
√
n(σ +√vn). We can see that √vn is

indeed a “corrective” term. If the class T satisfies the uniform law of large numbers,
that is supt∈T |n−1Sn, t| converges to 0 in probability, then En decreases to 0 (see,
for instance, [W96, Section 2.4] of van der Vaart and Wellner). Now, from the square
integrability of M1 and the definition of the random variable ζn, the convergence of
En to 0 implies the convergence of E[ζ2

n] to 0, which ensures that Vn = o(n) as n
tends to infinity. Thus,

(1.21)
√
n(σ +√vn) ∼ σ

√
n as n tends to infinity .
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838 A. MARCHINA

2. Fuk–Nagaev and Rosenthal type inequalities

In this section we provide Fuk–Nagaev and Rosenthal type inequalities for Z−E[Z]
and E[Z]− Z. We first introduce some more definitions and notations. For any real-
valued integrable random variable X and any r > 1, define
(2.1) Λ+

r (X) := sup
t> 0

t (P(X > t))1/r .

We say that X has a weak moment of order r if Λ+
r (|X|) is finite. We denote by

Lwr the space of real-valued random variables with a finite weak moment of order r.
Note that from the definition of QX , we have (see, for instance, [BS88, Chapter 4]
of Bennett and Sharpley)
(2.2) Λ+

r (X) = sup
u∈ ]0, 1]

u1/rQX(u) .

2.1. Fuk–Nagaev type inequalities

We will now formulate the main results of this part, starting by right-hand side
deviations.

Theorem 2.1. — Let Z be defined by (1.3). Let p > 2 and assume thatM1 ∈ Lwp .
Let µp := 2 + max(4/3, p/3). Then for any u ∈ ]0 , 1[,

Q̃Z−E[Z](u) 6
√

2n log(1/u) (σ +√vn) + 3n1/pµp Λ+
p (M1)u−1/p.(a)

Consequently,

P
(
Z > E[Z] +

√
2n log(1/u) (σ +√vn) + 3n1/pµp Λ+

p (M1)u−1/p
)
6 u.(b)

Remark 2.2. — For any real-valued random variable X, by Markov’s inequality,
Λ+
p (X) 6 ‖X‖p. Then, if the envelope M1 has a finite pth moment, one can replace

the weak moment Λp
+(M1) by the strong moment ‖M1‖p.

Remark 2.3. — Note that an upper bound on the CVaR of Z immediately gives
an upper bound on the upper tail quantile of

(2.3) Z∗ := max
k6n

sup
t∈T


k∑
j=1

Xj, t + kct

 .
Indeed, for any u ∈ ]0 , 1[,

(2.4)
QZ∗(u) 6 Q̃Z(u)

6 E[Z] +
√

2n log(1/u) (σ +√vn) + 3n1/pµp Λ+
p (M1)u−1/p.

The first inequality follows from a byproduct of Doob’s maximal inequality which
can be found in Gilat and Meilijson [GM88].

The term vn depends only on Ek, k = 1, . . . , n, and on the tail distribution of M1
(see (1.20)). We provide below a useful and explicit upper bound on vn:
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Lemma 2.4. — One has

vn 6
(
2Λ+

p (M1)
) p
p−1 p

p− 2

(
1− 1

p

) p−2
p−1 1

n

n∑
k=1

E
p−2
p−1
k .

If a Donsker theorem holds, one can consider that En � n−1/2 (see, for instance,
van der Vaart and Wellner [W96]). Then Lemma 2.4 yields that

(2.5) vn 6 Kp n
− 1

2
p−2
p−1 ,

where Kp is a constant depending only on p. This upper bound has to be linked with
inequality (1.16). Indeed, we have shown in Example 1.5, which is a particular case
of power-type tail, that we have to add to σ2 in the variance factor, a term which
is at least of order n−

1
2
p−2
p−1 when En � n−1/2. Thus, it supports the idea that our

additional term vn is of a correct order.
For left-hand side deviations, the concentration bounds are similar but the proofs

are simpler than for the right-hand side. In fact, it has already been noted by Sam-
son [Sam07] in the context of transport methods, that martingale like techniques
allow to obtain left deviations more easily as regards to the entropy method intro-
duced by Ledoux.

Theorem 2.5. — Let Z be defined by (1.3). Let p > 2. Assume that M1 ∈ Lwp
and that for some r > p,

mr
r := sup

t∈T
E
[
(−X1, t)r+

]
<∞ .

Let µp := 2 + max(4/3, p/3). Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) 6
√

2n log(1/u) (σ +√vn ) + n1/rµ`mru
−1/r.(a)

Consequently,

P
(
Z < E[Z]−

√
2n log(1/u) (σ +√vn )− n1/rµrmru

−1/r
)
6 u.(b)

2.2. Weak and strong Rosenthal type inequalities

We start with weak Rosenthal inequalities derived from the inequalities of the
previous section. We first introduce some more notation. Define

(2.6) Λ̃+
r (Y ) := sup

u∈ ]0, 1]
u(1/r)−1

∫ u

0
QY (s)ds = sup

u∈ ]0, 1]
u1/rQ̃Y (u) .

Hence, we get that

(2.7) Λ+
r (Y ) 6 Λ̃+

r (Y ) 6
(

r

r − 1

)
Λ+
r (Y ) .

Furthermore, from the subadditivity of the CVaR (Proposition 1.4), Λ̃+
r (.) is subad-

ditive, which implies that Λ̃+
r (.) is a norm on the space Lwr .

Now, when the envelope M1 has a weak moment of order p > 2, proceeding as in
Rio [Rio17a], we derive from Theorems 2.1 and 2.5 the following inequalities:
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Corollary 2.6. — Let Z be defined by (1.3). Let p > 2 and assume that M1
have a weak moment of order p. Let µp := 2 + max(4/3, p/3). Then

Λ+
p (Z − E[Z]) 6 Λ̃+

p (Z − E[Z])(a)

6
√

(p/e)
√
n (σ +√vn ) + 3n1/pµp Λ+

p (M1) .(b)

Moreover,

Λ+
p (E[Z]− Z) 6 Λ̃+

p (E[Z]− Z)(c)

6
√

(p/e)
√
n (σ +√vn ) + n1/pµp Λ+

p (M1) .(d)

The variational formula (2.6) ensures that these inequalities above are the optimal
ones that can be achieved from the Fuk–Nagaev type inequalities in Theorems 2.1-2.5.
Unfortunately, such a formula linking strong moments of order p > 2 of a real-valued
random variable and its CVaR does not exist. For this reason, to obtain an upper
bound on ‖Z − E[Z]‖p for p > 2, we directly reinvest the martingale decomposition
of Z−E[Z] used in the proofs of previous theorems, that we associate with Rosenthal
inequalities for real-valued martingales. Those with best known constants are given
by Pinelis [Pin15, Corollary 1]. His result holds for any p > 2, but for p ∈ ]2 , 4], the
constants are close to optimality (see the discussion [Pin15, pages 701-702]) and are
easy to express. We obtain the following inequality:

Theorem 2.7. — Let Z be defined by (1.3). Let p ∈ ]2 , 4] and assume that
‖M1‖p <∞. Then

‖Z − E[Z]‖p 6 (p− 1)1/p√n(σ +√vn ) + (21/p + 1)n1/p‖M1‖p .

Let us now recall the moment inequality for suprema of empirical processes ob-
tained by Boucheron, Bousquet, Lugosi and Massart [BBLM05] (see [BLM13, Theo-
rems 15.14 and 15.5]): let p > 2 and define Z̃ := supt∈T |

∑n
k=1Xk, t|. Then

(2.8)
∥∥∥(Z̃ − E[Z̃])+

∥∥∥
p
6
√
κ(p− 1)

√
n (σ + Σ)

+ κ(p− 1)
(∥∥∥∥ max

k=1, ..., n
Mk

∥∥∥∥
p

+ sup
t∈T
‖X1, t‖2

)
,

where κ :=
√
e/(
√
e− 1) and Σ2 := E[supt∈T n−1∑n

k=1X
2
k, t]. Let us now comment

the differences with our result Theorem 2.7:
• In fact, inequality (2.8) does not require the identical distribution of the
sequence X1, . . . , Xn. However, contrary to Theorem 2.7, inequality (2.8)
concerns centered empirical processes, that is c ≡ 0 in (1.3).
• The moment inequality (2.8) is only given for the positive part of Z̃ − E[Z̃].
• To compare the constant in front of the variance factor, let us consider the
upper bound that the authors provided on Σ2 (see [BLM13, Theorem 11.17]):

(2.9) nΣ2 6 nσ2 + 32
∥∥∥∥ max
k=1, ..., n

Mk

∥∥∥∥
2
E[Z̃] + 8

∥∥∥∥ max
k=1, ..., n

Mk

∥∥∥∥2

2
.
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Combining (2.9) with (2.8) leads to the following behavior:

(2.10)
∥∥∥(Z̃ − E[Z̃])+

∥∥∥
p
6 2κ

√
p− 1σ

√
n+ o

(√
n
)
.

Note that Bp := 2κ
√
p− 1 is increasing in p, B2 ≈ 3.1184 and B4 ≈ 5.5225.

By comparison, our constant Cp := (p− 1)1/p is increasing on [2 , 4], C2 = 1
and C4 ≈ 1.3161.
• Let us now compare the variance factor by comparing vn to Σ2 − σ2. To this
end, we will use a version of Pisier lemma which can be found in Rio [Rio17b,
Appendix D]. It states that for any 0 < r < p,

(2.11)
∥∥∥∥ max
k=1, ..., n

Mk

∥∥∥∥
r

6

(
n
∫ 1/n

0
Qr
M1(u)du

)1/r

6 Λ+
p (M1)

(
p

p− r

)1/r

n1/p.

Putting this upper bound in (2.9) yields that

Σ2 − σ2 6 Kp n
− 1

2(1− 2
p) + o

(
n−

1
2(1− 2

p)
)
.

Now, see that
n−

1
2
p−2
p−1 = o

(
n−

1
2(1− 2

p)
)
.

Thus, recalling (2.5), one can say that Σ2 − σ2 is of a larger order than vn.

2.3. Application to power-type tail

Let Y1, . . . , Yn be a finite sequence of nonnegative iid random variables and let
X1, . . . , Xn be a finite sequence of iid random variables with values in some mea-
surable space (X ,F) such that the two sequences are independent. Let P denote
the common distribution of the Xk’s. Let F be a countable class of measurable
functions from X into [−1 , 1] such that for all f ∈ F ,
(2.12) P (f) = 0 and P (f 2) < δ2 for some δ ∈ ]0 , 1[ .
Let F be a measurable envelope function of F , that is
(2.13) |f | 6 F for any f ∈ F , and F (x) 6 1 for all x ∈ X .
We suppose furthermore that for some constant ` > 2,
(2.14) P(Y1 > t) 6 t−` for any t > 0 .
Define now

(2.15) Z := sup
f ∈F

n∑
k=1

Yk f(Xk) .

We associate to each f ∈ F an unique index t, and we define T the set of all these
indices. Set for all k = 1, . . . , n, X̃k, t := Ykf(Xk). Then, we have Z = supt∈T∑n
k=1Xk, t. This allows us to apply results of the previous section. The envelope of

the collection of coordinates Mk is defined by Mk := YkF (Xk).
Recalling Lemma 2.4, the remaining task to provide a useful bound on vn is to

upper bound the quantities Ek, k = 1, . . . , n. This will be done by using local
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maximal inequalities for empirical processes due to van der Vaart and Wellner [W11,
Theorem 2.1]. The upper bound is expressed in terms of uniform entropy integral.
Let us first recall some classical definitions.

Definition 2.8 (Covering number and uniform entropy integral). — The cover-
ing number N(ε,G , ν) is the minimal number of balls of radius ε in L2(ν) needed to
cover the set G . The uniform entropy integral is defined by

J(δ,G ) :=
∫ δ

0
sup
ν

√
1 + logN (ε‖F‖ν, 2,F , ν) dε .

Here, the supremum is taken over all finitely discrete probability distributions ν on
(X ,F) and ‖f‖ν, 2 denotes the norm of a function f in L2(ν).

Lemma 2.9. — There exists a universal constant K such that for any integer
k > 1,

1
k
E sup
g ∈G

∣∣∣∣∣∣
k∑
j=1

Yjg(Xj)

∣∣∣∣∣∣ 6 K
`

`− 2

k−1/2J(δ,G ) + ` k−(1−1/`)
(
J2(δ,G )

δ2

)1−1/`
 .

Remark 2.10. — For a numerical value of the (universal) constant K, we refer the
reader to [GN16, Section 3.5.1] in the book of Giné and Nickl. Moreover, the terms
`/(`− 2) and ` are certainly not optimal and could be improved. They are given for
the sake of completeness.

The result of van der Vaart and Weller deals with bounded empirical processes.
The proof of Lemma 2.9 is based on a truncation argument associated with their
result. Chernozhukov, Chetverikov and Kato [CCK14, Theorem 5.2] have extended
the result of van der Vaart and Wellner to unbounded empirical processes. In our
setting, it provides the following upper bound:

(2.16) 1
k
E sup
g ∈G

∣∣∣∣∣∣
k∑
j=1

Yjg(Xj)

∣∣∣∣∣∣
6 K

k−1/2

√
`

`− 2J(δ,G) + k−1J
2(δ,G)
δ2

∥∥∥∥ max
j=1, ..., k

Mj

∥∥∥∥
2

 ,
where K is a universal constant. Using now Pisier Lemma (2.11) to bound above
‖maxj=1, ..., kMj‖2, (2.16) becomes

(2.17) 1
k
E sup
g ∈G

∣∣∣∣∣∣
k∑
j=1

Yjg(Xj)

∣∣∣∣∣∣ 6 K

√
`

`− 2

(
k−1/2J(δ,G) + k−(1−1/`)J

2(δ,G)
δ2

)
.

Compared to Lemma 2.9, the constants in ` are better. Namely, in place of the
terms `/(`−2) and ` in Lemma 2.9, the right-hand side of (2.17) contains the smaller
terms

√
`/(`− 2) and 1 respectively. However, the exponent of the term J2(δ,G)/δ2,

which is (1− 1/`) in Lemma 2.9, leads to a better estimate as δ is small compared to
the exponent 1 in (2.17). Indeed, if logN(ε‖F‖ν, 2,F , ν) is not larger than H(1/ε)
for some nondecreasing function H, independent of ν and satisfying some minor
conditions, then J2(δ,G)/δ2 is of an order of H(1/δ) which then increases as δ tends
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to 0 (see, for instance, [GN16, Theorem 3.5.6]). We stress out that such an hypothesis
on the covering number applies in many situations including VC-classes of functions.
Nevertheless, the generality of Chernozhukov, Chetverikov and Kato’s result makes
it possible to upper bound the Ek’s in other cases than the one considered here.
We now apply Theorem 2.7 combined with Lemmas 2.4 and 2.9.

Theorem 2.11. — Let Z be defined by (2.15).
(i) Assume that ` ∈ ]2 , 4] and ‖M1‖` 6 1. Then

(a) ‖Z − E[Z]‖`

6 (`− 1)1/`√n

σ +K`

n− 1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/`


+
(
21/` + 1

)
n1/`.

(ii) Moreover, for any ` > 2,

(b) Λ̃+
` (Z − E[Z])

6
√

(p/e)
√
n

σ +K`

n− 1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/`


+ 3n1/`µ`,

and

(c) Λ̃+
p (E[Z]− Z)

6
√

(p/e)
√
n

σ +K`

n− 1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/`


+ n1/`µ`,

where µ` = 2 + max(4/3, `/3).

Let us compare with the bounded case: Yk 6 1 for all k = 1, . . . , n. Integrating
Rio’s inequality for suprema of bounded empirical processes [Rio02, Theorem 1] and
using Lemma 2.9, one obtains for any ` > 2,

‖(Z − E[Z])+‖` 6 C`
√
n
√
σ2 + 2E[Z]/n(2.18)

6 C`
√
n

(
σ +K`

(
n−1/4

√
J(δ,G ) + n−1/2 J(δ,G )

δ

))
.(2.19)

Notice that the term

n−
1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/`

in Theorem 2.11 tends to n−1/4
√
J(δ,G ) + n−1/2 J(δ,G )/δ as ` tends to ∞. Thus,

we can see our results as extensions of (2.18) to the unbounded case.
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3. Upper bounds on E[(Z − E[Z]− t)α+] and Q2(E[Z]− Z;u)

In this section, we provide a general upper bound on E[(Z − E[Z] − t)α+], where
t ∈ R, α > 1, in terms of generalized quantiles. In order to explain the result, we start
by considering the case α = 1 which is based on Theorem 2.1. We emphasize that
it is of interest to obtain such bounds in various situations coming from statistical
applications, such as study of rates of convergence for estimators (see, for instance,
Comte and Lacour [CL13]).

3.1. Case α = 1

Let X be an integrable real-valued random variable and let t ∈ R. Since QX(U)
and X have the same distribution for any random variable U uniformly distributed
on [0 , 1],

(3.1) E [(X − t)+] =
∫ 1

0
(QX(s)− t)+ds .

Now, recalling that x < QX(u) if and only if P(X > x) > u, we get

(3.2)
∫ 1

0
(QX(s)− t)+ds =

∫ P(X>t)

0
(QX(s)− t)ds = sup

u∈ ]0, 1]

∫ u

0
(QX(s)− t)ds .

Note that the right-hand side of (3.2) is equal to supu∈ ]0,1] u(Q̃X(u)− t). Combining
this fact with (3.1) leads to the following variational formula

(3.3) E[(X − t)+] = sup
u∈ ]0, 1]

u(Q̃X(u)− t) .

Thus, from the upper bound on Q̃Z−E[Z] given in Theorem 2.1 we derive the following:

Proposition 3.1. — Let Z be defined by (1.3). Let p > 2 and µ` = 2 +
max(4/3, p/3). Set also

sn :=
√
n (σ +√vn) , and bn, p := 3n1/pµp Λ+

p (M1) .
Then, for any t > 0,

E [(Z − E[Z]− t)+] 6 sn
e−

1
2(1+t2/s2

n)√
1 + t2/s2

n

+ bn, p .

Remark 3.2. — A similar upper bound on E[(E[Z]− Z − t)+] can be obtain by
using Theorem 2.5 instead of Theorem 2.1.

The variational formula (3.3) gives a direct advantage of having an upper bound on
the CVaR instead of on the log-Laplace transform of Z −E[Z], since the calculation
we have to do is more straightforward. Indeed, to obtain an upper bound on E[(Z −
E[Z] − t)+] from an upper bound on the log-Laplace transform, we first have to
derive a deviation inequality by Markov’s inequality and then to integrate it from t
to +∞.
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3.2. Case α > 1

In this section, we want to generalize the variational formula (3.3) to E[(X − t)α+],
α > 1. To this end, we consider the generalized quantiles Qα(X;u), α > 1, introduced
by Pinelis [Pin14b, Section 3]. In particular, note that Q1(X;u) = Q̃X(u). The
general definition is somehow complicated, so we do not recall it. However, Pinelis
proves the following formula (see [Pin14b, Theorem 3.3]):
(3.4) Qα(X;u) = inf

s∈R

{
s+ u−1/α‖(X − s)+‖α

}
.

For properties on these quantiles, the reader is referred to [Pin14b, Theorem 3.4].
We only recall that Qα(X;u) is nondecreasing in α, subadditive in X, and Qα(X;u)
6 `∗−1

X (log(1/u)) for all α > 1. From Sion’s minimax theorem, we derive the following
variational formula which generalizes (3.3):
Lemma 3.3. — Let α > 1. Let X be an integrable real-valued random variable.

Then
‖(X − t)+‖α = sup

u∈ ]0, 1]
u1/α (Qα(X;u)− t) .

The interest of these generalized quantiles Qα in our setting is similar to that of the
CVaR Q̃. Indeed, our method lies in a decomposition of Z − E[Z] into a sum of two
martingales. The subadditivity property allows to analyze each martingale separately.
Moreover, some comparison inequalities on real-valued martingales directly give
upper bounds on their quantiles Qα: see, for instance, Bentkus [Ben04] for cases
with α ∈ {1, 2, 3} or Pinelis [Pin06, Pin14a] for cases with α ∈ {3, 5}. In the next
statement, we give an example of such bounds in the case α = 2 for E[Z]− Z and
under the additional assumption that the random variables X1, t, t ∈ T , are bounded
from below.
Proposition 3.4. — Assume that for all t ∈ T , X1, t > −1. Let Z be defined

by (1.3). Let θ1, . . . , θn be a sequence of iid two-valued centered random variables
taking the values 1 and −σ2. Set Bn := ∑n

k=1 θk. Then for any u ∈ ]0 , 1],

Q2 (E[Z]− Z;u) 6 Q2(Bn;u) +
√
n
√

2vn log(1/u) .(a)
Consequently,

‖(E[Z]− Z − t)+‖2 6 ‖(Bn − t)+‖2 +√nvn
√

(2/e) .(b)

Remark 3.5. — If σ2 > 1, then (see, for instance, [BDR15, Lemma 2.36] in Bercu,
Delyon and Rio)

(3.5) Q2(Bn;u) 6 `∗−1
Bn (log(1/u)) 6 σ

√
2n log(1/u) .

Thus, inequality (a) of Proposition 3.4 provides a sub-Gaussian bound. If σ2 < 1,
the inequality above does not hold. However, one has

(3.6) Q2(Bn;u) 6 `∗−1
Bn (log(1/u)) 6 σ

√
2n log(1/u) + 1− σ2

3 log(1/u) .

We refer the reader to [BDR15, Theorem 2.28 and Exercise 6 in Section 2.9] for a
proof.
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4. Left deviation inequalities
As mentioned in Section 2, the left tails are easier to handle than the right tails.

Notably, the left-hand side deviations of Z heavily depend on the behavior of the
left tails of X1, t, t ∈ T . For example, in Theorem 2.1, the term Λ+

p (M1) involves the
behavior of right and left tails, while the term mr in Theorem 2.5 only involves the
behavior of the left tails. In this section, we give left deviation inequalities under
the additional assumption on the Xk, t’s, of sub-Gamma tails on the left, and of
sub-Gaussian tails on the left (our terminology follows [BLM13]).

4.1. Under sub-Gamma tails on the left assumption

Here we assume that X1,t admits a sub-Gamma tail on the left for all t ∈ T . To the
best of our knowledge, there exists only one exponential inequality for the left-hand
side deviations of suprema of empirical processes in the unbounded case (from one
side) which is due to Klein [Kle02]. More precisely, Klein provides an upper bound on
the Laplace transform of E[Z]− Z which implies the following deviation inequality:
Theorem 4.1 ([Kle02, Theorem 1.1(3)]). — Assume that X1, t 6 1 for all t ∈ T ,

and for all integer p > 2, |E[Xp
1, t]| 6 σ2p!/2. Then

P

Z < E[Z]−
√

2xṼ n − x−
x
√

2Ṽ n

√
x+

√
Ṽ n/2

 6 exp(−x),

where Ṽ n = nσ2 + 2E[Z].
The objective here, is to relax the boundedness assumption on the right. Our main

result is the following:
Theorem 4.2. — Assume that there exists a positive constant c such that for

any t ∈ T and any λ ∈ ]0 , c[,

(4.1) logE[exp(−λX1, t)] 6
σ2λ2

2(1− cλ) .

Let Z be defined by (1.3). Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) 6
√

2n log(1/u) (σ +√vn ) + c log(1/u) .(a)
Consequently, for any x > 0,

P
(
Z < E[Z]−

√
2nx (σ +√vn )− cx

)
6 exp(−x) .(b)

Remark 4.3. — If the random variables X1, t, t ∈ T , satisfy Bernstein’s moment
conditions on the left, then the hypothesis (4.1) above is satisfied. Precisely, assume
that there exists a positive constant c such that, for any integer p > 3, and all t ∈ T ,

(4.2) E [(−X1, t)p+] 6 p!cp−2

2 σ2.

Then, since E[X1, t] = 0 for all t ∈ T , logE[exp(−λX1, t)] 6 σ2λ2

2(1−cλ) . We refer the
reader to Bercu, Delyon and Rio (see [BDR15, the proof of their Theorem 2.1]) for
a proof.
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4.2. Under sub-Gaussian tails on the left assumption

Here we assume that X1, t admits a sub-Gaussian tail on the left for all t ∈ T . We
show in the following theorem that Z − E[Z] is sub-Gaussian on the left.
Theorem 4.4. — Assume that

(4.3) C(T ) := sup
λ> 0

sup
t∈T

2
λ2 logE [exp(−λX1, t)] <∞.

Let Z be defined by (1.3). Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) 6
√

2n log(1/u)
(√

C(T ) +√vn
)
.(a)

Consequently, for any x > 0,

P(Z < E[Z]− x) 6 exp

− x2

2n
(√

C(T ) +√vn
)2

 .(c)

If for all t ∈ T , X1, t is a centered Gaussian random variable with variance equals
to σ2

t , then we can apply the above result with C(T ) = supt∈T σ2
t =: σ2. However

we can prove the more precise following result:
Proposition 4.5. — Assume that for any t ∈ T , X1, t is a centered Gaussian

random variable. Let then σ2 := supt∈T Var(X1, t). Let Y be a standard Gaussian
random variable. Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) 6 σ
√
n Q̃Y (u) +

√
2n log(1/u)√vn

Note that, even if X1, . . . , Xn are iid Gaussian vectors, this result is beyond the
scope of Cirel’son, Ibragimov, and Sudakov’s paper [CIS76] since Sn, t, t ∈ T , is not
a Gaussian process in general.
Example 4.6. — Let Y1, . . . , Yn be a finite sequence of nonnegative iid random

variables and let X1, . . . , Xn be a finite sequence of iid random variables with values
in some measurable space (X ,F) such that the two sequences are independent. Let
T be a countable set, (At)t∈T a family of Borel sets in X and (σt)t∈T a family of
positive reals such that σ := supt∈T σt <∞. Then Proposition 4.5 applies to

Z := sup
t∈T

n∑
k=1

Yk (21Xk ∈At − 1) .

5. Proofs

5.1. Preliminaries

The starting point of the proofs is based on a martingale decomposition of Z
which we now recall. We suppose that T is a finite class of functions, that is T =
{ti : i ∈ {1, . . . , m}}. The results in the countable case are derived from the
finite case using the monotone convergence theorem. Set F0 := {∅,Ω} and for all
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k = 1, . . . , n, Fk := σ(X1, . . . , Xk) and Fkn := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let
Ek (respectively Ekn) denote the conditional expectation operator associated with Fk
(resp. Fkn). Set also

Zk := Ek[Z],(5.1)
Z(k) := sup {Sn, t −Xk,t + nct : t ∈ T } .(5.2)

The sequence (Zk) is an (Fk)-adapted martingale (the Doob martingale associated
with Z − E[Z]) and

(5.3) Z − E[Z] =
n∑
k=1

∆k, where ∆k := Zk − Zk−1 .

Define now the random indices τ and τk, respectively Fn-measurable and Fkn-
measurable, by

τ := inf {i ∈ {1, . . . , m} : Sn,ti + ncti = Z} ,(5.4)

τk := inf
{
i ∈ {1, . . . , m} : Sn,ti −Xk,ti + ncti = Z(k)

}
.(5.5)

Notice first that
Z(k) +Xk, tτk

6 Z 6 Z(k) +Xk, tτ .

From this, conditioning by Fk gives
(5.6) Ek

[
Xk, tτk

]
6 Zk − Ek

[
Z(k)

]
6 Ek [Xk, tτ ] .

Set now ξk := Ek[Xk, tτk
] and let εk > rk > 0 be random variables such that

ξk + rk = Zk − Ek
[
Z(k)

]
and ξk + εk = Ek [Xk, tτ ] .

Thus (5.6) becomes
(5.7) ξk 6 ξk + rk 6 ξk + εk .

Since the random index τk is Fkn-measurable, we have by the centering assumption
on the random variables Xk, t, t ∈ T ,

(5.8) Ekn
[
Xk, tτk

]
= 0,

which ensures that Ek−1[ξk] = 0. Moreover, Ek[Z(k)] is Fk−1-measurable. Hence we
get

∆k = Zk − Ek
[
Z(k)

]
− Ek−1

[
Zk − Ek

[
Z(k)

]]
= ξk + rk − Ek−1[rk],

which, combined with (5.3), yields the decomposition of Z −E[Z] into a sum of two
martingales:
(5.9) Z − E[Z] = Ξn +Rn,

where

(5.10) Ξn :=
n∑
k=1

ξk and Rn :=
n∑
k=1

(rk − Ek−1[rk]) .

The strategy of the proofs is to treat the two martingales separately. And the main
difficulty lies in the control of their quadratic variations, especially that of Rn.

(i) Upper bound on ∑n
k=1 Ek−1[ξ2

k].
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Lemma 5.1. — One has

〈Ξ〉n :=
n∑
k=1

Ek−1
[
ξ2
k

]
6 nσ2.

Proof. — First, notice that the same argument as in (5.8) yields

Ekn[X2
k, tτk

] 6 σ2.

Thus, Lemma 5.1 follows from the conditional Jensen inequality. �

(ii) Upper bound on ∑n
k=1 Ek−1[(rk − Ek−1[rk])2].

We recall that ζk denotes a random variable with distribution function
F2M1, qk (defined in Definition 1.6) where qk is such that E[ζk] = Ek.

Lemma 5.2. — One has

〈R〉n :=
n∑
k=1

Ek−1
[
(rk − Ek−1[rk])2

]
6

n∑
k=1

E
[
ζ2
k

]
.

Proof. — First, we observe that Ek−1[rk] is bounded by a deterministic constant.
This will be a consequence of the following lemma of exchangeability of variables.

Lemma 5.3. — For any integer j > k,

Ek−1 [Xk, τ ] = Ek−1 [Xj, τ ] .

Proof of Lemma 5.3. — Pointing out that τ is a function of X1, . . . , Xn, one has
for every permutation π on n elements,

τ(X1, . . . , Xn) = τ ◦ π(X1, . . . , Xn) almost surely,

leading to
Ekn[Xk, τ ] = Ekn[Xk, τ◦π].

This implies
Ek−1[Xk, τ ] = Ek−1[Xk, τ◦π] for any k = 1, . . . , n .

Taking now j > k and applying the previous equality to the transposition π := (k j)
which exchanges k and j, it yields by Fubini’s theorem that

Ek−1 [Xk, τ ] = Ek−1 [Xj, τ ] ,

which concludes the proof. �

Therefrom,

(5.11)

Ek−1[εk] = Ek−1[Xk, τ ]

= 1
n− k + 1Ek−1 [Xk,τ + . . .+Xn, τ ]

6
1

n− k + 1 Ek−1 sup
t∈T
{Xk, t + . . .+Xn, t} = En−k+1 .

Since 0 6 rk 6 εk, we thus get

0 6 Ek−1[rk] 6 En−k+1 .
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Next, (5.7) implies that 0 6 rk 6 2Mk. Therefore, the comparison inequality (1.19)
ensures that for any function ϕ ∈ H1

+, Ek−1[ϕ(rk)] 6 E[ϕ(ζn−k+1)]. Since rk > 0 and
x 7→ x2

+ belongs to H1
+, we get

Ek−1
[
(rk − Ek−1[rk])2

]
6 Ek−1

[
r2
k

]
= Ek−1

[
r2
k+

]
6 E

[
ζ2
n−k+1

]
.

Finally, summing for k = 1, . . . , n leads to

(5.12)
n∑
k=1

Ek−1
[
(rk − Ek−1[rk])2

]
6

n∑
k=1

E
[
ζ2
k

]
= Vn,

which ends the proof of Lemma 5.2. �

Before proving the main results, let us explain why left deviation inequalities are
easier to handle than the right ones.

5.2. Upper bound on Q̃−Rn

To study the left deviations, we write
(5.13) E[Z]− Z = Ξo

n +Ro
n,

where Ξo
n = −Ξn and Ro

n = −Rn. We will control the martingales Ξn and Ξo
n in

the same manner. For Ro
n, the above analysis implies that Ro

n is a martingale with
bounded from above increments and then it is a sub-Gaussian martingale as shown
by the lemma below.

Lemma 5.4. — For any t > 0, we have

`Ron(t) := logE [exp (tRo
n)] 6 t2Vn

2 .(a)

Consequently, for any u ∈ ]0 , 1[,

Q̃Ron(u) 6 `∗−1
Ron

(log(1/u)) 6
√

2n vn log(1/u),(b)
where vn = Vn/n.

Proof. — We recall that
(5.14) Ek−1[rk]− rk 6 En−k+1 and Ek−1

[
(Ek−1[rk]− rk)2

]
6 E

[
ζ2
n−k+1

]
.

Thus, max(E[ζ2
k ], E2

k) = E[ζ2
k ]. Applying now the inequality for real-valued mar-

tingales with differences bounded from above proved by Bentkus [Ben03] (see his
inequality (2.16)), we get for any t > 0,

(5.15) E [exp (tRo
n)] 6 exp

(
t2Vn/2

)
,

which then gives (a). Now, it is a classical calculation that

(5.16) inf
t> 0

{
1
t

(
t2Vn

2 + x

)}
=
√

2Vn x =
√

2n vn x,

where the infimum is given by the optimal value tx =
√

2x/Vn. Finally, (1.10) ends
the proof of (b). �
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5.3. Proofs of Section 2

First, we recall some results concerning real-valued martingales. Let Mn := ∑n
k=1

Xk be a martingale in L2 with respect to a nondecreasing filtration (Fk), such that
M0 = 0 and E[X2

k | Fk−1] 6 b2
k almost surely for all k = 1, . . . , n, where bk’s are

some positive reals. Define

Bn =
√√√√ n∑
k=1

b2
k .

We start by a Fuk–Nagaev type inequality obtained by Rio [Rio17a]:

Theorem 5.5 ([Rio17a, Theorem 4.1]). — Let r > 2 such that∥∥∥∥∥sup
t> 0

(tr P(Xk+ > t|Fk−1))
∥∥∥∥∥
∞
<∞.

Define

Cw
r (M) =

∥∥∥∥∥sup
t> 0

(
tr

n∑
k=1

P (Xk+ > t|Fk−1)
)∥∥∥∥∥

1/r

∞

.

Then for any u ∈ ]0 , 1[,

Q̃Mn(u) 6 σ
√

2 log(1/u) + Cw
r (M)µru−1/r,

where µr := 2 + max(4/3, r/3).

Next, we recall the following Rosenthal-type inequality obtain by Pinelis [Pin15]:

Theorem 5.6 ([Pin15, Theorem 1 and inequality (10)]). — Let r ∈ ]2 , 4]. Then

‖Mn‖r 6 (r − 1)1/rBn +
(

n∑
k=1

E [|Xk|r]
)1/r

.

We are now in a position to prove the main results.
Proof of Theorem 2.1. — First, observe that (b) follows immediately from (a)

since for any real-valued random variable X and any u ∈ ]0 , 1[, one has QX 6 Q̃X

and P(X > QX(u)) 6 u. Let us now prove (a). Recalling the decomposition (5.9),
Proposition 1.4 implies

(5.17) Q̃Z−E[Z](u) 6 Q̃Ξn(u) + Q̃Rn(u).

With the notation of Rio’s Theorem, since ξk 6 Mk and rk − Ek−1[rk] 6 2Mk, one
has

Cw
` (Ξn) 6 n1/`Λ+

` (M1),(5.18)
Cw
` (Rn) 6 2n1/`Λ+

` (M1).(5.19)

Recalling the bounds on the quadratic variations of Ξn and Rn given by Lemmas 5.1-
5.2, we then conclude the proof of (a) by combining (5.17)–(5.19) and Theorem 5.5.

�
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Proof of Lemma 2.4. — By homogeneity, we may assume that Λ+
p (M1) = 1. Let

ψ be a random variable with tail function defined by P(ψ > t) = t−` for all t > 1
and let ζ̃k be a random variable with distribution function F2ψ, q̃k , where q̃k is the
real in [0, 1] such that E[ζ̃k] = Ek. Clearly,

F2M1, qk(x) > F2ψ, q̃k(x) for any x ∈ R.

In other words, ζ̃k dominates ζk for the first-order stochastic dominance. Then [Ben08,
Lemma 1] of Bentkus ensures that for any convex function ϕ,

(5.20) E[ϕ(ζk)] 6 E[ϕ(ζ̃k)] .
Thus, applying this inequality to ϕ(x) = x2,

(5.21) E
[
ζ2
k

]
6 E

[
ζ̃2
k

]
.

Moreover, a straightforward calculation yields that

(5.22) E
[
ζ̃2
k

]
6 2

p
p−1

p

p− 2

(
1− 1

p

)(p−2)/(p−1)

E
(p−2)/(p−1)
k .

The claim follows by summing for k = 1, . . . , n. �

Proof of Theorem 2.5. — As for the right deviations, we only have to prove (a).
We recall that E[Z]−Z = Ξon+Ro

n. We shall use Rio’s inequality again to control Ξo
n

and the Gaussian upper bound Lemma 5.4 to control Ro
n. Contrary to the previous

proof, since we do not use Rio’s inequality on Ro
n, it is interesting to provide a better

upper bound on Cw
r (Ξo

n). First, by Markov’s inequality,

(5.23) Cw
r (Ξo

n) 6
∥∥∥∥∥
n∑
k=1

Ek−1
[
(−ξk)r+

]∥∥∥∥∥
1/r

∞

.

Furthermore, using the same trick as in (5.8), we obtain

(5.24) Ek−1
[
(−ξk)r+

]
6 mr

r .

Combining now (5.23)-(5.24), Theorem 5.5 and Lemma 5.4 ends the proof. �

Proof of Corollary 2.6. — First, observe that (a) and (c) follow directly from (2.7).
Let us now prove (b). We proceed exactly as in Rio [Rio17a, Theorem 5.1]. Both (2.6)
and Theorem 2.1(a) imply
(5.25)
Λ̃+
` (Z − E[Z]) 6

(
σ
√
n+

√
Vn

)
sup

u∈ ]0, 1]

(
u1/`

√
2 log(1/u)

)
+ 3n1/`µ` Λ+

` (Φ(X1)) .

Next, observe that supu∈ ]0, 1] u
1/`
√

2 log(1/u) =
√

(`/e), which concludes the proof
of (b). The same is done for the proof of (d) by using Theorem 2.5(a) instead of
Theorem 2.1(a). �

Proof of Theorem 2.7. — First, we apply Theorem 5.6 to the martingale Ξn. Then,
it follows from Lemma 5.1 and the definition of Mk that
(5.26) ‖Ξn‖p 6 (p− 1)1/pσ

√
n+ n1/p‖M1‖p .
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Next, we do the same for the martingale Rn, using Lemma 5.2 instead of Lemma 5.1.
We only need to handle E[|rk − Ek−1[rk]|p]. It is done by the following:

Lemma 5.7. — E[|rk − Ek−1[rk]|p] 6 E[|rk|p].

This result only uses the fact that rk is a nonnegative random variable. It is a
probably known fact, but for sake of completeness, we give a proof in Appendix A.
Now, since 0 6 rk 6 2Mk, we deduce that
(5.27) ‖Rn‖p 6 (p− 1)1/p√nvn + 21/pn1/p‖M1‖p .

The claim follows by combining (5.26) and (5.27). �

Proof of Lemma 2.9. — As in the proof of Lemma 2.4, ψ denotes a random
variable such that P(X > t) = t−` for all t > 1. Notice that Qψ(u) = u−1/` for any
u ∈ ]0 , 1[ and that (2.13) implies QY 6 Qψ. Let also κ ∈ R be such that

(5.28) 2κ = k δ2

J2(δ,G ) .

Let U1, . . . , Uk be k independent copies of a random variable U distributed uniformly
on [0 , 1]. Let us now define for every j = 1, . . . , dκe,

Ij :=
{
m ∈ {1, . . . , k} : Um ∈ ]2−j , 21−j]

}
,

Jκ :=
{
m ∈ {1, . . . , k} : Um 6 2−dκe

}
.

Here, b.c and d.e denote the classical floor and ceiling functions. Recall that QX(U)
and X have the same distribution. Then,

(5.29) E sup
g ∈G

∣∣∣∣∣∣
k∑
j=1

Yjg(Xj)

∣∣∣∣∣∣ 6 E1 + E2,

where

E1 :=
dκe∑
j=1

E sup
g ∈G

∣∣∣∣∣∣
∑
i∈ Ij

Qψ(Ui)g(Xi)

∣∣∣∣∣∣ and E2 := E sup
g ∈G

∣∣∣∣∣∣
∑
j∈Jκ

Qψ(Uj)g(Xj)

∣∣∣∣∣∣ .
Let us bound above E2. Since G 6 1, a straightforward calculation gives

(5.30) E2 6 k
∫ 2−dκe

0
Qψ(u) du 6 k

`

`− 1 2−κ(1−1/`).

To bound above E1, we first notice that, since Qψ is decreasing, for any m ∈ Ij,
|Ymg(Xm)| 6 Qψ(2−j). We can then apply [W11, Theorem 2.1] of Van der Vaart and
Wellner which leads to

(5.31) E1 6 K

J(δ,G )
dκe∑
j=1

E
[
|Ij|

1
2
]
Qψ(2−j) + J2(δ,G )

δ2

dκe∑
j=1

Qψ(2−j)
 .

By the definition of Ij, it is easy to see that

E [|Ij|] =
k∑
i=1

i

(
k

i

)
(2−j)i(1− 2−j)k−i = k 2−j.

TOME 4 (2021)



854 A. MARCHINA

Then, Jensen’s inequality yields E[|Ij|
1
2 ] 6

√
k 2−j. Now, since Qψ(u) = u−1/`,

(5.32)
dκe∑
j=1

2−j/2Qψ(2−j) 6 21/`−1/2

1− 21/`−1/2 6
2

log(2)
`

`− 2 .

Likewise,

(5.33)

dκe∑
j=1

Qψ(2−j) = 2bκc/`
21/` +

bκc−1∑
j=0

2−j/`


6 2bκc/`
(

21/` + 1
1− 2−1/`

)
6

2κ/`
log(2)

`2

`− 2 .

Hence, we derive from (5.31)–(5.33),

(5.34) E1 6 K
`

`− 2

(√
k J(δ,G ) + `

J2(δ,G )
δ2 2κ/`

)
.

Finally, (5.29), (5.34), (5.30) and the definition of κ imply Lemma 2.9. �
Proof of Theorem 2.11. — Inequality (a) follows from Theorem 2.7, Lemmas 2.4-

2.9 and the subadditivity of the functions x 7→ xa, for 0 < a < 1. Similarly, (b)
and (c) follow by using Corollary 2.6 instead of Theorem 2.7 and the fact that
Λ+
` (Y1G(X1)) 6 Λ+

` (ψ) = 1. �

5.4. Proof of Section 3

Proof of Proposition 3.1. — Inequality (3.3) and Theorem 2.1 (a) imply

(5.35)
E[(Z − E[Z]− t)+] 6 sup

u∈ ]0, 1]
u
(
sn
√

2 log(1/u) + bn, p u
−1/p − t

)

6 sup
u∈ ]0, 1]

u
(
sn
√

2 log(1/u)− t
)

+ bn, p,

since u1−1/p 6 1. With the change of variables y =
√

2 log(1/u) ∈ [0 ,+∞[, the
supremum is achieved at

(5.36) y0 := t

2 sn
+

√√√√1 + t2

4 s2
n

.

Then, the supremum in (5.35) is equal to sn e−y
2
0/2/y0. Observing now that

y0 >
√

1 + t2/s2
n, we finally get the desired inequality which concludes the proof. �

Proof of Lemma 3.3. — Define f : [0 , 1]× R→ R by
f(u, s) := u1/α(s− t) + ‖(X − s)+‖α .

Note that, since α > 1, for any s ∈ R, u 7→ f(u, s) is concave and for any u ∈ [0 , 1],
s 7→ f(u, s) is convex. Thus, we can apply Sion’s minimax theorem [Sio58] which
implies that
(5.37) sup

u∈ ]0, 1]
inf
s∈R

f(u, s) = inf
s∈R

sup
u∈ ]0, 1]

.
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For any s < t,
(5.38) ‖(X − t)+‖α 6 ‖(X − s)+‖α = sup

u∈ ]0, 1]
f(u, s).

Moreover, for any s > t,

(5.39)

‖(X − t)+‖α = ‖((X − s) + (s− t))+‖α
6 ‖(X − s)+‖α + (s− t)
= sup

u∈ ]0, 1]
f(u, s).

Thus, (5.38) and (5.39) give
(5.40) inf

s∈R
sup

u∈ ]0, 1]
f(u, s) = ‖(X − t)+‖α .

Finally, we derive from (3.4) that
(5.41) sup

u∈ ]0, 1]
(Qα(X;u)− t) = sup

u∈ ]0, 1]
inf
s∈R

f(u, s) = sup
u∈ ]0, 1]

inf
s∈R

f(u, s).

The claim follows by combining (5.41), (5.37) and (5.40) �

Proof of Proposition 3.4. — Inequality (b) directly follows from Lemma 3.3 and (a).
Let us prove (a). Recalling the decomposition (5.13), the subadditivity property of
the quantile Q2 yields that
(5.42) Q2 (E[Z]− Z;u) 6 Q2 (Ξo

n;u) +Q2 (Ro
n;u) .

Moreover, from the properties of Q2 and Lemma 5.4,

(5.43) Q2 (Ro
n;u) 6 `∗−1

Ron
(log(1/u)) 6

√
n
√

2vn log(1/u).

Note that −ξk = −Ek[Xk, tτk
] 6 1 since we assume that X1, t > −1 for all t ∈ T .

Thus, Ξo
n is a martingale with increments (−ξk) satisfying

(5.44) − ξk 6 1 and Vark−1(−ξk) 6 σ2.

Then, one has the following comparison inequality (see, for instance, Bentkus[Ben04,
Lemma 4.4]),

(5.45) E
[
(Ξo

n − t)2
+

]
6 E

[
(Bn − t)2

+

]
for any t ∈ R.

Combined with (3.4), it yields for any u ∈ ]0 , 1],
(5.46) Q2(Ξo

n;u) 6 Q2(Bn;u).
Finally, inequality (a) follows from (5.42), (5.43) and (5.46). �

5.5. Proofs of Section 4

Proof of Theorem 4.2. — As previously, we only have to prove (a). Recall that

(5.47) 〈Ξo〉n :=
n∑
k=1

Ek−1
[
(−ξk)2

]
6 nσ2.
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Furthermore, as in (5.8), since τk is Fkn -measurable, the conditional Jensen inequality
implies that for any λ > 0,

(5.48) Ek−1 [exp(λξok)] 6 Ek−1Ekn
[
exp

(
−λXk, tτk

)]
6

σ2λ2

2(1− cλ) ,

where we use the assumption (4.1) in the last inequality. An immediate induction
on n gives that

(5.49) logE [exp(λΞo
n)] 6 n

σ2λ2

2(1− cλ) .

Now, it is a classical calculation that

(5.50) inf
λ∈ ]0, 1/c[

(
σ2t

2(1− λc) + x

λ

)
= cx+

√
2xσ2,

where the infimum is given by the optimal value λx =
√

2x/(
√
σ2 + c

√
2x). Recall-

ing (1.10), one concludes that for any u ∈ ]0 , 1[,

(5.51) Q̃Ξn(u) 6 c log(1/u) + σ
√

2n log(1/u).

Finally, combining Lemma 5.4, (5.51) and the subadditivity property of Q̃ implies
inequality (a) of the theorem and completes the proof of Theorem 4.2. �

Proof of Theorem 4.4. — As previously mentioned, we only have to prove (a).
By reasoning in the same way as (5.48), the assumption on the Xk, t’s allows us to
derive that

(5.52) logE[exp(λΞo
n)] 6 n

λ2

2 C(T ),

for any λ > 0. Therefore, the same conclusion as in the proof of Theorem 4.2 yields
that

(5.53) Q̃Ξon(u) 6
√

2nC(T ) log(1/u),

for any u ∈ ]0 , 1[. The claim follows by associating this fact with Lemma 5.4. �

Proof of Proposition 4.5. — Let ϕ be a convex function. Then by Jensen’s in-
equality,

Ek−1 [ϕ(−ζk)] 6 Ek−1
[
ϕ
(
−Xk, tτk

)]
.

Now, since τk is Fkn -measurable, conditionally to Fkn , −Xk, tτk
is a centered Gaussian

random variable with variance equals to σ2
tτk

. Thus, since σ2
tτk
6 σ2,

(5.54) Ek−1Ekn
[
ϕ
(
−Xk, tτk

)]
6 E[ϕ(σY )],

where Y is standard Gaussian random variable. The proof of (5.54) is deferred to
Appendix A. Now, by an induction on n, we derive that for any convex function ϕ,

(5.55) E [ϕ (Ξo
n)] 6 E

[
ϕ

(
σ

n∑
k=1

Yk

)]
,

ANNALES HENRI LEBESGUE



Concentration inequalities for suprema of unbounded empirical processes 857

where Y1, . . . , Yn is a sequence of iid standard Gaussian random variables, indepen-
dent of the other random variables. Then, by the variational formula (3.4) for α = 1,
we have for any u ∈ ]0 , 1],
(5.56) Q̃Ξon(u) 6 Q̃

σ
n∑
k=1

Yk
(u).

Now, since Q̃X depends only on the distribution of X, the right-hand side in (5.56)
is equal to σ

√
n Q̃Y (u), where Y is a standard Gaussian random variable. The claim

follows by combining this fact with Lemma 5.4. �

Appendix A. Additional proofs

Proof of Inequality (1.12). — Let X = ZG − E[ZG]. Recall that QX(U) has the
same distribution as X for any random variable U with the uniform distribution
over [0 , 1]. It implies that Q̃X(1) = E[X]. Now, since E[X] = 0, one has∫ u

0
QX(s)ds = −

∫ 1

u
QX(s)ds.

Moreover, ∫ 1

u
QX(y)dy = 1− u

u

∫ u

0
QX

(
u+ 1− u

u
s
)
ds.

Hence, combining this two facts and using the comparison inequality (1.11),

Q̃X(u) = 1− u
u

∫ u

0
QX(s)ds+

∫ u

0
QX(s)ds

= 1− u
u

∫ u

0

(
QX(s)−QX

(
u+ 1− u

u
s
))

ds

6 σG
1− u
u

∫ u

0

(
QY (s)−QY

(
u+ 1− u

u
s
))

ds

= σG Q̃Y (u).
This concludes the proof of (1.12). �
Proof of Inequality (1.16). — First, note that

Z = sup
S ∈S

n∑
k=1

(
U
−1/`
k 1S(Uk)−

∫
S
u−1/`du

)
=

n∑
k=1

(
U
−1/`
k 1Uk 6∆ −

∫
S
u−1/`du

)
.

Next,

(A.1) 1
n

Var(Z) = Var
(
U−1/`1U 6∆

)
= `

`− 2 ∆(`−2)/` − `

`− 1 ∆2(`−1)/`.

Moreover, for all S ∈ S,

(A.2) σ2
S := Var

(
U−1/`1S(U)

)
6
∫ p

0
u2/`du = `

`− 2 p
`−2/`.

Combining (A.1) and (A.2), and choosing p and ∆ small enough, we derive

(A.3) 1
n

Var(Z)− σ2 > K
`

`− 2∆(`−1)/`,
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for a constant K > 0. See now that

(A.4) 1
n
E[Z] = E

[
U−1/`1U 6∆

]
=
(

1 + 1
`− 1

)
∆(`−2)/(`−1),

which implies

(A.5) ∆ =
(
`− 1
`

E[Z]
n

) `
`−1

.

Putting (A.5) into (A.3) leads to

(A.6) 1
n

Var(Z)− σ2 > K1

(E[Z]
n

) `
`−1
,

where K1 > 0, which ends the proof. �

Proof of Lemma 5.7. — The lemma follows from the following general result:

Lemma A.1. — Let p > 2. Let X be a nonnegative, Lp-integrable, random
variable. Then

E[|X − E[X]|p]− E[|X|p] 6 −2(E[X])p−1E[X1X 6E[X]/2].

Assume that E[X] = 1. The general case follows by considering X/E[X]. Let
M = E[X1X 6 1/2], and define for any x > 0,

fp(x) = |x− 1|p − |x|p.
Let gp := fp1[0, 1/2] and hp := fp1[1/2,+∞[. Since gp is a decreasing and convex function,

(A.7)
E[gp(X)] 6 E

[
gp
(
X1X 6 1/2

)]
6 (1− 2M)gp(0) + 2Mgp(1) = 1− 2M .

d Next, since hp is concave,
(A.8) E [hp(X)] 6 hp(1) = −1.
Now, since fp = gp + hp, the claim follows by combining (A.7) and (A.8). �

Proof of Inequality (5.54). — The claim is an application of the following general
comparison result:

Lemma A.2. — Let X be a centered random variable. Let 0 6 a 6 b. Then, for
any convex function ϕ

E [ϕ(aX)] 6 E [ϕ(bX)] .

Let ϕ be a C2 convex function. Using the following version of Taylor’s formula

ϕ(x) = ϕ(0) + xϕ′(0) + |x|2
∫ 1

0
(1− s)ϕ′′(sx)ds, x ∈ R,

we get

E [ϕ(aX)] = ϕ(0) + a2 E
[
|X|2

∫ 1

0
ϕ′′(saX)ds

]
= ϕ(0) + abE

[
|X|2

∫ a/b

0

(
1− b

a
t

)
ϕ′′(tbX)dt

]
.
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Now, since ϕ′′ > 0 and 0 6 a 6 b,

abE
[
|X|2

∫ a/b

0

(
1− b

a
t

)
ϕ′′(tbX)dt

]
6 b2 E

[
|X|2

∫ 1

0
(1− t)ϕ′′(tbX)dt

]
.

Therefrom,
E[ϕ(aX)] 6 E[ϕ(bX)].

The general case follows from the monotone convergence theorem since any convex
function can be approximated by an increasing sequence of C2 convex Lipschitz
functions. �
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