On Mori cone of Bott towers - Archive ouverte HAL
Article Dans Une Revue Journal of Algebra Année : 2018

On Mori cone of Bott towers

Narasimha Chary Bonala
  • Fonction : Auteur
  • PersonId : 1010843

Résumé

A Bott tower of height $r$ is a sequence of projective bundles $$X_r \overset{{\pi_r}}\longrightarrow X_{r-1} \overset{\pi_{r-1}}\longrightarrow \cdots \overset{\pi_2}\longrightarrow X_1=\mathbb P^1 \overset{\pi_1} \longrightarrow X_0=\{pt\}, $$ where $X_i=\mathbb P (\mathcal O_{X_{i-1}}\oplus \mathcal L_{i-1})$ for a line bundle $\mathcal L_{i-1}$ over $X_{i-1}$ for all $1\leq i\leq r$ and $\mathbb P(-)$ denotes the projectivization. These are smooth projective toric varieties and we refer to the top object $X_{r}$ also as a Bott tower. In this article, we study the Mori cone and numerically effective (nef) cone of Bott towers, and we classify Fano, weak Fano and log Fano Bott towers. We prove some vanishing theorems for the cohomology of tangent bundle of Bott towers.
Fichier principal
Vignette du fichier
On Mori cone of Bott towers.pdf (523.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01544844 , version 1 (22-06-2017)
hal-01544844 , version 2 (16-10-2017)

Identifiants

Citer

Narasimha Chary Bonala. On Mori cone of Bott towers. Journal of Algebra, 2018, 507, pp.467-501. ⟨10.1016/j.jalgebra.2018.04.021⟩. ⟨hal-01544844v2⟩
131 Consultations
171 Téléchargements

Altmetric

Partager

More